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ABSTRACT Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although
such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur.
Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at
three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to
generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and
at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the
interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on
the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue
mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits,

these can be approximated by symmetrical gaps.

INTRODUCTION

The extracellular compartment is a significant determinant
of tissue architecture. In sparsely populated mesenchymal
tissues such as tendon, cartilage, or bone, cells are individ-
ually suspended in a self-supporting extracellular matrix
(ECM) scaffold (1). By contrast, in many compact tissues
such as multilayered epithelia, carcinoid tumors, or verte-
brate embryonic primordia, cohesion is based on cell-cell
adhesion (2-5). In these tissues, interstitial space can never-
theless be present between cells, to support fluid balance,
fluid transport, and diffusional transport of extracellular fac-
tors such as signaling molecules (6). Interstitial gaps vary in
size, shape, and content, but often a liquid phase dominates,
e.g., in the form of capillary exudate or a hyaluronan-rich
fluid (6-9).

In this article, we examine the tissue mechanical condi-
tions for the formation of fluid-based interstitial gaps. We
apply a concept of cell-cell adhesion that is based on the
notion that the modulation of cell cortex contractile tension
is an essential feature of adhesion, and that tissue surface
tension is a measure of adhesion strength (10-16). This
concept is well suited to model compact tissues and to
predict basic features of interstitial gaps. To gain an initial
understanding of gap mechanics, we first establish relation-
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ships among cortical tensions, intracellular pressure, inter-
stitial pressure, gap size, and gap shape by analyzing
uniform conditions and regular cell geometries where
tensions and pressures at gaps are at equilibrium. We then
explore the possible effects of tension and pressure vari-
ability on gap geometry, as cell-level fluctuations of tensions
are essential for the liquidlike behavior of tissues (12,17). In
an accompanying article, we apply the theoretical model
to characterize interstitial gaps in the Xenopus gastrula
ectoderm. Together, our studies introduce an approach to
analyze the maintenance of interstitial space in the context
of basic mechanical properties of a tissue.

METHODS
3D construction of the gap network

To visualize the gap network, icospheres were created and arranged in
face-centered cubic (fcc) packing and then a convex hull polyhedron of
the arranged icospheres was created. The Boolean difference between
this polyhedron and the arranged icospheres was taken, resulting in a
continuous network of gaps. A channel network (Fig. 2 G) was produced
by connecting the vertices of the necks of tetrahedral lacunae such as those
found in Fig. 2 B (open arrow) with channel segments. The surface curva-
tures of the models in Fig. 2, F and G, are approximations of gap shapes, not
mathematically precise models based on a set of parameters. All modeling
was done using the open-source 3D modeling software Blender (Blender
Foundation, Amsterdam, Netherlands). The icospheres were four times sub-
divided and consisted of 1280 faces.
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Computation of asymmetrical gap sizes

Simulations of asymmetric, and symmetric gaps were created by deter-
mining the intersection of three circles, using the software Python
(https://www.python.org/). Each circle consisted of 360 points and initially
touched the other two at a point. Circles were then shifted to variably over-
lap, and the angles between each intersecting pair of circles as well as the
arc lengths of the circle segments corresponding to gap sides were deter-
mined. One circle of a triplet was assigned a radius of 1.0 whereas the other
two radii ranged in nine steps from 0.8 to 1.2. The distance between the or-
igins of each circle was permitted to range from the sum of the respective
radii (circles touching at a point) to the radius of the larger circle plus half
the radius of the smaller circle. This range was also divided into nine equal
steps to generate a set of distances between circles. Each individual config-
uration of circles generated was checked to remove any incorrect gaps that
might have been produced due to the discrete nature and limited resolution
of the circle creation step. A total of 55,095 configurations remained
(93.3%) after removal of incorrect circle configurations.

RESULTS AND DISCUSSION
Modeling a cell-cell adhesion-based tissue

To model tissues whose cohesion depends on cell-cell adhe-
sion, we build on the recent insight that the modulation of
cell cortex contractile tension is an essential feature of adhe-
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sion (10-16). When isolated, cells of a tissue are spherical
due to cortical tension §. Upon contact (Fig. 1 A), the
cortical tension 8 of each cell is reduced to a residual tension
B* per cell in the contact area. At equilibrium, the contact
angle 0 between cells is related to the tensions as 3%/ =
cosf (Fig. 1 B). The reduction of tension at cell contacts is
in part due to the release of binding energy as cell surface
adhesion molecules interact. This generates an adhesion
tension I” that counters cortex contraction (Fig. 1 B). How-
ever, it turned out that I' is by far too small to account for the
degree of cell-cell attachment seen in tissues (reviewed
in (10,16)), and cortical tension itself has to be reduced,
from @ at the free surface to (3. in the contact area
(Fig. 1 B). The normal component of a positive line tension
T at the periphery of the contact area may increase §* by
T/r., where r. is the radius of the contact area (Fig. | B;
see Appendix A: Symbols and Their Definitions for a list
of symbols).

Compact tissues are composed of cells adhering mutually
in this manner (Fig. 2). Intuitively, the presence of gaps in
such a tissue is expected to depend on the strength of adhe-
sion between its cells, and tissue surface tension ¢ is an
appropriate measure of adhesion strength (16,18). It denotes

FIGURE 1 Mechanics of cell-cell adhesion. (A)
Two adherent cells modeled as intersecting spheres
(left) are cleaved through their centers (middle) and
shown with the cleaved aspect en-face (right). (B)
A closeup of the boxed region in (A) shows ten-
sions at equilibrium. The contact angle # and ten-
sions at the free surface, (5, and at cell contacts,
%, are related as 8*/8 = cos(f). Cortical tension
at contacts (., adhesion tension I'/2 and line ten-
sion T contribute to *. (C) Between three adherent
cells, a gap will be present when attachment is
incomplete. When cells are cleaved through their
centers, the gap (arrow) is at its narrowest. (D)
Shown here is a schematic of this neck region
from (C). (E) A closeup of the boxed region in
(D) shows the relation between gap side length £,
radius of curvature R, and contact angle 6.
Three right-angled triangles can be construed

[3*

—30°0
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(bold lines), the largest one being composed of a
smaller and a larger triangle. From the latter, the
relation (¢/2)/R = sin(30°—#) can be read off,

sin(30°-0) = (¢/2)/R which relates gap size to contact angle and to the

radius of curvature of the gap surface.


https://www.python.org/
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FIGURE 2 Geometry of the interstitial space. We
refer to the space between cells of a tissue as inter-
stitium, and to its various elements as gaps, whether
in 3D form or as their 2D representations, as seen in
histological sections. In cell aggregates, gaps can in
principle be due to the incomplete attachment of
cells. An example is derived from the fcc packing
of spherical cells (A), which leaves a continuous
network of gaps (B) if attachments remain restricted
to small circular contact areas (arrowhead). Two
types of larger gap regions, the lacunae, are
formed—tetrahedral lacunae (D) and cuboidal
lacunae (E). These are connected in alternating
fashion. We refer to the narrowest cross section of
the connections as the neck (B, arrow). All necks
are triangular with cusp-shaped corners (B, open
arrow) and of identical size. When attachment
is increased, contact areas eventually fuse, and
lacunae can become isolated (C). However,
insertion of fluid at cell edges generates channel

segments (F) that eventually, given sufficient fluid volume, connect to form a channel network (C, arrows; G). Channels run along edges at three-cell junc-
tions, are straight, have identical cross sections along their length, and connect lacunae (ECM fluid in a tissue of high relative adhesiveness).

the surface free energy per unit area of liquid-like tissues,
and it is linked to the tensions, or surface free energies, at
the cellular level by ¢ = ($—3*. In other words, adhesion
strength is determined by the tension at the free surfaces
of cells and by the degree of its reduction at cell-cell con-
tacts (11,15,16). Measured tissue surface tensions and hence
adhesion strength levels span an enormous, 1000-fold range
(12,16). Because often only the ratios of tensions are rele-
vant, it is convenient to define a relative adhesiveness « as
the tension reduction at contacts relative to the free surface
cortical tension: o = (8—6%)/8 (12). This allows us to write
tissue surface tension as ¢ = o, with 0 < « < 1. Because
a=1-(6*F) =1 - cos(f), the relative adhesiveness « is
given with the contact angle 6, i.e., the dimensionless num-
ber o confers both a physical and a geometrical meaning.

A continuous network of interstitial gaps at low
relative adhesiveness «

Intuitively, interstitial gaps remain between aggregating
cells when adhesion is weak and cell-cell attachment is
incomplete, i.e., when « is sufficiently low (Fig. 2). Frag-
ments of cell-cell adhesion-based tissues typically develop
smooth surfaces with large contact angles §. For such tis-
sues, a-values of 0.6-0.8 were calculated from contact angle
measurements, while interstitial gaps were regularly present
(12). To see whether this empirically determined range of
a-values is compatible with gaps due to incomplete attach-
ment, or whether different mechanisms of gap maintenance
must be assumed, we estimated critical values of « above
which gaps begin to disappear. We first asked at what value
of « the continuous network of interstitial channels begins to
fragment into isolated lacunae (Fig. 2 B and C).

To examine the relationship between adhesion strength
and the presence of interstitial gaps, we consider three iden-

tical, spherical, close-packed cells (Fig. 1 C). For g* = g,
the relative adhesiveness « = 0, i.e., adhesion is lacking
and the three cells touch at points. If adhesion tension I’
alone were to mediate attachment, contacts would remain
practically pointlike due to the low values of I'. However,
if cortical tension is also decreased in the contact area, §*
can be reduced noticeably (see above), and therefore the
contact area between each pair of cells as well as o in-
creases. As a result, the gap between the three cells shrinks
until it is eventually occluded.

The gap is narrowest in the plane through the cell centers.
In cross section, this neck region (Fig. 2 B) is cusp-shaped
(Fig. 1 D), and the distance between two corners, the side
length ¢, is a measure of gap size (Fig. 1 E). Surfaces outside
cell-cell contacts exhibit spherical curvatures due to a uni-
form pressure in all cells, and the curvature is identical on
all free surfaces in the three-cell aggregate. Because cells
are slightly deformed by mutual attachment, we replace
the radius r of isolated cells by the radius of curvature R
when calculating /. All contact angles are also identical at
equilibrium, and the cross section of the configuration cor-
responds to intersecting circles with threefold rotational
symmetry around the central axis of the gap (Fig. 1 D). In
the center of a gap, the virtual extensions of the cell-cell
boundaries meet at 120°, and a right-angled triangle
(smaller black triangle in Fig. 1 E) can be construed
with angles of 90°, 30° — 6, and 60° + 6 (Fig. 1 E). It is
geometrically similar to the larger black triangle, for which
(€12)/R = sin(30°—0) or

(/R = cos(8) — (3)"* sin(0). (1a)

Using cos(f) = 1 — « to relate this geometrical result to the
relative adhesion strength,
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Neck size is maximal in the absence of adhesion at o = O,
when R = rand £ = r, i.e., £ equals the radius r of an isolated
cell. Gaps then form a network of channels and lacunae
continuous with the outside even when multiple three-cell
units are arranged most densely in an fcc packing arrange-
ment (Fig. 2). With increasing «, R increases slightly as cells
of constant volume are deformed, and gap size decreases,
until the areas of contact between cells touch and ¢ vanishes
at the threshold o, = 0.134, equivalent to a contact angle
0, = 30°. At this threshold, gaps become occluded at necks,
but are present above and below. Below this threshold, small
tetrahedral and large cuboidal lacunae are all connected by
channels passing through three-cell configurations (Fig. 2),
but with their occlusion at «,, the network breaks up into iso-
lated lacunae. In random close packings, close three-cell
configurations occur and their occlusion will disrupt the
channel network. Fragmentation will be less regular, how-
ever, as four-sided necks are also present at channels passing
between four cells arranged in a plane; these necks will
require a higher « for occlusion.

Disappearance of isolated gap fragments with
increasing relative adhesiveness «

The value «, is much smaller than the observed relative
adhesiveness of tissues, but although gaps start to disappear
at this threshold, isolated fragments are still present even at
fcc packing. To see how these remaining fragments disap-
pear with further increases of «, we express the size of the
contact area between adjacent cells as a function of relative
adhesiveness. Given an uninterrupted network of interstitial
channels that is continuous with the outside, the interstitial
pressure p; must not differ from the reference pressure
P, = 0 outside the tissue. However, when lacunae become
isolated with increasing adhesiveness, their interstitial pres-
sure can differ. To explore the general effects of further
increases in adhesiveness, we discuss here the simple case
where p; = 0 and where the cell surfaces at lacunae continue
to behave like free cell surfaces.

To obtain the contact area A of cells with radius r and
radius of curvature R = r during its initial increase, we
replace the contact area radius r. in A = ar2 with r, = r
sin(f) by using the fact that § occurs in two similar triangles
in Fig. 3 A. With (sin)?0 = 1 — cos?(A) and a = 1 — cos(f), we
obtain rc2 = r2(2 o — az) and eventually,

A= (20— o). )
Several such circular contact areas are present on each
cell of an aggregate, and at small «, contact areas are iso-

lated from each other (Fig. 3 B). As area size increases, con-
tact areas eventually fuse completely to form the sides of a
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FIGURE 3 Cell-cell and cell-interstitium surfaces at different degrees of
low relative adhesiveness. (A) Contact area A = 7r.2 of a pair of cells can be
determined from the contact angle 6. The radius of the contact area can be
calculated from the right-angled triangle abc, which is geometrically
similar to the triangle bde formed by the contact angle and associated ten-
sions. (B) Given here is a 3D visualization of the surface geometry of a cell
in a low relative adhesiveness tissue with 12 evenly spaced neighbors, as
relative adhesiveness progresses from o = 0 to o = «. At & = 0, cells
are spherical (left). At relative adhesiveness 0 < «a < «,, contact areas
remain circular and separate from one another (middle). At a = «,, contact
areas touch at points, thereby isolating the interstitial lacunae from each
other (right). (C) As the radius of the contact surface (r.) progresses from
the in-radius r; of a pentagon to the circumradius r, of that pentagon, the
surface exposed to the interstitial space (gray) shrinks, gradually transform-
ing the contact surface from a circle into a pentagon at the critical relative
adhesiveness o

polyhedron. The critical relative adhesiveness «.,;; at which
this occurs depends on the type of cell packing. For an fcc
packing of cells, the number of contacts per cell is 12. To
estimate the magnitude of «; using a simpler geometry,
we approximated the eventual contact areas at full attach-
ment by 12 regular equally sized pentagons (Fig. 3 O),
which together form a dodecahedron.

With increasing «, the circular contact area within a puta-
tive pentagon increases until it touches the sides of the
pentagon at 6, = 30° (a, = 0.134) and the radius r, of the
contact equals the in-radius r; of the pentagon (Fig. 3 C i).
Areas within the pentagon, but outside the circular contact
area, correspond to surfaces delineating persisting gaps.
A further increase of « expands the contact area into
these free surfaces (Fig. 3 C ii). Eventually, gaps will have



disappeared when the virtual contact area encircles the
pentagon with a circumradius r, (Fig. 3 C iii). In-radius and
circumradius are related as r,/r; = 1.236 and hence areas
A A; = 1.529. Using Eq. 2 with «, = 0.134, we obtain
A= 71?14, and from A,=1.529 (7rr2/4) = 7rr2(2acm - acmz)
we calculate the critical adhesiveness «.;; = 0.214, which
corresponds to 6. = 38°.

A condition p; = 0, as assumed here, could be generated by
fluctuations in gap size over time (see accompanying article)
that intermittently connect the interstitium to the outside
and thus tend to equalize pressures. Increased pressure in
well-isolated lacunae would increase their size, raising the
threshold for their disappearance. Moreover, regular dodeca-
hedra with 12 pentagonal faces are not space-filling, and tis-
sue geometries are in fact more irregular. For example, they
may be modeled as random foams, where the average number
of contacts per cell is 13.4 (19). Here, pentagons constitute
~70% of faces, but rectangles (10%) and hexagons (20%)
are also present (20), and the above derivation of o is sen-
sitive to contact area shape. When we replaced a pentagon by
a square of the same side length, we obtained . = 0.293.
Hexagons deviate less from a circle than pentagons, and
the corresponding «; is lower. As another confounding fac-
tor, polygons will be irregular, and for the same polygon area,
r. will be larger in an irregular polygon, increasing .
Overall, in random foamlike tissues, gaps will start to
become fragmented at o, = 0.134; a large fraction of the re-
sidual gap fragments should have completely disappeared
above o = 0.214, and probably most above oy =
0.293. In tissue sections, this should become apparent as an
absence of gaps at most three-cell junctions. Because the
relative adhesiveness « in tissues is two- to threefold higher
than 0.293 (12), the presence of abundant gaps in such
high-« tissues needs to be explained by a different mecha-
nism, as detailed in the following sections.

It should be stressed that the presence and size of gaps
due to incomplete attachment of cells depends on the rela-
tive adhesiveness « of cells in a tissue, not on the absolute
strength of adhesion as expressed by tissue surface tension
. If the cortical tension of cells is relatively weakly reduced
upon contact, gaps should remain regardless of the initial
magnitude of this tension and the final absolute adhesion
strength attained. Whether low-« tissues actually exist in or-
ganisms or can be generated only experimentally remains to
be seen. At any rate, controlling absolute adhesion strength
and relative adhesiveness independently should be useful
when engineering artificial tissues of desired mechanical
strengths and interstitial permeabilities.

ECM fluid in a tissue of high relative
adhesiveness

In the previous sections, we assumed that the surface of gaps
behaved like the free, noncontacting surface of cells as
encountered in cell pairs or on the surface of aggregates,

Modeling Interstitial Gaps in Tissues

i.e., that cortical tension at gap cell surfaces was 3 whereas
the residual tension at contacts was (* per cell. To explain
the existence of stable gaps in high-adhesiveness tissues,
we consider now the possibility that the free cell surface
at gaps within a tissue assumes a value (; that differs
from (. This notion is motivated by empirical observations
described in the accompanying article.

To understand how interstitial gaps can be generated in
this way, we considered the possible effects of a small vol-
ume of liquidlike ECM inserted at a three-cell junction
between cells. The presence of this fluid would locally sepa-
rate the membranes of adjacent cells, allowing the newly
formed free cell surfaces to assume a new tension (3;. Here
we are not concerned with the work required for the initial
separation, but with the new force equilibrium attained. At
equilibrium, the contact angle and the curvature of the gap
surface determine the cross-sectional size of such a gap,
with the curvature being such that it balances the pressure
difference between the gap and the cell interior (Fig. 4).
Importantly, although the interstitial pressure p; influences
the shape and size of the gap (see the following section),
we do not propose that an increased p; is necessary to
generate gaps. Even at p; = 0 (i.e., when the interstitial pres-
sure equals the pressure outside the tissue), locally isolating
the three cells to allow them to assume tension (; at their
free surfaces is sufficient to generate an equilibrium state
consistent with the presence of a gap (Fig. 4).

In this way, a sufficiently large volume of ECM fluid can
generate a channel segment whose cross-sectional shape
and size is fixed along its length, as the same equilibrium con-
ditions apply at all levels. Adding fluid volume increases
the length of the segment, but not its cross-sectional size
(Fig. 2 F). Thus, channel segments no longer fan out from nar-
row necks. The shape of cell edges in ectodermal tissue, exam-
ined in the accompanying article, is consistent with this
conclusion (21). With increasing overall volume of ECM fluid
in the tissue, individual channel segments will eventually fuse
into a continuous interstitial network (Fig. 2 G). Channel cross
sections are representatives of the interstitial space that will be
met most frequently in histological sections, and in the
following, we study regular gaps with threefold rotational
symmetry, i.e., channel cross sections whose three contact an-
gles and three radii of curvature are all identical (Fig. 4, A, C,
and E). We do not model the shape and size of the lacunae at
four-cell vertices, but we assume that Laplace’s law ensures
that a constant mean curvature is maintained.

To derive the conditions for stable gaps, we consider that
at gaps, the tension per cell at cell-cell contacts, 3%, is re-
placed by tension (3; at the cell-gap interface such that at
the tissue surface ¢ = 3—(3* and within the tissue the adhe-
sion strength at gaps g; = 8; — 6* = «;0,. Further, at the tis-
sue surface 8* = .- I'/2 (Fig. 4, B and C). Note that for the
contribution of the line tension 7, the contact area radius of
cell pairs r, has to be replaced by approximately the radius
of curvature of the tissue surface. Because this radius will
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typically be much larger than r., we neglect line tension
effects normal to tissue surfaces. Moreover, as the edges
of gap segments are straight, the contribution of any line
tension to the force equilibrium for gap cross sections also
vanishes. At gaps, cell-cell adhesion molecules disengage
and the adhesion tension I'/2 disappears. In the general
case, I'/2 is replaced by a similar tension I',/2, for example,
if ECM material is adsorbed to the cell surface (i.e., if
the cell adheres to it at the gap). Likewise, cortical tension
B. may generally change to 8, at gaps, and thus 6* = 8, —
I'72 is replaced by B; = B, — I',/2 (Fig. 4 C). With
cos(6;) = (*/B;, the contact angle between cells at the gap
0, is then

cos(6;) = (B.—T/2)/(8, — T'/2). (3a)

In the simplest case, cortical tension at gaps would not
change at all and the ECM would not affect tension at the
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FIGURE 4 Mechanics of fluid-filled interstitial
gaps in cell-cell adhesion-based tissues. (A) Cross
section of a basic model of a tissue is given. Inter-
stitial spaces appear as three-sided gaps (asterisks).
(B) Mechanics of cell-cell adhesion at the tissue
surface is shown. The contact angle 6 characterizes
tension ratios at equilibrium. The cortical tension at
the free cell surface () balances the tensile forces
at the contact surface (6*). The difference between
these tensions corresponds to the tissue surface ten-
sion ¢. (C) Mechanical equilibrium at interstitial
gaps is analogous to that at the tissue surface. The
reduced tension 3* is equal to the tensile forces at
the contact surface 8. minus the adhesion tension
I'72. Analogously, the cortical tension at the gap
surface B, may be reduced by adhesive tension
I'y/2 due to the adsorption of ECM molecules, re-
sulting in a tension at the interstitial surface 8;. At
equilibrium, an internal contact angle 6; is defined.
(D) Stability of gaps is shown. Tensions are drawn
as in (C). When two free cell membranes at a gap at
equilibrium (middle) zipper up (right), the contact
angle increases and the resultant tension from the
remaining free cell surfaces decreases (compare up-
per dashed lines). It no longer balances the reduced
tension at cell-cell contacts, and the net tension
shrinks the cell-cell contact to restore equilibrium.
If the two membranes are peeled apart (leff), a net
tension (compare dashed lines) acts in the opposite
direction. (E) Shown here is the role of hydrostatic
pressures in determining the shape of the interstitial
gaps. The hydrostatic pressure of a cell (p.) exerts a
force pointing into the interstitial space, which is
counteracted by a force due to the interstitial pres-
sure (p;) as well as a force due to pressure generated
by the contraction of the cortical cytoskeleton un-
derneath the gap surface (p,). Together, these pres-
sures determine the radius of curvature at the gap
surface at equilibrium.

Bicos(6;) < B*

free cell surface, turning Eq. 3 a into cos(8;) = 1 — (I'/2)/
B, or equivalently,

I/2=af =0 |6 =8, Ty/2=0  (3b)

In this special case, the contact angle at gaps is solely deter-
mined by the adhesion tension and the cortical tension at
gaps and in adjacent cell-cell contacts. Tension at gaps §;
is then much smaller than @ (of the same order as §*), and
hence for p; = 0 the cell surface curvature has to be higher
at gaps than at the tissue surface to balance intracellular
pressure. This allows for small gaps to form, i.e., for chan-
nels that are narrow relative to their length (which is of the
order of the cell radius) and which are equally wide over
their lengths until they merge at lacunae (Fig. 2 G).

These gaps are stable against small deformations. For
example, if adjacent cells zippered up at the corner of a
gap, their contact angle would increase, and (; would no



longer balance 8* (Fig. 4 D). The more the cells zipper up, the
greater the imbalance will be, and the restoring tension, i.e.,
the excess component of 8*, could be modeled as an elastic-
ity. If cells detached instead of zippering up, an analogous
elasticity would again restore the equilibrium state (Fig. 4 D).

Gap size in tissues of high relative adhesiveness

Next, we described the size ¢ of channel cross sections as a
function of tensions and pressure differences at gaps. Gener-
ally, gap side length ¢ is proportional to the radius of curvature
R for constant contact angle 6;. This is because the overlap-
ping circles that define a gap remain geometrically similar
upon uniform scaling (Fig. 5 A). Note that these circles repre-
sent cell curvatures at gaps, not cells. In fact, as mentioned
above, we have to distinguish now between R, at the tissue

Modeling Interstitial Gaps in Tissues

R, = »8;'/(1% —Pi)- &)

Overall, by substituting ¢; and R; with the tensions §* and §;
and pressures p. and p;, gap size ¢ remains as the only
geometrical variable and becomes

¢ = |longer balance 8 * —(3)"/? (8 — 5*2)1/2} /[Pt = pil-

(6)

Because the cell-free surfaces of each cell at the tissue
surface are approximated as spherical surfaces, Laplace’s
law dictates that the intracellular pressure is related to the
cortical tension of cells by p. = 26/R;. For interstitial pres-
sure p; = 0, Eq. 5 gives R/R; = ($;/2(3. Because §; < 8, the
curvature at gaps 1/R; has to be increased to compensate for
the lower cortical tension there. In contrast to gaps caused

surface and R; at gaps, and rewrite Eq. 1 a for gaps,

¢/R; = cos(6;) — (3)"/ sin(6,).

“

Equation 4 describes gaps by the geometrical variables ¢, 6,,
and R; (Fig. 5 A). Any two of these parameters determine the
third one, and completely describe a regular gap. The rela-
tionship between contact angle and side length is almost
linear, as it is for the neck size of gaps based on low relative

adhesiveness (Fig. 5 B).

If we choose §; and R; to characterize gaps, we can use ten-
sion and pressure equilibria, respectively, to link gap geom-
etry to mechanical variables. Thus, cos(6;) = #*/6; links
the contact angle at gaps to the tension between cells and
at the gap surface (Fig. 4 C). Furthermore, according to
Laplace’s law, the pressure generated by the tension at the cy-
lindrical gap surface is equal to 8i/R;. At equilibrium, this
pressure must balance the difference between a cell’s hydro-
static pressure p. and the interstitial pressure p; in the gap,
(pp;) (Fig. 4 E). Hence R; is linked to the cortical tension
at gaps and to the pressures in cells and in gaps by
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by incomplete attachment at low relative adhesiveness,
where gap size approaches the cell radius as adhesiveness
diminishes, gap size ¢ is limited here to a fraction of R
even if the contact angle 0; vanishes (Fig. 5 B).

The interstitial pressure p; increases if the ECM fluid vol-
ume level is raised, up to a limit where a tissue disintegrates.
At equilibrium, for any given contact angle ;, the gap cross-
sectional area and hence the channel volume increases as
the curvature of the gap surface decreases to accommodate
the new pressure balance. For any given pressure difference
(p—pi), gap size and contact angle are almost linearly,
inversely related, increasing from zero when 6; = 30° to inter-
sect the abscissa at / = R; (Fig. 5 B). With decreasing pressure
difference (p.—p;), the radius of curvature R; and hence gap
size ¢ increase proportionally for any given contact angle.
Gaps could now become even larger than the cell radius,
but this would imply the separation of formerly attached
cells. The potentially complex interstitial space of tissues
under this condition will require a separate analysis.

Convex gaps, where cells bulge into the gaps, can only form
under a positive pressure difference (p.—p,) if 0° < 6, < 30°

FIGURE 5 Gap sizes and shapes in tissues of

0.134 - high relative adhesiveness. (A) Uniform scaling of
- A gaps is shown. When all angles are constant, an in-

0.112 crease in the radius of curvature from R to R, pro-
duces a proportional increase in the gap side length

0.089 «—— A from ¢; to ¢, without affecting interstitial contact
angle ;. (B) Shown here is the relationship between

0.067 & contact angle 6, and relative gap size ¢/¢, for various
radii of curvature R;. Gaps show an almost linear

0.045 r A size increase with decreasing angles, and curves
intersect the length axis at their respective R; value.

01122 The value ¢, corresponds to £ at R; = R; = r, i.e.,
0.0 ] when cells touch at points (dashed line), and it is

used here to normalize gap sizes. Gaps with an
interstitial pressure p; = 0 (dotted line) have a
smaller normalized side length ¢/, and side length
increases with increasing p; if other factors remain

constant. Above §; = 30° (horizontal dash-dotted line), the curvature of the gaps becomes negative, and gap surfaces convex. The value ¢, sets an upper
boundary for the gap side lengths (vertical dash-dotted line). Any gap side length exceeding it implies a dissociation of the tissue.

Biophysical Journal 113, 913-922, August 22, 2017 919



Parent et al.

and hence 6* < 8; < 1.1556%,0r 1 < (B, —1'o/2)/(B.—172) <
1.155. Compared to the severalfold reduction of tension from
G to 8* in high-« tissues, the equivalent tension differences at
gaps are confined to a narrow range, i.e., ;s maximally 15.5%
higher than §*. When (p.—p,) vanishes, R; = «, i.e., gap chan-
nels are straight-sided in cross sections, and gap size is not
determined. For p; > p., R; becomes negative (Eq. 5), and
the respective gaps have concave sides as they are sustained
by the higher hydrostatic pressure in the interstitium relative
to the cell interior. This gap shape requires that 90° > 6; >
30°, and with the right side of Eq. 4 being thus also negative,
this yields a positive gap size for high pressures and high con-
tact angles combined. For p; < 0, i.e., for negative interstitial
pressure due to the withdrawal of interstitial fluid from the tis-
sue, R; approaches zero as p; decreases further and further.

Gap size, as expressed, e.g., in Eq. 6, depends indirectly
on cell size through p. = 26/R,. If p; = 0, then ¢ ~ R,
i.e., with everything else being the same, gap size is propor-
tional to cell size. For p; > 0, gap size increases dispropor-
tionately faster with cell size, as ¢ ~ RJ/(28 — R, p;). The
complex relationship between cell radius » and cell shape
at the surface of aggregates, i.e., the radius of curvature at
the tissue surface, Rj, is analyzed in (15).

In summary, a given combination of ; and R; corresponds
to a gap of aunique size and shape for ¢ < . However, it can be
obtained by multiple combinations of mechanical parameters.
Thus, §; is determined by the ratio of two tensions, 8*/8;, and
R; by the ratio of a tension and a pressure, 3,/(p.—p;), and 6;
and R; remain constant when the respective ratios remain
the same. This consideration implies that a given gap
geometry can occur in tissues of very different adhesion
strengths. Adhesion strength expressed as tissue surface ten-
sion ¢ = (—@* varies by three orders of magnitude between
tissues (12). If 6* and 3, change proportionally, contact angles
0; and thus «; remain constant according to cos(6;) = 6*/8;. If,
furthermore, (p.—p;) is altered in the same proportion, R; is
also constant, and thus gap size and shape would remain the
same regardless of the magnitude of tissue cohesion. Such a
proportional variation of pressure differences is not unlikely:
because ¢ = af and p. = 26/R;, p. will change proportionally
at constant relative adhesiveness «, and for p; = 0, gap size and
shape will remain identical. For p; > 0, this is the case only if p;
also changes proportionally, but when p; is small relative to the
cell hydrostatic pressure, any deviation from proportionality
will be small, and gaps of similar size and shape should be
found over large ranges of tissue cohesiveness.

Heterogeneity of gap sizes and shapes in a tissue:
asymmetrical gaps

In a perfectly homogeneous tissue, gaps would be uniform in
size and shape. However, cortical tensions and adhesion
strength can vary from cell to cell (12,22). Moreover, meta-
bolically driven temporal fluctuations of tensions at cell-
cell boundaries are a general and essential feature of tissues
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(17). Cortex contractility can vary independently between
cells surrounding a gap and in different regions of each
cell, and cell hydrostatic pressure can be different in different
cells (22). As aresult, contact angles at the three corners of an
individual gap and the curvatures of a gap’s three edges can
each have different values. Gaps generated in this way are
represented by the space left between three partially overlap-
ping circles as described above. However, the radii and cen-
ter-to-center distances of the three circles can now vary, and
be chosen such that predetermined sets of contact angles and
gap edge curvatures are produced for a gap (Fig. 6 A).

We asked to what degree asymmetrical gaps could be
approximated by suitable symmetrical gaps. For symmetri-
cal gaps, the relationship among contact angle, curvature,
and size is given by Eq. 4. For asymmetrical gaps, each of
these variables is represented by a respective triplet relating
to the three corners and three sides of a gap. To understand
to what extent these triplets can be replaced by their respec-
tive averages, we calculated the average side length ¢ for
symmetric and asymmetric gaps generated according to
Fig. 6 A, where radii of curvature R; at individual gaps arbi-
trarily varied between 0.8 and 1.2 (Fig. 6 B).

Symmetrical gaps should occupy a wedge-shaped domain
in a /—0; plot (Fig. 5 B), between the chosen minimum and
maximum R; (gray lines in Fig. 6 B). For the distribution of
asymmetrical gaps, a wedge-shaped gap domain was indeed
recovered when the average angle 6; was plotted against the
average gap side length ¢ (Fig. 6 B). Moreover, the lower
boundary of the gap domain coincided with the line of min-
imum average R;, i.e., at this boundary asymmetrical gaps
can be replaced with symmetrical ones whose R; = R;. How-
ever, average gap sizes of asymmetrical gaps exceed the
boundary for the maximal R;, i.e., these gaps are larger
than symmetrical ones despite R; = R; (Fig. 6 B).

To trace the origin of this effect, we first simulated gaps
where curvature was uniform at R; = 1 on all sides of a
gap, but where 6; varied between corners. The calculated
gap samples remained very close to the line of constant
R; = 1 (Fig. 6 (), indicating that angles varying between
corners of individual gaps have little effect on the average
gap side length as long as curvatures do not vary. In such
a case, asymmetric and symmetrical gaps show practically
the same relationship between contact angle (6; or 6;) and
size (¢ or ¢), and the average contact angle ; determines
the average size ¢ regardless of whether the individual an-
gles of a gap are identical or different.

The situation is different when both curvatures and angles
vary within gaps. For example, for the minimum average
radius of curvature possible in the simulation, a gap domain
was recovered that spread from the line of this minimal R; to
larger gap sizes for the same average 6; (Fig. 6, B and D).
Similarly, gap sizes spread from the line of maximal R; to
larger sizes (Fig. 6 E). In both cases, two sides shared
the same curvature whereas the third side differed. If all
three radii are varied such that their average per gap is
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FIGURE 6 Simulation of asymmetrical gaps. (A)
Schematic of gap generation is shown. The area be-
tween circles represents gaps. Distances between
centers of circles (gray arrows) and radii of circles
(gray arrows) can be changed to effect changes in
radii of curvature R; and contact angles 6;. (B) Dis-
tribution of gap sizes obtained from the simulation
is shown. A wedge-shaped distribution is observed
when the sum of the contact angles (X(26;)) is
plotted against the average gap side length ¢
normalized for ¢;. Dashed horizontal line indicates
X(260;) = 180°, i.e., the sum of the angles of a
straight-sided triangle. Above that line, the curva-
ture of the gaps becomes negative (three circles
overlap), and gap surfaces convex (see Fig. 5 B).
As X(20;) approaches zero, angles change drasti-
cally with small parameter changes in the simula-
tion. This is reflected in the blank region between
~13° and ~25°. Leftmost gray line indicates the
smallest possible average curvature in the simula-
tion (0.867; radii 1, 0.8, and 0.8 combined), the
rightmost line the largest average curvature
(1.133; 1, 1.2, and 1.2 combined). Gap sizes can
lie beyond this maximum, but not below the mini-
mum. (C) Gaps with a radius of curvature of 1 on
all three sides (black dots) lie close to the line of
this respective curvature, within the gap domain
(gray dots). (D) Gaps with an average radius of cur-
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vature of 0.8667 (black dots) comprise the leftmost
| region of the gap domain (gray dots), lying at or
above the line of average curvature. (E) Gaps of
an average curvature of 1.113 (black dots) likewise
lie at or above the line of average curvature, but do
not comprise the most extreme right region of the
gap domain (gray dots). (F) When curvatures are
allowed to vary under the requirement that their
average curvature remains 1, gap sizes are more
dispersed and cannot be approximated by a line rep-
resenting gaps of constant curvature.
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nevertheless the same, e.g., Ri=1, gap sizes deviate from
the average to both sides by up to ~10% when angles are
allowed to vary within gaps (Fig. 6 F). Together, these ef-
fects explain the deviation of the overall simulated gap dis-
tribution from that of symmetrical gaps (Fig. 6 B).

In summary, the average gap side length  is not uniquely
determined by the average contact angle 6; and the average
radius of curvature R; for asymmetrical gap shapes. If both
angles and radii vary for a given gap, its average side length
usually differs from that of a symmetrical one whose angles
and radii are equal to these averages. However, for moderate
variations of contact angles and radii, the length difference
is small, and /—6; plots of symmetrical and asymmetrical
gaps are similar.

0 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.

7/e,

CONCLUSIONS

We found that generally, the presence of fluid-filled intersti-
tial gaps in tissues does not depend on the absolute strength of
tissue cohesion, but on the relative adhesiveness «, i.e., the
ratio of tensions at free and at contacting cell surfaces.
Gaps due to incomplete cell-cell adhesion are expected
only for loose, flaky cell aggregates where « is very low. In
compact tissues where « is high, stable gaps can be generated
by the prevention of cell adhesion at three-cell junctions by
fluidlike ECM and the establishment of low cortical tension
at the gap surface. Two of the three variables—gap side length,
contact angle at gap corners and gap surface curvature—
completely describe a regular gap where all sides and angles
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are equal. These geometrical parameters depend on the
cortical tensions at gaps and between cells, and on the hydro-
static pressures in cells and in gaps. Because the stability of
gaps in high-« tissues depends not on absolute tension values,
but on the ratio of tensions, gaps of the same size and shape
can occur in tissues of widely differing cohesion. But tissue
mechanical parameters vary not only between tissues, but
usually also between and within cells of the same tissue.
This variability gives rise to asymmetrical gaps where the
three angles, curvatures, and side lengths of a gap differ.
The average side length of such an asymmetrical gap is not
uniquely determined by the averages of its contact angles
and curvatures; in fact, it is often larger than predicted
from the average angles and curvatures under the assumption
that they were symmetrical.

APPENDIX A: SYMBOLS AND THEIR DEFINITIONS
Cell surface tensions

@, cortical tension at aggregate/tissue surface; §*, resultant reduced tension
at cell-cell contacts per cell; .., cortical tension at cell-cell contacts per cell;
B, cell surface tension at gap; (,, cortical tension at gap; I', adhesion ten-
sion at cell-cell contacts; I'y, adhesion tension at gaps; 7, line tension
around cell contact areas.

Adhesion strengths

g, tissue surface tension: absolute adhesion strength; ¢;, internal surface
tension, adhesion strength at gaps; «, relative adhesiveness; o, threshold
relative adhesiveness for gap fragmentation; o, critical relative adhesive-
ness for gap closure; ¢;, internal relative adhesiveness at gaps.

Pressures

P cell hydrostatic pressure; p;, interstitial pressure.

Geometry

r, radius of unattached, spherical cell; r., radius of cell-cell contact area; A,
cell-cell contact area; R, radius of curvature; Ry, radius of cell surface cur-
vature at tissue surface; R;, radius of cell surface curvature at gaps; ¢, gap
size; £, gap size between cells touching pairwise at a point; #, contact angle
at tissue surface; ¢,, contact angle at gap; 6,, threshold contact angle for gap
fragmentation; 6., critical contact angle for gap closure.

Averages are denoted by overlining.
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