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Stimulation triggers endogenous 
activity patterns in cultured cortical 
networks
Valentina Pasquale   1, Sergio Martinoia   2,3 & Michela Chiappalone   1

Cultures of dissociated cortical neurons represent a powerful trade-off between more realistic 
experimental models and abstract modeling approaches, allowing to investigate mechanisms of 
synchronized activity generation. These networks spontaneously alternate periods of high activity 
(i.e. network bursts) with periods of quiescence in a dynamic state which recalls the fluctuation of 
in vivo UP and DOWN states. Network bursts can also be elicited by external stimulation and their 
spatial propagation patterns tracked by means of multi-channel micro-electrode arrays. In this 
study, we used rat cortical cultures coupled to micro-electrode arrays to investigate the similarity 
between spontaneous and evoked activity patterns. We performed experiments by applying electrical 
stimulation to different network locations and demonstrated that the rank orders of electrodes during 
evoked and spontaneous events are remarkably similar independently from the stimulation source. We 
linked this result to the capability of stimulation to evoke firing in highly active and “leader” sites of the 
network, reliably and rapidly recruited within both spontaneous and evoked bursts. Our study provides 
the first evidence that spontaneous and evoked activity similarity is reliably observed also in dissociated 
cortical networks.

In vivo cortical circuits spontaneously generate slow oscillatory activity in the absence of external inputs (e.g. 
during sleep or anesthesia1–3) or during quiet wakefulness4–7, usually referred to as UP and DOWN states8. 
Interestingly, these oscillations, in the form of synchronized bursting events alternating with silent periods, can 
be also found in vitro in isolated cortical preparations, either acute slices9–11 or dissociated cultures12–15.

The spatio-temporal activity patterns exhibited during spontaneous activity can be tracked by means of 
multi-channel micro-electrode array (MEA) or calcium imaging techniques and appear to be highly reliable both 
in vitro and in vivo6, 9, 11, 16–21. A key result, reported in a variety of in vivo studies, is the similarity of spontaneous 
and sensory-evoked activity patterns7, 22–25, observed also in acute slices9. Interestingly, similarity between spon-
taneous and evoked activity has also been observed at a much larger scale26. Altogether, these findings suggest 
that similarity of spontaneous and evoked patterns of activity, observed at increasing levels of structural complex-
ity, constitutes a basic and important feature of cortical function, which deserves further investigation. In this 
context, it has been hypothesized that cortical connectivity plays a crucial role in constraining possible activity 
patterns from small- to large-scale networks26. Luczak and MacLean27 proposed the idea that recurring patterns 
reflect the activation of specific local microcircuits. Moreover, some studies on cortical cultures28–33 and compu-
tational models34 also suggested the hypothesis that a reduced pool of strongly interconnected and highly active 
neurons, consistently recruited at the beginning of active states, orchestrate the spontaneous activity of cortical 
networks. These findings are paralleled by other in vitro studies on slices35 and in vivo36, 37, in which spontaneous 
(but also sensory-evoked) activity is dominated by a small subset of highly active neurons, which are responsible 
for the majority of the recorded spikes and are promptly recruited in collective network activations.

In this work, we used cultures of cortical neurons plated on MEAs to study the occurrence of recurring 
spatio-temporal bursting patterns in ex vivo cortical networks, either spontaneous or evoked by electrical stimu-
lation, and compute their similarity. To define patterns, we focused on the rank order of electrodes in burst events 
and improved currently existing methods based on string-edit distance measures17, 38 to measure rank-order 
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based similarity. We took into consideration the role played by leader sites of the monitored network in coordi-
nating both spontaneous and stimulated patterns and we asked whether the similarity between spontaneous and 
stimulated patterns can be related to leaders’ activation. Our results show that stimulation triggers endogenous 
propagation patterns with high reliability, largely independently of the stimulation source. This phenomenon is 
correlated to the ability of triggering firing in highly active and first-to-fire network sites, which are reliably and 
rapidly recruited within both spontaneous and evoked bursts. Our study provides the first evidence that simi-
larity between spontaneous and evoked activity patterns can be observed also in generic (unstructured) cortical 
cultures of dissociated neurons31, 39, thus strengthening the idea of the ubiquitous nature of this phenomenon.

Results
Major leaders are reliably and promptly recruited during NBs.  Starting from the 4th week in culture, 
we recorded both spontaneous and evoked activity generated by cortical networks plated on planar MEAs (cf. 
Fig. 1a,b). After about 3 weeks of development, these networks exhibit synchronized bursting events (or network 
bursts, NBs) which often involve most of the recording channels of the MEAs (cf. Fig. 1c,d). Comparable events 
(cf. Fig. 1e,f) can be also evoked by single-pulse stimulation (cf. Methods and Fig. 1b) delivered from different 
electrodes.

The number of spontaneously active channels per MEA (i.e. channels having firing rate >0.1 spikes/s) was 
50 ± 1 (59 available electrodes per MEA), whereas the average firing rate was 4.65 ± 0.63 spikes/s. The spontane-
ous rate of NBs was 19.32 ± 3.08 NB/min (min. 5.36 – max. 42.54 NB/min).

After spontaneous activity recording, we performed a preliminary detection of NBs and of major burst-
ing activity leaders, called major leaders (MLs)30 (cf. Methods). Over a total of 653 active channels recorded 
in 13 experiments, 76 (11.64%) are classified as MLs (5.85 ± 0.53 per culture). They are usually stable over 
medium-term recordings (15 hours, cf. Supplementary Figure 1a) and we also know from our previous work 
that they tend to be conserved across development40. They are among the most active sites, featuring higher 
firing rates, higher ratio of spikes within bursts, and longer burst durations (cf. Supplementary Figure 1b,f). The 
presence of a few highly active and leader sites driving cortical network activity is in accordance with previous 
in vitro and in vivo reports29, 32, 36, 37, 41. Also the probability density function of logarithm of spontaneous firing 
rate in our cultures (cf. Supplementary Figure 1g) matched what had been previously observed in vitro42 and in 
vivo43, 44.The application of a conventional spike sorting algorithm45 to a subset of experiments confirms that 
statistically there is no tendency to classify as MLs those electrodes recording more than one single neuron (cf. 
Supplementary Material).

Diverse clusters of NB patterns are associated to different MLs.  We first asked whether the activa-
tion of different MLs can be predictive of the subsequent pattern of follower electrodes’ activation during NBs (i.e. 
propagation or activation pattern). In fact, we knew from the literature17, 46 that NB patterns are not completely 
random, but rather stereotyped, mostly belonging to just few classes of “endogenous” patterns17, 46. In this context, 
we term “endogenous” a spontaneously recurring pattern, which identifies a preferential pathway of NB activity 
propagation for a specific culture. In order to detect similarity among spontaneous NBs according to their pat-
tern, we improved an existing method38 to compute the “edit distance” between pairs of patterns, and obtained 
for each experiment a “distance matrix”, i.e. a matrix collecting distances between all (pairs of) NB patterns. We 
first re-ordered the sequence of NBs in the distance matrix by the corresponding leader, selecting only those 
NBs driven by MLs (see in Fig. 2a a representative experiment, referring to ML clustering). As an alternative, we 
applied state-of-the-art clustering techniques17 to the original distance matrix in order to quantify the number 
of different clusters of NB propagation patterns (cf. Methods and Supplementary Figure 5), regardless of the 
leader. We further improved the clustering technique by adding a template-matching step, in order to cluster all 
similar repeating patterns and discard unclassified patterns from further analysis (cf. Supplementary Methods 
and Supplementary Figure 6). The result of the pattern clustering procedure, for the same experiment reported 
in Fig. 2a, is shown in Fig. 2b.

We can observe that, when selecting and re-ordering NBs on the basis of their ML, blue squares appear 
along the diagonal (i.e. collecting low distances), roughly corresponding to sets of NBs led by the same ML. 
Nevertheless, in some cases, NBs led by different MLs (e.g. 17, 24, 27 in Fig. 2a) seem to be remarkably similar as 
well. Moreover, the number of different clusters of NB patterns (cf. Fig. 2b) is usually lower than the number of 
identified MLs, suggesting that there is no 1:1 correspondence between MLs and activation patterns. In Fig. 2c we 
reported the median propagation delays of all electrodes (with respect to the first activated) in a color-coded map 
for the four identified clusters of patterns highlighted in Fig. 2b: cold colors correspond to shorter delays, whereas 
warm colors correspond to longer delays. These results suggest that different propagation patterns tend to be 
associated to different pools of MLs, although some MLs can also be common to different patterns. In Fig. 2d we 
quantified the ratio of NBs driven by the first-, second-, third- and fourth-ranked most frequent MLs within each 
cluster. In several cases, a high percentage of NBs belonging to the same cluster (according to pattern clustering) 
are led by the same ML (i.e. first-ranked ML), and most NBs in the same cluster (around 75% on average) actually 
start from the same pool of a few MLs (black bar in Fig. 2d). In Fig. 2e we reported the ratio of significantly similar 
NB pattern pairs, coming from either the same or different MLs (black box-plots), or belonging to the same or to 
different clusters (red box-plots, cf. Methods). NBs starting from the same ML tend to be more similar than pat-
terns coming from different MLs, confirming that they tend to share the same following propagation pattern. The 
same result holds for patterns belonging to the same cluster. In both cases (i.e. bursts with the same ML, bursts 
belonging to the same cluster) the ratio of similar NB patterns’ pairs is markedly higher than that of shuffled data 
(grey box-plot).
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MLs show and evoke stronger and faster late responses.  ML identification allowed us to deliver 
stimulation from either ML or follower sites (for a maximum of 8 sites, 4 of which MLs and 4 followers), to 
look for possible differences in the evoked activity (cf. Fig. 1b). We delivered a “test stimulus” to the culture (cf. 
Methods) through each of them and the evoked response was considered in a 500-ms window following each 
pulse. In Fig. 3a, we reported the 59+59 PSTH functions obtained by the stimulation of one ML electrode (32, 
grey traces) and of one follower electrode (63, black traces) in a representative culture. Other ML channels have 
been highlighted by a light grey square (i.e. channels 13, 15, 25, 42, 51, 78, 86). In this case, the stimulation from 
both electrodes is able to evoke a delayed network response involving most active channels. If we look closer to 
single PSTH functions, we can notice that in some electrodes the late response is preceded by an earlier and faster 
component, which does not always involve the same set of channels for different stimulated electrodes (i.e. early 
response). This early component, which had been previously associated to the direct activation of neurons by 

Figure 1.  Cortical cultures over MEAs show both spontaneous and evoked synchronized network bursts. (a) 
Optical micrograph (magnification 10x) of a culture of dissociated rat cortical neurons plated over a MEA at 3 
DIV (spatial calibration bar 50 µm). (b) Sketch illustrating the geometrical layout of a MEA (shown in a sample 
photograph on the left), including all electrodes’ labels. In each experiment, 8 different channels were selected 
to deliver a sequence of 100 monopolar voltage pulses at 0.2 Hz (biphasic square wave, amplitude ± 750 mV, 
duration 500 μs, duty cycle 50%). (c) Raster plot of 20 s of spiking activity recorded by a 60-electrode MEA. (d) 
Zoom on 1 s of activity highlighting a spontaneous NB. Black dots represent the detected spikes, while the grey 
curve is the corresponding instantaneous firing rate function (moving rectangular window: 100 ms). (e,f) Same 
graphical notation as in (c,d) but during a stimulation phase. Stimuli onsets are marked by grey vertical lines.
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the electrical stimulation38, is usually comprised within a few tenths of ms after the stimulus and corresponds to 
a high and narrow peak in the PSTH, meaning that the activation has high reliability and temporal precision47.

We devised an adaptive procedure (cf. Methods), which determines, whenever possible, the optimal time 
threshold to separate the early from the late component for all responding channels to a single stimulated elec-
trode (cf. Fig. 3b). We further considered those stimulated electrodes for which we could reliably separate the two 
components. In Fig. 3c we reported the histogram of all thresholds, showing that values are distributed between 

Figure 2.  Diverse clusters of NB patterns are associated to different MLs. (a) Color-coded matrix of normalized 
distances between all pairs of spontaneous NBs (representative experiment) ordered by ML. ML numbers are 
reported aside, to indicate the corresponding clusters of NB. (b) Matrix of normalized distances between all 
pairs of spontaneous NBs, selected and ordered according to the pattern clustering procedure (same experiment 
as in a). In this example, four separate clusters were identified. Cluster numbers are indicated aside. Color-map: 
cool colors indicate low distances, whereas warm colors indicate high distances. Range: [0, 1]. (c) Color-coded 
maps of median propagation delays of electrode activations (with respect to the leader) within each cluster of 
patterns identified in (b) (same experiment). Each color-map has been rescaled according to the maximum 
delay, as indicated in the figure. MLs are highlighted by the dashed circles. (d) Bar graph of the ratio of NBs led 
by the four top-ranked MLs found in each cluster (colored bars). The cumulative ratio of NBs led by the four 
top-ranked MLs is shown in the black bar (mean ± s.e.m., full dataset). (e) Ratio of significantly similar NB 
patterns driven by the same or different MLs (black), and of similar patterns belonging to the same cluster or 
different clusters (red). Box plots collect data from the full dataset. The ratio of significantly similar patterns 
occurring by chance in case of shuffling (cf. Supplementary Methods) is reported in the grey box plot (the 95th 
percentile of shuffled data is indicated by the dashed line). Statistically significant differences as indicated in the 
figure have been assessed by Mann-Whitney U-test,  > =p U 0.
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Figure 3.  Major leaders show and evoke stronger and faster bursting responses. (a) Post-stimulus time 
histograms of all electrodes upon stimulation of channel 32 (ML, light grey traces) or of channel 63 (follower, 
black traces) for a representative culture. Other ML responses are highlighted by grey squares. X-scale: 500 ms, 
Y-scale: 1.5 spikes/bin. (b) Delay plot for a representative stimulating electrode: for each electrode (y-axis) we 
reported the histogram of delays (x-axis) with respect to the stimulus onset. Bar heights are color-coded in grey 
scale. Black dots indicate median delays. Electrode numbers as in Fig. 1 (b). The early response time period, as 
estimated from network PSTH (inset), is indicated by the grey-shaded area and not considered for the 
determination of the evoked NB pattern. (c) Histogram of time separation thresholds between early and late 
evoked response components (67 channels, all experiments). (d,e) Box plots representing statistical 
distributions of normalized area (d) and normalized first-spike latency (e), by considering only the late 
response: on the left, comparison of ML (grey) or follower (black) responses (area: Mann-Whitney U-test 

> =p U 0; latency: Mann-Whitney U-test > = . ⋅ −p U 1 2 10 75); on the right, comparison of responses to 
either ML (light grey) or follower (black) stimulations (area: Mann-Whitney U-test > = . ⋅ −p U 1 8 10 5; 
latency: Mann-Whitney U-test > = . ⋅ −p U 6 6 10 14).



www.nature.com/scientificreports/

6Scientific REPOrTS | 7: 9080  | DOI:10.1038/s41598-017-08369-0

10 and 50 ms, but are more frequent between 15 and 35 ms (entire dataset, consisting of 67 stimulating electrodes, 
26.95 ± 1.15 ms; cf. also Supplementary Figure 2).

In Fig. 3d,e we reported both the normalized area (panel D) and the normalized first-spike latency (panel E) 
of the late response component. Same data were reported in Supplementary Figure 3a,b for the early response 
component. We compared either ML vs follower responses (grey vs. black box-plots) or the responses to ML 
vs follower stimulations (light grey vs. black box-plots). The main result is that ML responses to stimulation 
are stronger than those of followers, both in the late (Fig. 3d, grey vs. black box-plots) and in the early phase 
(Supplementary Figure 3a, grey vs. black box-plots). Moreover, responses of MLs are also significantly faster in 
the late phase (Fig. 3e, grey vs. black box-plots) (but not in the early one as it can be expected, cf. Supplementary 
Figure 3b, grey vs. black box-plots). When stimulation is delivered from MLs, they tend to evoke faster and 
slightly stronger late responses (Fig. 3d,e, light grey vs. black box-plots) on other channels than when followers 
are stimulated, although this effect is less significant than when looking at ML vs follower responses (cf. caption 
of Fig. 3). Finally, ML stimulation is also able to evoke faster (but not stronger) early responses (Supplementary 
Figure 3a,b, light grey vs. black box-plots).

In summary, we found that MLs are similarly activated within both spontaneous and evoked NBs, and their 
stimulation is more effective in triggering network responses.

Evoked NBs from different stimulated channels share quite similar patterns.  After character-
izing the average properties (strength, latency) of ML responses to stimulation and of responses evoked by ML 
stimulation, we applied the same clustering procedure to evoked NB events (cf. Supplementary Figure 6), sepa-
rately for each stimulated channel’s responses. We observed that stimulation from a single source mostly evokes 
a single reliable activation pattern, as also reported previously in the literature38. The goal here is to identify the 
main propagation patterns of NBs evoked from different sources.

In Fig. 4a, we reported the distance matrix between all pairs of evoked NBs clustered according to the corre-
sponding stimulated channel, and in Fig. 4b the one resulting after selecting patterns based on our clustering 
procedure (representative experiment). In this case, the clustering procedure identified the most frequent propa-
gation pattern evoked by stimulation of a single channel and discarded unclassified patterns. In Fig. 4c we showed 
the color-coded propagation delay maps of the selected evoked NBs from three different sources (electrodes 51, 
76 and 86, same culture as in Fig. 4a). In Fig. 4d we compared the distributions of the ratio of similar NB patterns 
driven by the same or different stimulated channels (13 cultures, 67 stimulated channels), and either applying (red 
box-plots) or not applying (black box-plots) the clustering procedure. We observed that patterns elicited by dif-
ferent stimulation sources seem to share a considerable degree of similarity, as qualitatively illustrated also in 
panels a and b of Fig. 4: low distances (i.e. cold colors) between pairs of patterns elicited by different stimulation 
sources indicate that they are actually similar. Also the propagation delay maps show that in this representative 
culture the bursting responses tend to start in the bottom right corner and to propagate leftward, even if with 
slightly different absolute delays of electrodes’ activations. The global population statistics (cf. Fig. 4d) shows that 
although there is a significant statistical difference, patterns evoked by different sources are less separated among 
themselves than spontaneous patterns belonging to different clusters (median ratio of similar evoked NB patterns 
from different stimulated channels 0.22, median ratio of similar spontaneous NB patterns belonging to different 
clusters 0.09, Mann-Whitney U-test > = . ⋅ −p U 3 0 10 8). Moreover, the application of the clustering proce-
dure enhances not only the reliability of patterns from the same source, but also of patterns from different sources 
(median ratio of similar evoked NB patterns before clustering 0.16, after 0.22).

Spontaneous and evoked NB patterns are similar.  In light of the previous results, we hypothesized 
that the similarity between evoked NB patterns from different sources could be explained by the fact that the same 
endogenous pattern is actually triggered independently from the stimulated channel. Therefore, we computed the 
distances between each pair of spontaneous and evoked NBs. In Fig. 5a we reported for a representative exper-
iment the full matrix of distances between all pairs of patterns, considering both spontaneous and evoked NBs. 
Pattern clustering had been applied previously and independently to the two groups of spontaneous and evoked 
NB events. Hence, spontaneous and evoked NB patterns have been selected and re-ordered independently of their 
cross-distances (cf. Supplementary Figure 6).

We can notice that also distances between spontaneous and evoked patterns are remarkably (and also sig-
nificantly) low (cf. second and third quadrant of the full distance matrix in Fig. 5a), as it happens for distances 
between pairs of evoked patterns from different sources. For each pair of spontaneous and evoked clusters of 
patterns we computed the ratio of significantly similar patterns’ pairs over the total number of pairs and we 
determined its maximum value for each stimulated channel (reported in Fig. 5b as a function of the experiment 
number). This allowed us to associate each evoked pattern to the most similar cluster of spontaneous patterns. 
We can regard this as a quantification of the “similarity” between spontaneous and evoked NB patterns for each 
stimulated channel. We also computed the same quantity when shuffling spontaneous patterns several times and 
reported its distribution for each experiment in the grey box plots of Fig. 5b. It is evident that the ratio of similar 
spontaneous and evoked patterns is much higher than expected by chance in most cases (higher than a conserv-
ative threshold equal to 10% in 60 out of 67 channels, 89.55%). In 8 out of 13 cultures for no tested channel this 
parameter was less than 10% (61.54%).

We also used an alternative method to visualize and quantify the similarity between spontaneous and 
evoked patterns, based on the multidimensional scaling analysis technique (cf. Supplementary Methods and 
Supplementary Results). Results in Supplementary Figure 4 confirm the similarity of spontaneous and evoked 
patterns, showing that the realm of spontaneous patterns subtends possible evoked patterns. Finally, we corre-
lated the ratio of similar spontaneous and evoked NBs to the ratio of similar NB patterns within each of the two 
corresponding spontaneous and evoked clusters (by computing the average of the two). Those data are reported 
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in Fig. 5c as a scatter plot. We found a significant correlation between these two quantities (Pearson’s correlation 
coefficient 0.73, p = 2.85·10−12), meaning that the more reliable spontaneous and evoked propagation patterns 
are, the more similar they will be among themselves.

MLs involvement in evoked patterns.  We asked whether spontaneous vs. evoked patterns’ similarity 
could be different when stimulating either MLs or followers, but we could not find any significance when compar-
ing the statistical distributions of the ratios of similar spontaneous and evoked patterns in the two cases 
(two-sample t-test, p > = .t 0 88). This is consistent with the observation that the stimulation source does not 
fully determine a priori which pattern is generated, and that there is remarkable similarity among evoked patterns 
from different sources.

Then, we asked whether the early involvement of MLs in evoked responses was predictive of the similar-
ity between evoked and spontaneous patterns led by the same MLs. In Fig. 6a–c we show for a representative 
experiment (the same used in Fig. 5) that stimulation of channel 38 reliably evokes a pattern which is similar 
to the spontaneous one identified as Cluster 1 (roughly corresponding to MLs 17 and 28, the closest ones to the 
stimulated channel). The same happens when stimulated channel 51 in the same culture (cf. Fig. 6d–f), evoking a 
propagation pattern similar to spontaneous Cluster 3 (starting from ML 63, again the closest ML to 51).

These qualitative observations are quantified in the panels of Fig. 6. First of all, we divided evoked patterns 
in two categories, either similar to spontaneous (whose corresponding ratio of similar spontaneous and evoked 
patterns is higher than 10%, cf. Fig. 5, 60 channels out of 67) or different from spontaneous (ratio of similar 
spontaneous and evoked patterns lower than 10%, 7 channels out of 67). Then, in evoked patterns similar to 
spontaneous, we considered separately either the MLs driving the similar spontaneous cluster or the MLs of the 

Figure 4.  Evoked NBs from different sources share similar patterns. (a) Color-coded matrix of normalized 
distances among all pairs of evoked NBs (representative experiment) ordered by the corresponding stimulated 
channel. (b) Matrix of normalized distances among all pairs of evoked NBs (same experiment as in a) ordered 
by the corresponding stimulated channel and selected according to the pattern clustering procedure, applied 
separately to each stimulated channel’s responses. Stimulated channels’ numbers are reported aside, to indicate 
the corresponding clusters of NB patterns (also in a). Color-map: cool colors indicate low distances, whereas 
warm colors indicate high distances. Range: [0, 1]. (c) Color-coded maps of median propagation delays of 
electrode activations (with respect to the stimulus onset) for three different stimulated electrodes (same 
representative experiment as in a,b). Each color-map has been rescaled according to the maximum delay, as 
indicated in figure. (d) Ratio of significantly similar patterns evoked by the same or different stimulated 
channels, either considering all patterns (black) or only the clustered ones (red). Box plots collect data from the 
full dataset. Statistically significant differences as indicated in figure has been assessed by Mann-Whitney U-test 
(all patterns: > = . ⋅ −p U 2 1 10 8, all clustered patterns: > = . ⋅ −p U 5 0 10 11).
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dissimilar clusters. For all the other patterns, we considered MLs altogether. When looking at the relative recruit-
ment order of MLs in evoked patterns, we found that MLs leading the associated spontaneous cluster feature 
significantly lower recruitment orders than all other cases (cf. Fig. 6g). This result could be expected, given the 

Figure 5.  Spontaneous and evoked network bursts show similar activation patterns. (a) Color-coded matrix of 
normalized distances among all pairs of NBs, both spontaneous and evoked, for a representative experiment. 
NBs have been re-ordered according to the pattern clustering procedure, run separately on spontaneous and on 
evoked patterns. Cluster and stimulated electrode numbers have been reported aside. (b) Maximum ratio of 
similar spontaneous and evoked NB patterns (as a measure of similarity), for each stimulated electrode as a 
function of the experiment number (x-axis). Each point represents a stimulated electrode, in black showing 
ratio >0.1, in red ratio <0.1. Statistical distributions of the same parameter computed between shuffled 
spontaneous and evoked patterns are reported for each experiment in the grey box-plots. The grey shaded area 
highlights the experiment shown in (a). (c) Scatter plot of the ratio of similar spontaneous and evoked patterns 
(already shown in b) as a function of the mean ratio of similar patterns in the corresponding spontaneous and 
evoked clusters. The red line indicates the best linear fitting (Pearson’s correlation coefficient 0.73, 

= . ⋅ −p 2 85 10 12, adjusted R-square 0.53).
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similarity between spontaneous and evoked patterns and the fact that MLs are recruited with shorter latencies 
to stimulation onset (cf. Fig. 3e). Then we looked at the normalized PSTH area of MLs, but considering only the 
early component of the response, the one which precedes the generation of the bursting response and that was 

Figure 6.  ML prompt and direct activation is predictive of pattern similarity. (a,d) Median delays of activation 
for two different stimulated electrodes (in red) and the associated similar spontaneous pattern (in light blue, 
same experiment as in Fig. 5a). For each electrode (on the y-axis) we reported the median delay of the first spike 
with respect to either the stimulation onset or the first activated electrode (on the x-axis). Electrodes, identified 
by a label according to the MEA layout (cf. Fig. 1), are sorted based on the rank order of median delays observed 
in the spontaneous cluster. (b,c,e,f) Color-coded maps of the median propagation delays of electrode activations 
(with respect to either the stimulation onset or the first activated electrode) for the same two stimulated 
electrodes and the corresponding similar spontaneous pattern. Each color-map has been rescaled according to 
the maximum delay (in ms), as indicated in figure. MLs and the stimulated channel are highlighted as indicated 
in the legend. (g) Statistical distributions of relative recruitment order of MLs in evoked patterns. (Kruskal-
Wallis ANOVA on ranks with Dunn’s correction for pairwise multiple comparisons, p < 0.001). (h) Statistical 
distributions of normalized PSTH area of early response of MLs in evoked patterns. (Kruskal-Wallis ANOVA 
on ranks with Dunn’s correction for pairwise multiple comparisons, p < 0.001). (i) Statistical distributions of 
geometric distance of MLs from stimulated channels in evoked patterns (Kruskal-Wallis ANOVA on ranks with 
Dunn’s correction for pairwise multiple comparisons, p = 0.005).
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not considered in the determination of the evoked activation pattern. In this case, MLs of similar endogenous pat-
terns show higher PSTH areas than MLs of dissimilar ones (cf. Fig. 6h), meaning that when stimulation “directly” 
activates MLs (i.e. directly elicits a higher number of spikes on MLs) the corresponding endogenous pattern is 
more likely to be subsequently evoked in the late response phase. Finally, we also looked at the geometric distance 
between stimulated channels and MLs, and we found that when a stimulated channel is closer to a ML, there is a 
higher chance that the corresponding endogenous pattern is evoked. In fact, MLs of similar spontaneous clusters 
are significantly closer to stimulated channels than MLs of dissimilar clusters (cf. Fig. 6i).

In summary, when stimulation is able to directly evoke firing in MLs, which are by definition reliably and 
promptly recruited during spontaneous NBs, the corresponding subsequent endogenous pattern is more likely 
to be generated.

Discussion
Our study was aimed at investigating the relationship between spontaneous and evoked synchronized network 
events. We first analyzed the spontaneous activity of cortical cultures and, in agreement with previous reports30, 31,  
we found that a few electrodes record earlier and sustained activity during synchronized bursting (i.e. MLs). 
Then, we asked what relationship there is between the occurrence of a specific activity pattern and the early 
activation of MLs, finding that diverse activity patterns are associated to the activation of different pools of MLs. 
Since MLs appear to be strongly and promptly activated also during electrically stimulated events, we extended 
our analysis to evoked patterns and asked what role MLs play in the generation of bursting responses. We first 
showed that stimulation actually triggers NBs which strongly resemble endogenous (i.e. spontaneously gener-
ated) ones, independently of the stimulation source, and then demonstrated that this phenomenon is mediated 
by the capability of stimulation to elicit early (direct) responses on the corresponding pool of MLs. We interpreted 
these results as a supporting evidence of the existence of preferential micro-circuits underlying the emergence of 
cortical recurring patterns, as previously hypothesized in27. These findings are in agreement with numerous pre-
vious experimental (both in vitro and in vivo) and computational reports (see Introduction), linking for the first 
time the two previously independent findings, i.e. the generation of reliable sequential patterns and the evidence 
of sparse firing in the neocortex36, 41.

The experimental evidence for the presence of highly active neurons in the functional organization of cortical 
micro-circuits is accumulating very rapidly: in vitro those neurons have been usually identified by their leadership 
property, either called “major burst leaders”29, 30, or “first-to-fire”31, or simply “highly active”32. In vivo many recent 
studies reported about the presence of a minority of neuronal cells which account for the majority of recorded 
spikes, as an evidence of sparse firing in the neocortex36, 41, 43, 48. In fact, when computing the probability density 
function of logarithm of spontaneous firing rate in our networks we found the same pseudo log-normal distribu-
tion derived in a theoretical model44 and found both in vivo43 and in vitro42.

Here, we focused on the presence of major leaders30, which also corresponded to many of the most active sites 
in the network, showing not only higher global firing rates, but also longer burst durations and lower percentage 
of desynchronized spikes. These results are in accordance with what was previously shown in other experimental 
studies on the same kind of preparation29–31, 42, and confirm that some electrodes in the array (i) are consistently 
activated in the first stages of bursting activity propagation and (ii) feature higher firing rates. Given the reduced 
number of recording electrodes of MEA devices (60 electrodes over an area of about 1.5 mm2) and thus estimat-
ing that less than 1–5% of neurons in the network are actually sampled, there is a high chance that MLs are simply 
the first activated sites recorded during bursts and that the propagating activity is starting outside the monitored 
area of the network. However, they belong to a sub-population of cells which are consistently recruited into 
collective events in the first stages of propagation, although there is no proof that they actually ignite them (see 
Discussion of refs 30, 32). Moreover, other studies, using calcium imaging to monitor cultured cortical networks 
and to overcome MEAs’ limitations in terms of spatial resolution, reported about the existence of a few discrete 
areas of the network that control the activity of the entire culture28, 39.

The firing properties of MLs are also maintained in delayed evoked burst events, since they show higher num-
bers of evoked spikes and shorter latencies to stimulation. They also respond better to stimulation in the early 
phase, suggesting that they are strongly coupled to many physical locations in the network32. Moreover, when 
stimulation is delivered from MLs, responses show shorter latencies (both early and late), indicating that the 
network is faster entrained by ML than by follower stimulation.

These observations raise the question of what distinguishes MLs from other units in the network: the most 
accredited hypothesis is that they feature different structural (and hence functional) connectivity. Effenberger 
and colleagues34 presented an adaptive model of balanced neuronal network featuring STDP and synaptic scal-
ing, in which a highly connected subnetwork of driver neurons with strong synapses emerges as a consequence 
of self-organization following synaptic plasticity rules, as well as long-tailed distributions of synaptic weights 
and firing rates. Moreover, coincident activation of several driver cells is able to elicit population bursts in the 
model. Other theoretical studies confirm that leader neurons can be distinguished on the basis of their structural 
connectivity, e.g. featuring higher excitatory in-degrees49, 50. Inhomogeneous functional connectivity, showing 
high-clustering and modular small-world organization, has been found experimentally both in cortical and hip-
pocampal cultures51–53. Schroeter et al. interestingly found in hippocampal networks a pronounced rich-club 
topology, where hubs tend to connect among themselves and, at the same time, act as brokers of spontaneous 
multi-unit activity53.

To measure pairwise similarity among activity patterns, we refined a method previously presented by Shahaf 
and colleagues for the analysis of evoked events38 in which (i) we implemented a better separation of early and 
late response components by means of an adaptive procedure and (ii) we introduced a normalization procedure 
based on surrogate data generation via random shuffling. Normalization allows to highlight similarities between 
patterns regardless of the length and enables the successful application of the following unsupervised clustering 
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procedures. Differently from other approaches to the computation of pattern similarity based on the analysis of 
propagation delays17 or of the spatial center-of-mass of activity16, here the only variable that matters is the acti-
vation rank order of electrodes during NBs. An alternative measure of rank order pattern similarity could be the 
Spearman’s rank correlation coefficient54. However, to determine significance (and confidence intervals) of cor-
relation coefficients, sample size would be an issue55 and approaches based on permutation tests to compute null 
hypothesis distributions might still be preferable, because they automatically take into account the sample size. 
Also our method implies the generation of high-number surrogate data in order to “normalize” edit distances and 
test their significance, thus requiring long computational times for numerous datasets. However, given the availa-
bility of modern high-performance computation facilities, this cannot be considered anymore a real bottle-neck.

When focusing on evoked NBs, the main result is that evoked patterns are strongly similar to endogenous 
ones. This result about similarity of spontaneous and evoked events in cortical micro-circuits is consistent with 
previous findings in thalamo-cortical slices in vitro9 and in in vivo auditory cortex7. The main underlying hypoth-
esis is that recurring activity in local cortical micro-circuits forms quasi-stable attractor networks whose repeated 
activation is reflected in cortical UP state propagation11, 56, 57. The same attractors would draw network activity 
during sensory-evoked events, regardless of whether the stimulus has been experienced before or not by the 
animal7. The fact that in our experimental model system the structural and functional organization of cortical 
micro-circuits is not retained from in vivo supports the robustness and universality of this self-organized phe-
nomenon. Its functional significance in vivo has been well described in7, particularly in terms of redundancy and 
robustness of information encoding. In this view, recruitment order can still be considered a candidate neural 
ensemble code of sensory information38, 58, provided that different stimuli induce small timing variations within 
broadly conserved sequential patterns, which could still be detected by downstream structures for further pro-
cessing7, 59, 60. This hypothesis seems to be confirmed by our data, since activity patterns evoked by the same stim-
ulation source show higher similarity among themselves than with patterns elicited from different sources and 
endogenous ones, leaving open the possibility to be recognized as distinct patterns (e.g. by supervised learning 
techniques, as done by ref. 38).

Our results are also in agreement with another recent study which postulates that strong spatio-temporal 
localization of the noise-driven activity due to sensitive noise amplification is actually responsible of spontaneous 
activity generation in generic cortical micro-circuits39. The hypothesis is that what promotes a given region into 
a strong “nucleation” site is the massive confluence of paths of large amplification. The result that stimulation is 
more likely to activate the same preferential paths of propagation of spontaneous activity, with higher probability 
when leader sites are directly activated in the early response, is compatible with this view.

Methods
Cortical culture preparation.  All experimental procedures and animal care have been approved by the IIT 
Animal Welfare Body and by the Italian Ministry of Health (authorization 110/2014-PR), in accordance with the 
National Legislation (D.Lgs. 26/2014) and the European Legislation (European Directive 2010/63/EU).

Culture preparation was performed as previously described61. Briefly, neuronal cultures were obtained from 
cerebral cortices of embryonic rats, at gestational day 18 (E18). The cerebral cortices of 4–5 rat embryos were 
dissected and then exposed to chemical (0.125% trypsin solution for 20 minutes at 37 °C) as well as mechanical 
dissociation (through flame-narrowed Pasteur pipettes). The resulting tissue was re-suspended in Neurobasal 
medium (Invitrogen, Carlsbad, CA, USA), supplemented with 2% B2762, 63 and 1% Glutamax-I (both Invitrogen) 
at the final concentration of about 1,200 cells/μl. Cells were then plated onto the substrates, pre-coated with adhe-
sion promoting molecules (first laminin 50 μl/ml, and second poly-D-lysine 100 μl/ml, both from Sigma-Aldrich, 
St. Louis, MO, USA), at the estimated density of 48,000–50,000 cells/device (around 2,000 cells/mm2) (see 
Fig. 1a). The cultures were maintained onto micro-electrode array (MEA, Fig. 1c) devices, each containing 1 ml 
of nutrient medium (i.e. serum-free Neurobasal medium supplemented with 2% B27 and 1% Glutamax), in a 
humidified incubator having a controlled atmosphere (5% CO2, balance air) at 37 °C. No antimitotic drug was 
added in our cultures to prevent glia proliferation64. Half of the medium was replaced once a week until the 4th 
week in vitro and twice a week afterwards. The cultures could be kept in healthy conditions for several weeks 
and after 3-4 weeks in vitro they reached a mature developmental stage, characterized by quasi-synchronous 
array-wide bursts, mixed with isolated random spikes (cf. Fig. 1d)15, 65.

Micro-Electrode Array (MEA) experimental setup.  Primary cultures of cortical neurons were plated 
onto arrays (60MEA200/30-Ti, Multi Channel Systems-MCS, Reutlingen, Germany) of 60 planar TiN/SiN 
micro-electrodes (30 µm diameter, 200 µm spaced, 8 × 8 geometrical layout, see Fig. 1b). The experimental setup 
was based on the MEA60 system by MCS, consisting of a MEA mounting support with integrated 60 channels 
pre- and filter amplifier (MEA 1060-Up, gain 1200x) and a personal computer equipped with a PCI data acqui-
sition board for real-time signal monitoring and recording. A temperature controller (TC02, MCS) was used to 
keep constant the temperature of the sample during the experiment at 37 °C. A custom recording chamber, con-
sisting of a metallic box heated from the topside through planar high-power ceramic resistors (BI Technologies, 
Fullerton, CA, USA) and providing an inlet for a constant gas flow (5% CO2–20% O2–75% N2), was used to 
keep proper environmental conditions (temperature, CO2 concentration) during the experiment66. Moreover, 
custom-made polydimethylsiloxane (Sylgard 184, Sigma-Aldrich) lids for MEAs were used to reduce water evap-
oration and maintain the medium’s osmolarity constant during the experiment67, 68. Electrophysiological signals 
were acquired at a sampling rate of 10 kHz through the commercial software MC_Rack (MCS), used also for 
on-line visualization and raw data storage. Data was further processed by using custom software tools developed 
in MATLAB (Mathworks Inc., Natick, MA, USA), as described in the next sections. Trains of electrical stimuli 
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were programmed through MC_Stimulus software (MCS) and delivered to different channels of the MEA by STG 
4008 stimulator (MCS).

Dataset.  Our dataset comprises recordings from 13 different cultures in basal conditions (i.e. kept in culture 
medium), coming from 2 cell preparations. All cultures were recorded during the 4th and the 5th week in vitro, 
between 21 and 35 days in vitro (DIVs).

Spike and stimulation artifact detection.  The collected data was analyzed off-line by using custom 
analysis tools developed in MATLAB. High-pass filtered (cut-off frequency 100 Hz, 2nd order Butterworth filter) 
extracellular recordings of neuronal network activity provide a noisy measurement of the action potentials pro-
duced by few neurons (1–3) coupled to each recording electrode (i.e. multi-unit activity). Typical signal ampli-
tudes are in the range of 20–200 μV and are embedded in biological and thermal noise ranging from 5 μV up to 
15 μV peak-to-peak. We first detected spikes by using the “precise timing spike detection” method, described in 
a previous study69. The detection and suppression of stimulation artifacts were performed by means of an off-line 
version of the SALPA (Subtraction of Artifacts by Local Polynomial Approximation) algorithm proposed by 
Wagenaar and Potter70, re-implemented in MATLAB.

Burst and network burst detection.  A ‘burst’ consists of a fast sequence of spikes recorded on a single 
channel, with a duration equal to the sum of the inter-spike intervals (ISI) within the burst itself and separated by 
a relatively long interval compared to the burst duration71. When the bursting behavior is organized in array-wide 
barrages involving the entire network at the same time, the phenomenon is usually indicated in the literature 
by the name of ‘network burst’ (NB)14. The burst detection algorithm we used is based on the computation of 
the logarithmic ISI histogram and automatically detects the best threshold to distinguish between inter- and 
intra-burst inter-spike intervals channel-by-channel72. According to a recent report73 this algorithm shows high 
performances in detecting bursting activity in in vitro cultures. An analogous procedure is followed for the detec-
tion of NBs, looking for sequences of quasi-synchronous single-channel bursts in at least 20% of active channels 
(see72 for further details). For each spontaneous NB, we saved the rank order of activation of electrodes and time 
delays with respect to the first firing electrode of the sequence (i.e. leader).

Major Leader identification.  For each NB detected in the spontaneous activity phase we identified the 
recording channels which NBs mostly originate from, called Major Leaders (MLs), following the procedure 
described in the literature30, 31. Then we derived the histogram of the burst leadership score (LS), by counting for 
each electrode how many times it was leader of a NB. A long enough period of time (usually few hours, depending 
on the frequency of NBs) is necessary to get a clear picture of the burst leaders in a culture. Following the work of 
Ham30, we defined MLs as those electrodes leading at least 4% of all NBs. As shown in the Results section, those 
channels detected as leaders also correspond to the most active.

Experimental protocol.  Spontaneous activity from cultures in the 4th–5th weeks in vitro was recorded for 
at least 2 hours before electrical stimulation, after a period of rest in the experimental setup to allow for stabi-
lization outside the incubator (~1 hour). This gave us the possibility to record between 500 and 5000 NBs per 
culture, depending on the bursting rate. Raw voltage traces were saved and promptly processed in MATLAB for 
detecting spikes, bursts, NBs and ML channels. Based on this preliminary analysis, we selected the stimulating 
electrodes: we delivered to each culture a test stimulus from eight channels of the array, four of which were 
classified as MLs and the rest as non-MLs (i.e., followers). The MLs selected for stimulation were those with the 
highest LS, whereas the others were selected randomly among active followers (i.e. provided they recorded some 
activity). A “test stimulus” consisted of a train of monopolar 100 voltage pulses at 0.2 Hz, each of which being a 
positive-then-negative square wave (amplitude ± 750 mV, duration 500 μs, duty cycle 50%)74. Since we wanted to 
identify unambiguously the stimulation site (being either a ML or a follower), we used monopolar stimulation 
(i.e. referenced to ground) instead of bipolar stimulation (i.e. referenced to a neighbor micro-electrode). Bipolar 
stimulation was not ideal in this case, because the choice of the neighbor electrode to use as reference of the 
stimulation was not univocal. Moreover, we knew from our previous work that also in this configuration network 
responses are site-dependent, suggesting that the gross effect of stimulation can still be considered local also when 
referenced to ground75, 76. The stimulation frequency had been set at 0.2 Hz based on previous work and litera-
ture75, 77–79, with the aim of eliciting independent responses in time. When using higher frequencies (i.e. >0.3 Hz), 
evoked network responses tend to be time-correlated80.

Since spontaneous activity is not inhibited by any pharmacological intervention while stimulating, the size 
and delay of evoked network responses might depend on the ongoing dynamics in a non-trivial way. This could 
be avoided by using a closed-loop stimulation protocol in which the onset of the stimulation depends on the time 
past the last spontaneous burst as shown in81. However, Shahaf and colleagues38 already demonstrated that the 
activation pattern elicited by different stimulated channels is a conserved feature of the response, also when using 
an open-loop stimulation protocol. Moreover, our analysis takes into account the fact that a variable percentage 
of stimuli do not elicit any response or incomplete responses by discarding them or normalizing over the number 
of activated electrodes.

Post-stimulus time histogram (PSTH) analysis.  The simplest method to characterize the average net-
work response evoked by electrical stimulation is to compute the post-stimulus time histogram (PSTH), which 
represents the average spike count of each recording site as a function of binned time since stimulus (time win-
dow: 500 ms; time bin: 2 ms)82. Electrodes showing a PSTH area lower than 1 (i.e. less than 1 spike in 500 ms since 
stimulus on average) were excluded from further analysis. We considered the PSTH area as a measure of the size 
of the response for each site of the MEA. Since we wanted to check whether the network response to electrical 
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stimuli delivered from MLs is significantly different than that delivered from followers, we normalized the PSTH 
area of each responding channel in response to different stimulating sites to the maximum obtained. Then, we 
compared the statistical distributions of all responses to stimulation from ML and from follower sites. We applied 
the same procedure also to the delay of the first spike of each response (first-spike latency). We also asked whether 
MLs respond differently than other channels to electrical stimulation, therefore we performed a second normal-
ization of the PSTH areas. For each stimulating site, we divided each PSTH area by the maximum one among all 
responding channels. Similarly, we compared the distributions of all responses of ML sites and of follower sites. 
As before, we applied the same procedure to the first-spike latency.

The spiking responses evoked by local electrical stimulation in dissociated cortical cultures is typically formed 
by an early and fast component (approx. time range 0–35 ms after stimulus), usually involving few channels of the 
MEA, followed by a late and slower component (approx. 35–500 ms), which usually involves the whole array38, 83  
(cf. Fig. 1e). These two components often overlap in time and their separation is not straightforward. Hence, 
we devised a method to optimally separate early from late components for each stimulated channel. First, we 
smoothed the network PSTH (obtained by summing all responding channels’ responses) via moving average 
(20-ms time bin), and second we detected all peaks (i.e. local maxima). If a peak was found within the first 50 ms 
(xpeak1, corresponding to the early phase), and another one between 50 and 500 ms (xpeak2, corresponding to the 
late phase), the algorithm then looks for all local minima between them and selects the lowest one (xmin). Then, 
the separation sj between the two peaks is computed as

= −
⋅

s
PSTH x

PSTH x PSTH x
1

( )

( ) ( ) (1)
j

j min

j peak j peak1 2

where PSTHj (x) is the smoothed network PSTH function for the j-th stimulating electrode. The value of this 
parameter ideally ranges from 0 (when the peaks are NOT separated) to 1 (when the peaks are perfectly sepa-
rated). If sj overcomes a low pre-defined threshold (empirically estimated, here set at 0.3), xmin is considered as 
the optimal time threshold to separate early and late response components for the stimulating electrode j and it 
is applied to all responding channels. If either peak cannot be detected or peaks are not sufficiently separated, the 
corresponding stimulating electrode is not considered for further analysis. The statistical analysis of PSTH areas 
and first-spike latencies was carried out by considering separately either early or late responses.

We applied the same burst and NB detection algorithms used to analyze the spontaneous activity period to 
the evoked activity, only by considering the late response component and by using the time thresholds obtained 
at the previous step to separate it from the early one. Finally, for each evoked NB we saved the activation order of 
involved electrodes and the corresponding time delays with respect to stimulation.

All the results obtained from the entire dataset were pooled together.

Pattern distance.  For each pair of recorded NBs (either spontaneous or evoked), we computed a similarity 
index, based on the string edit distance84, 85 between the electrode activation orders of the two NBs. In fact, each 
spatial pattern of burst activity propagation can be assimilated to an ordered string of symbols/characters, each of 
which associated to a specific recording electrode. To measure the similarity between each pairs of patterns, the 
Levenshtein edit distance84, 85 between the two corresponding strings can be computed as the minimum number 
of editing operations (insertions, deletions and substitutions) needed to transform one string into the other38 (cf. 
Supplementary Figure 5). This measure depends on the length of the two strings (and it is upper limited by the 
size of the longest string, if all edit operations have weight equal to 1). Hence, we needed to normalize it to be able 
to compare distances between string pairs of different lengths (cf. Supplementary Figure 5).

To this end, we made use of a surrogate data generation approach. We randomly shuffled each pair of strings 
(i.e. activity patterns) 200 times and we computed the corresponding edit distances: these values were used to 
estimate the statistical distribution of chance distances between two strings of the same length as the original 
ones (i.e. null distribution). Then, a p-value was computed as the ratio of shuffled strings’ distances lower than the 
original strings’ distance. The lower is the obtained p-value, the higher is the similarity between the two strings. 
Moreover, p-values can be thresholded according to the desired level of significance (e.g. 0.05), to determine 
whether patterns are significantly more similar than expected by chance or not (cf. Supplementary Figure 5). This 
analysis was done separately on both spontaneous and evoked patterns, and between spontaneous and evoked 
patterns (cf. Supplementary Figure 6). We considered up to a maximum of 2500 spontaneous NBs per experi-
ment. Regarding evoked activity, we selected only those stimulated channels evoking a NB in at least 50% of trials. 
An evoked NB was detected when stimulation elicited a single-channel burst in at least 20% of active channels 
(similarly to what was done for detecting spontaneous events). Only responses generated within the first 500 ms 
since stimulation were considered.

Pattern clustering.  We applied an unsupervised iterative clustering procedure to determine whether either 
spontaneous or evoked NB patterns could be clustered together according to their similarity. Basically, the num-
ber of existing clusters with different activation patterns was first determined following the method proposed by 
Raichman and Ben-Jacob in 200817 with slight modifications (cf. Supplementary Material). Once the number 
of different clusters was identified, they were used as templates: NBs not included in any cluster were associated 
via template matching to the cluster they are closer to. All unclassified NBs were discarded (cf. Supplementary 
Methods and Supplementary Figure 6).

Cluster evaluation.  The ratio of significantly similar patterns’ pairs (i.e. showing distance <0.05) over the 
total number of pairs has been usually regarded as an index of the global similarity of patterns belonging to the 
same or coming from different clusters.
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Statistical analysis.  Whenever the normality assumption failed (checked by applying Kolmogorov-Smirnov 
test, p-level = 0.01), nonparametric statistical tests were applied (e.g. Mann-Whitney test, Kruskal-Wallis 
ANOVA, two-sample Kolmogorov-Smirnov). Exact p-values were reported either in the text or in the figure 
captions. Unless differently specified, all data are reported as mean ± standard error of the mean. In box plots, 
the median value and 25th–75th percentiles are indicated by the box, mean value is indicated by the small square, 
whereas whiskers indicate 5th–95th percentiles. All statistical analyses have been performed by using either 
OriginPro v 8.6 (OriginLab Corporation, Northampton, MA 01060, USA) or SigmaPlot v 13 (Systat Software, 
Inc, San Jose, CA 95131, USA).

Data Availability.  The code and datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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