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Ketamine is a noncompetitive N-methyl-D-aspartate

receptor (NMDAR) antagonist that has attracted wide-

spread attention for its rapid-onset antidepressant effects,

especially in individuals with treatment-resistant depres-

sion and suicidal ideation [1–3]. Compared with the tra-

ditional antidepressants that take weeks, if not months, to

benefit patients and are associated with a high rate of

relapse, ketamine exerts its antidepressant effects within

several hours. These clinical benefits can last for 2 weeks

after a single injection [1, 2, 4]. However, ketamine still

has limited clinical application, mainly because of its

psychotomimetic side-effects and liability of abuse. A

recent paper in Nature [5] showed that the ketamine

metabolite enantiomer (2R,6R)-hydroxynorketamine

(HNK) has rapid and sustained antidepressant effects

without the side-effects associated with ketamine, such as

abuse potential. The discovery of (R)-ketamine is a land-

mark in the field of depression. Investigations of its

mechanism of action will inspire the development of a new

generation of rapid-acting antidepressants that are safer and

have few dissociative side-effects [6].

Ketamine is a racemic mixture with equal proportions of

(R)- and (S)-ketamine. Compared with (R)-ketamine, (S)-

ketamine has been shown to have a more than four-fold

greater affinity for NMDARs, greater anesthetic potency,

and serious psychotomimetic side-effects [7–9]. The

antidepressant efficacy of ketamine has centered on the

inhibition of NMDAR-mediated glutamate neurotransmis-

sion, holding promise for future glutamate-modulating

strategies. However, other NMDAR antagonists have only

relatively modest antidepressant effects compared with

ketamine, in both pre-clinical and clinical studies [10, 11].

Further investigations are needed to improve our under-

standing of ketamine’s mechanism of action.

Zanos et al. [5] concentrated on ketamine metabolites

and investigated the mechanism by which it exerts rapid

and sustained antidepressant effects. The authors hypoth-

esized that if ketamine has rapid-onset effects mainly by

inhibiting NMDARs, then (S)-ketamine would be predicted

to be more potent than (R)-ketamine, and alternative

NMDAR inhibitors would also have similar effects. In

sharp contrast to this prediction, however, they found that

the (R)-ketamine enantiomer has greater antidepressant

efficacy in the forced swim test, the novelty-suppressed

feeding test, and the learned helplessness test. These results

are consistent with previous studies [12, 13], in which (R)-

ketamine appeared to be a more potent, long-lasting, and

safe antidepressant than (S)-ketamine. MK-801, another

NMDAR antagonist, also has rapid antidepressant effects

but they are not maintained [14, 15]. These findings raise

doubts about the NMDAR-dependent antidepressant

responses to ketamine.

Ketamine is stereo-selectively and region-specifically

hydroxylated into a wide range of metabolites, including
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norketamine (norKET), hydroxyketamine, dehydronorke-

tamine, and HNK [16, 17]. A previous study showed that

the plasma concentrations of ketamine metabolites are

correlated with the depressive, psychotic, and dissociative

symptoms in patients with major depressive disorder and

bipolar disorder [18]. The authors hypothesized that the

active ketamine metabolites whose effects last beyond the

time-frame of ketamine’s effects may contribute to the

long-lasting antidepressant action. They identified

(2S,6S;2R,6R)-HNK, together with norKET, as the major

metabolites in both plasma and the brain of mice. More-

over, they found that the levels of (2S,6S;2R,6R)-HNK are

three-fold higher in female than in male brains, which may

explain the greater antidepressant effects in female mice

after ketamine administration in the forced swim test.

To further investigate the putative role of (2S,6S;2R,6R)-

HNK in the antidepressant responses to ketamine, the

authors used deuteration at the C6 position of ketamine to

reduce its rate of metabolism without altering its pharma-

cological and physiological properties. The deuterated

ketamine failed to induce sustained antidepressant effects

24 h after administration, suggesting that (2S,6S;2R,6R)-

HNK is necessary for such effects. Consistent with the

greater antidepressant action of (R)-ketamine than (S)-

ketamine [6, 13], (2R,6R)-HNK, which is exclusively

metabolized from (R)-ketamine, has more potent, dose-

dependent antidepressant actions, while (2S,6S)-HNK has

antidepressant effects at higher doses.

The clinical utility of ketamine is significantly limited

by its psychotomimetic side-effects and abuse potential.

Zanos et al. [5] showed that (2R,6R)-HNK lacks disso-

ciative and psychotomimetic side-effects in a wide range of

tests, even in drug discrimination and self-administration

paradigms that evaluate the liability of drug abuse/addic-

tion. In contrast, both ketamine and (2S,6S)-HNK have

serious abuse potential and other side-effects. (S)-ketamine

but not (R)-ketamine causes deficits of parvalbumin-

positive neurons in the medial prefrontal cortex and hip-

pocampus in mice [19], and this may be responsible for the

psychotic side-effects.

Using electrophysiological, electroencephalographic

(EEG), and biochemical techniques, the authors further

investigated possible mechanisms that underlie the rapid and

sustained antidepressant effects of (2R,6R)-HNK. Ketamine

is widely accepted to act mainly by inhibiting NMDARs in

GABAergic interneurons, thus disinhibiting glutamatergic

neurons, leading to the activation of downstream signaling

and synaptic protein synthesis [20–22] (Fig. 1). Zanos et al.

[5] examined the extent of (2R,6R)-HNK dependence on

NMDAR activation. Surprisingly, they found that (2R,6R)-

HNK induces robust increases in a variety of a-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid receptor

Fig. 1 Rapid antidepressant mechanism of ketamine in medial

prefrontal cortex. Repeated stress causes a malfunction of synaptic

connectivity, characterized by decreases in glutamate release and

AMPAR function, signal transduction, and synaptic protein synthesis,

resulting in decreased number and function of spine synapses.

Ketamine treatment is thought to cause disinhibition of GABAergic

interneurons through blockade of NMDARs, resulting in widespread

bursts of glutamate release in the medial prefrontal cortex. Glutamate

release further activates AMPARs, contributing to BDNF release and

the activation of a series of downstream pathways such as mTORC1

signaling, which increases synaptic protein synthesis and AMPAR

trafficking. This widespread activation of signaling pathways leads to

synapse recovery and regeneration, and thus remission of the

depressed state.
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(AMPAR)-dependent electrophysiological signatures,

without affecting NMDAR-mediated currents in rat hip-

pocampal slices. When the AMPAR antagonist NBQX was

applied 10 min before ketamine and (2R,6R)-HNK treat-

ment, it blocked both the acute and sustained antidepressant

actions of (2R,6R)-HNK, highlighting the critical role of

AMPARs in its antidepressant effects. EEG also confirmed

that (2R,6R)-HNK acutely increases gamma power in vivo,

similar to ketamine, and NBQX pretreatment blocks the

(2R,6R)-HNK-induced increase in gamma power. These

findings indicate that the antidepressant actions of (2R,6R)-

HNK are dependent on AMPARs.

The antidepressant effects of ketamine require the acti-

vation of several intracellular signaling pathways

[15, 23, 24] and the enhancement of AMPAR-mediated

synaptic plasticity [20, 25]. The authors examined the

biochemical profiles of ketamine and (2R,6R)-HNK in the

hippocampus and medial prefrontal cortex, two mood-

related brain regions. Ketamine and (2R,6R)-HNK induced

similar biochemical changes in the hippocampus, sug-

gesting that they have overlapping pathways that mediate

their antidepressant actions.

Zanos et al. [5] found that both ketamine and its

metabolite (2R,6R)-HNK decrease the phosphorylation of

eukaryotic translation elongation factor 2 (eEF2) and

increase the expression of brain-derived neurotrophic fac-

tor (BDNF), GluA1, and GluA2 in hippocampal synap-

toneurosomes 24 h after treatment. Combined with the

electrophysiological and EEG data, we speculate that

AMPAR-mediated maintenance of synaptic potentiation,

BDNF release, and protein synthesis through eEF2

dephosphorylation underlies the sustained (24 h) antide-

pressive effects of ketamine metabolites (Fig. 2). However,

Zanos et al. found that both ketamine and (2R,6R)-HNK

have no significant effect on mTOR phosphorylation and

BDNF levels at 1 h after treatment, which is not consistent

with previous studies regarding the involvement of

AMPAR-mediated BDNF/TrkB/mTORC1 (mammalian

target of rapamycin complex 1) signaling in the rapid

antidepressant effects of ketamine [20, 21, 26] (Fig. 1).

Thus these conclusions should be treated with caution,

needing more investigations and further verification.

Altogether, Zanos et al. [5] discovered that (2R,6R)-

HNK, one of the main metabolites of ketamine in the brain,

mimics the antidepressant effects of ketamine but has

innocuous side-effects. (2R,6R)-HNK has a wide range of

antidepressant-related effects in mice, and these behavioral,

electrophysiological, and intracellular changes depend on

Fig. 2 Mechanisms of rapid and sustained antidepressant actions of

ketamine metabolites in the hippocampus. Racemic ketamine is

metabolized into a wide range of components. (2S,6S)-HNK and

(2R,6R)-HNK are the major HNK metabolites in both plasma and the

brain in mice. (2R,6R)-HNK elicits rapid (A) and sustained (B) an-

tidepressant effects, whereas (2S,6S)-HNK has no such beneficial

effects and induces ketamine-like side-effects. (A) Ketamine and its

metabolites may both contribute to the rapid antidepressant effects.

Ketamine blocks NMDARs in GABAergic interneurons, and (2R,6R)-

HNK induces glutamate release and activates AMPARs through an

unknown mechanism, both of which lead to eukaryotic translation

elongation factor 2 (eEF2) dephosphorylation and rapid antidepres-

sant effects. (B) Glutamate bursts are induced by (2R,6R)-HNK

through an unknown mechanism to stimulate AMPARs, resulting in

BDNF release and protein synthesis through eEF2 dephosphorylation,

which may be responsible for the sustained antidepressant effects of

(2R,6R)-HNK.
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AMPARs. Although the exact mechanism underlying the

antidepressant action of ketamine is still debated, the find-

ings of Zanos et al. [5] are a landmark in ketamine research.

Their study extends our understanding of its antidepressant

effects and will inspire the development of a new generation

of antidepressants with fewer side-effects. Future investi-

gations are needed to confirm and elucidate the mechanisms

of the rapid and sustained antidepressant effects of ketamine

and its metabolites and, more importantly, to develop safer

antidepressants that may be substituted for ketamine.
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