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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous condition and

identification of clinically meaningful subgroups would open up a new window for personal-

ized medicine. Thus, we aimed to identify new clinical phenotypes in children and adoles-

cents with ADHD and to investigate whether neuroimaging findings validate the identified

phenotypes. Neuroimaging and clinical data from 67 children with ADHD and 62 typically

developing controls (TDCs) from the ADHD-200 database were selected. Clinical measures

of ADHD symptoms and intelligence quotient (IQ) were used as input features into a topo-

logical data analysis (TDA) to identify ADHD subgroups within our sample. As external

validators, graph theoretical measures obtained from the functional connectome were com-

pared to address the biological meaningfulness of the identified subtypes. The TDA identi-

fied two unique subgroups of ADHD, labelled as mild symptom ADHD (mADHD) and severe

symptom ADHD (sADHD). The output topology shape was repeatedly observed in the inde-

pendent validation dataset. The graph theoretical analysis showed a decrease in the degree

centrality and PageRank in the bilateral posterior cingulate cortex in the sADHD group com-

pared with the TDC group. The mADHD group showed similar patterns of intra- and inter-

module connectivity to the sADHD group. Relative to the TDC group, the inter-module con-

nectivity between the default mode network and executive control network were significantly

increased in the sADHD group but not in the mADHD group. Taken together, our results

show that the data-driven TDA is potentially useful in identifying objective and biologically

relevant disease phenotypes in children and adolescents with ADHD.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental

disorder of childhood, affecting 5% of school-age children worldwide [1]. ADHD is a clinically
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heterogeneous condition, with deficits in multiple neuropsychological processes and related

brain systems [2]. Thus, different individuals with ADHD display diverse profiles in cognitive,

emotional and motivational domains [3]. Therefore, there may be different disease phenotypes

under the diagnosis of ADHD, and the identification of subgroups with distinct patterns of

clinical manifestation may lead to the development of more effective and targeted intervention

for personalized treatment and improved patient care [4].

Recent efforts in data sharing, such as the ADHD-200 Consortium have made it possible to

develop a large dataset representative of the whole spectrum of the disorder. The ADHD-200

dataset provides information on age, sex, intellectual ability, symptom severity, and neuroim-

aging data from hundreds of individuals with ADHD and TDC [5]. To identify clinically useful

new subgroups from large datasets, the choice of an appropriate clustering method and input

features are important because varying results are expected depending on the machine learn-

ing algorithm and input features used [4]. Regarding the clustering method, the classical unsu-

pervised machine learning method, e.g., k-means clustering, has been widely used for this

purpose. However, a major criticism of this method is that identified subgroups are locally

optimized, given that the initial clusters are heuristically assigned. Furthermore, the k-means

clustering would fail to detect subgroups if the shape of the data becomes complex [6] and thus

has limitations in the ability to extract meaningful subgroups from the complex and multidi-

mensional neuropsychological data.

Because of the above-mentioned limitations of the traditional clustering algorithm, Topo-

logical Data Analysis (TDA) is receiving increasing attention for its ability to define the shape

of the data and produce outcomes in the form of an easily recognizable graph, as graphically

illustrated in Fig 1. TDA, or “partial clustering”, which has been widely used for obtaining new

insights from the heterogeneous high dimensional behavioral, clinical and biological datasets

[7–12]. As an unsupervised machine learning approach, TDA has the attractive features of

being data driven, without first having to formulate a pre-defined hypothesis. TDA can more

finely stratify patients than standard clustering methods and can identify new as well as inter-

esting patient sub-groups [10].

With regard to input features, several studies have attempted to identify ADHD subgroups

by clustering them according to symptom severity [13, 14], reading disabilities [15], personal-

ity traits [16], anxiety/mood symptoms [17], and neuropsychological [18] and neuroimaging

data [19] using data-driven machine learning algorithms. In our previous study, we have

Fig 1. K-means clustering analysis with two (k = 2) and three (k = 3) centroids (a) and topological data analysis as an example of shape

extraction (b). The classical k-means clustering fails to detect subgroups with complex shape of data.

https://doi.org/10.1371/journal.pone.0182603.g001
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attempted to use a functional connectome-based topological data analysis (TDA) method to

unveil hidden subgroups of ADHD, but failed to detect ADHD subgroups as a branch in the

topology from neuroimaging data [19]. Instead, subgroup-like patterns have been observed

when we mapped IQ and ADHD symptom severity on the resulting topology. In addition, pre-

vious studies demonstrated that general cognitive ability (intelligence quotient; IQ) and the

severity of ADHD symptoms are two of the most important factors related to the prognosis of

ADHD [20]. Specifically, individuals with high levels of ADHD symptoms are at an increased

risk of continuing problems associated with ADHD during adolescence [21, 22]. It is also

reported that IQ, but no other cognitive measures, affects ADHD outcome and that lower IQ

is associated with comorbid conduct disorder, poor response to stimulant treatment, and poor

prognosis [23, 24]. In fact, commonly measured basic neurocognitive and clinical characteris-

tics, such as IQ and symptom severity, have their own advantages in that they can be more eas-

ily translated into clinical application [23] than that of neuroimaging data. Besides, these

measures are best represented as dimensions and have well-theorized relationships to biologi-

cal systems from previous studies [23, 25]. Therefore, IQ and symptom severity measures were

selected to identify hidden subgroups using TDA in this study.

After identifying subgroups within large ADHD datasets, the investigation of the neurobio-

logical validity of the newly defined subgroups is another important issue. In prior studies,

neuroimaging methods, such as resting state functional magnetic resonance imaging (rs-

fMRI) connectivity strength, were used to investigate the neurobiological substrates of human

characteristics, such as personality types [4, 26]. A benefit of rs-fMRI is that it is more develop-

mentally and contextually variable than brain structural measures, making it a highly attractive

place to start working towards the goal of identifying subgroups of individuals with ADHD

based on similar brain processes [27]. The presence of the subgroups that correspond to well-

known brain functional systems identified by MRI implies that those subgroups may model

some features of brain organization, and the absence of such subgroups may suggest that a

subgroup may not be well-defined biologically [28].

On this background, the two main objectives of this study were (1) to determine whether

we can identify new clinical phenotypes based on symptom severity and IQ measurements in

children and adolescents with ADHD, and (2) to investigate whether neuroimaging findings

validate the identified phenotypes. In this study, we used two brain-based measures to investi-

gate the characteristics of the brains in each subgroup identified by TDA: 1) centrality mea-

sures, and 2) modularity analysis, exploring resting-state functional connectivity in ADHD in

five pre-defined neural networks, searching for the neurobiological significance of the sub-

groups identified by TDA.

Materials and methods

Principal and validation datasets

We obtained the preprocessed rs-fMRI data from the Neuro Bureau ADHD-200 Prepro-

cessed repository [29]. In the ADHD-200 dataset, the largest dataset from Peking University

(PKU), containing both typically developing controls (TDCs) and children with ADHD, was

chosen for this study. Among 176 male subjects, we selected 62 TDCs and 67 children with

ADHD, choosing only those with complete fMRI, IQ, and clinical datasets without missing

variables. The principal dataset contained the neuroimaging network data as well as the clini-

cal measures, such as ADHD symptom severity and IQ scores. For the validation of the pro-

posed topology-based methods, we chose the second largest dataset. From the 173 male

subjects included in the New York University (NYU) dataset, we selected 43 TDCs and 91

children with ADHD, choosing only those with complete Q and symptom severity of ADHD

ADHD subgroups and functional modular organizations
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datasets without missing variables. To control the potential confounding effects of sex and

IQ, we excluded girls and subjects with IQs lower than 80. The ADHD Rating Scale IV [30]

and the Conners’ Parent Rating Scale-Revised [31] were used to assess symptom severity in

the principal and validation datasets, respectively. The Wechsler Intelligence Scale for Chi-

nese Children-Revised [32] and Wechsler Abbreviated Scale of Intelligence [33] were used to

assess intelligence ability in the principal and validation datasets, respectively. Participant

demographic and clinical information are shown in Table 1 and S1 Table online. All experi-

mental protocols were in compliance with the policies of site-specific institutional review

boards (IRBs). The ADHD-200 datasets are anonymized, with no protected health informa-

tion included. Therefore, this study met the requirements for exemption from our local IRB

review.

Topological data analysis (TDA)

We performed TDA to identify hidden subgroups of ADHD. We prepared a dataset as a

matrix form using three clinical variables for symptom severity and three variables for intelli-

gence. Therefore, the matrix (Mij) indicates a point of data for a subject i and a variable j,
where characteristic variables contained three symptom variables, such as ADHD index, inat-

tentive score and hyperactive/impulsivity score, and three intelligence scores, such as full-scale

IQ, verbal IQ and performance IQ. Fig 2 shows the preprocessing and analysis steps of TDA.

At first, the means and standard deviations of the TDCs were computed as following:

mTDC
j ¼

1

NTDC

X

i2XTDC

Mij and sTDC
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NTDC
ðMij � mTDC

j Þ

s

ð1Þ

where NTDC is the number of subjects in TDCs; XTDC is a subset of subjects in TDC. Finally,

Table 1. Demographic and clinical characteristics of the principal dataset.

Variable TDC, a mADHD, b sADHD, c F2,42 P-value post-hoc

Mean ± SD Mean ± SD Mean ± SD

Age 12.3 ± 1.6 13.1 ± 1.4 11.9 ± 1.6 2.2 0.129

Intelligence quotient (IQ)

Full-scale IQ 123.0 ± 15.0 102.9 ± 8.0 104.9 ± 13.9 11.4 <0.001 a>b, a>c

Verbal IQ 125.8 ± 14.3 107.9 ± 10.9 110.7 ± 20.1 5.7 0.006 a>b, a>c

Performance IQ 114.8 ± 15.1 96.7 ± 10.2 96.8 ± 12.4 10.1 <0.001 a>b, a>c

Symptom severity

ADHD index 22.4 ± 2.9 44.1 ± 3.0 63.3 ± 2.8 753.5 <0.001 a<b, a<c, b<c

Inattentive 11.6 ± 1.9 26.1 ± 2.7 32.1 ± 2.2 324.2 <0.001 a<b, a<c, b<c

Hyper/Impulsivity 10.8 ± 2.1 18.1 ± 2.5 31.2 ± 2.9 253.5 <0.001 a<b, a<c, b<c

DSM-IV subtype, N (%)

Combined 4 (27%) 12 (80%)

Inattentive 11 (73%) 3 (20%)

Hyperactive 0 (0%) 0 (0%)

Abbreviation: ADHD, attention deficit hyperactivity disorder; DSM-IV, Diagnostic and Statistical manual of Mental Disorders, Fourth Edition; TDC, typically

developing control; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0182603.t001
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the variance normalized data matrix (M̂ij) was computed as

M̂ ij ¼
Mij � mTDC

j

sTDC
j

ð2Þ

Now, the distance metrics between α- and β-th subjects were computed by Euclidean dis-

tance as following:

Dab ¼ kM̂a� � M̂b�k2 ¼
X6

k¼1

ðM̂ ak � M̂bkÞ
2

ð3Þ

Then, we applied L-infinity centrality to compute filter metric as following:

fa ¼ max
b2X
ðDabÞ: ð4Þ

This computes the maximal distance to any other data points in the dataset X for every sub-

ject’ data point. Finally, Mapper, a tool for TDA, was used to find hidden subgroups in the

patient-patient networks with the distance and filter metrics as input variables. After extracting

the shape of the data, we mapped variables of interest onto the resulting topology, or patient-

patient network, to unveil hidden neuropsychological characteristics of the output topology.

Functional network matrix

The datasets that we downloaded from the Neuro Bureau ADHD-200 repository were the fil-

tered time courses files, ADHD 200_AAL_TCs_filtfix.tar.gz. A detailed description of the

preprocessing steps can be found elsewhere [19, 29]. In brief, slice timing correction, coregis-

tration, normalization, smoothing, regressions to remove physiological noises and head

motion artifacts, and band-pass (0.009–0.08 Hz) filtering were applied. Using the filtered time-

Fig 2. Preprocesses and analysis steps of topological data analysis. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; TDC, typically

developing controls; Sx, symptom severity scores; IQ, intelligence quotient.

https://doi.org/10.1371/journal.pone.0182603.g002
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course data, we scrubbed time points for huge head motions by removing the fMRI scans

using a framewise displacement > 1 mm [34]. Then, the functional network of each subject

(Rij) was computed by Pearson’s correlation coefficients of the scrubbed time-courses between

the i-th and j-th regions of interest. These functional connectivity matrices were used for fur-

ther investigation of functional network properties.

Graph theoretical analysis

For the modularity optimization analysis and computation of centrality measures, we only

used positive edge weights [26, 35]. The degree centrality of a node was computed by summa-

tion of all connection weights from its neighboring nodes [36]. The betweenness centrality

and PageRank of a node were also computed following the definition described in elsewhere

[36, 37]. The betweenness centrality of a node captures the global structure of the network.

The PageRank evaluates the importance of nodes in network systems [38]. We set α to 0.85 for

the evaluation of the PageRank.

To evaluate modular organization of each group, the group representing connection matri-

ces were computed by averaging the functional network within each group. There are numer-

ous approaches to compute the modular architectures in a network [39–42]. Among them, we

adopted the Louvain community detection method that uses a heuristic algorithm to compute

the modularity.

Q ¼
1

2m

X

i;j

Aij �
sisj

2m

� �
dðCi;CjÞ ð5Þ

where Aij is the connection weight of the edge between i and j; m ¼ 1

2

X

ij
Aij; si = ∑j Aij is the

degree centrality; Ci is the community structure to which node i is assigned; the delta function

δ(x, y) is 1 if x = y and 0 otherwise. The heuristic modularity optimization algorithm produced

slightly variable modular partitions and modularity (Q) run by run. Therefore, we performed

1000 independent optimization processes and found the best module partition that had the

highest average value of normalized mutual information over all other optimization results

[26].

Statistical analysis

The statistical comparisons of demographic variables, symptom severity, and IQ scores among

subgroups identified by TDA were conducted by analysis of variance (ANOVA) methods. In

addition, group level differences of graph theoretical measures and the intra- and inter-mod-

ules functional connectivity density (FCD) were investigated by analysis of covariance

(ANCOVA). In addition, the statistically meaningful FCDs and centrality measures among the

three groups were identified using a statistical significance of corrected P< 0.05, correcting

for multiple comparisons using the Benjamini-Hochberg procedure [43]. Further investiga-

tions of the meaningful FCDs and centrality measures (P< 0.05, Bonferroni-corrected) were

conducted using a post-hoc analysis to identify differences between any combinations of the

groups.

Results

Participant characteristics

In the principal and validation datasets, no significant differences were found in age and hand-

edness between the ADHD and TDC groups (see S1 Table online). However, significantly

ADHD subgroups and functional modular organizations
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higher IQ scores were observed for both datasets (P< 0.05) in TDC subjects compared to chil-

dren with ADHD.

Topological data analysis

Fig 3 presents the results of the TDA (or patient-patient network), showing a three branch-

shaped graph for group separation in terms of the distance between the participants. TDA

identified three subgroups of children: one TDC and two ADHD subgroups. The average val-

ues of the ADHD index and full-scale IQ within each node of the output topology are shown

in Fig 3a and 3b. According to the variable mapping onto the patient-patient network, one

branch in the patient-patient network of ADHD had milder inattentive and impulsivity/hyper-

activity symptoms, labelled as mild ADHD (mADHD), and the other branch had more severe

symptoms, labelled as severe ADHD (sADHD). Furthermore, for the quantitative analysis of

the intelligence and ADHD symptoms among the three branches, we selected the 15 children

lying on the most extreme peripheral position of each branch in the patient-patient networks.

Fig 3. Output of topological data analysis of the principal dataset. The patient-patient network discriminates children with ADHD into two distinct

groups in terms of symptom severity. The average values of various clinical and neuroimaging variables within each node were plotted. Abbreviations:

ADHD, attention-deficit/hyperactivity disorder; BGN, basal ganglia network; CAU, caudate; DC, degree centrality; DMN, default mode network; FCD,

functional connectivity density; IQ, intelligence quotient; L, left; PCC, posterior cingulate cortex; R, right; PR, PageRank; SN, salience network; VN,

visual network.

https://doi.org/10.1371/journal.pone.0182603.g003
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The demographic and clinical profiles for each subgroup are described in Table 1. Specifically,

symptom severity of mADHD subgroup was significantly lower than that of sADHD subgroup

(P< 0.05), whereas no significant differences in intelligence scores were observed between

two ADHD subgroups (P> 0.05). The validation analysis confirmed that similar patterns in

the patient-patient network were observed in the validation dataset. The shape of the data in

the intelligence and symptom severity space obtained from the validation dataset was the same

as the shape of the principal dataset, a three branch-shaped graph including severe and mild

symptom ADHD subgroups (see S1 Fig online).

Centrality measures among the three subgroups

The ANOVA test showed that the degree centrality and PageRank in the bilateral posterior

cingulate cortex (PCC) were significantly different among the three groups (Corrected

P< 0.05). The PageRank in the bilateral caudate was significantly different among the three

groups (Corrected P< 0.05). The statistical comparisons of all nodal areas are summarized in

supplementary materials (see S2 and S4 Tables online). Specifically, the degree centrality and

PageRank in the bilateral PCC was significantly decreased in the sADHD group relative to that

of the mADHD and TDC groups (Bonferroni-corrected P< 0.05). Interestingly, the PageRank

in the bilateral caudate was significantly increased in both the mADHD and sADHD groups

relative to the TDC group (Bonferroni-corrected P< 0.05). There were no significant differ-

ences in the betweenness centrality among three subgroups (S3 Table online). Furthermore,

we mapped the degree centrality in the bilateral PCC (Fig 3c and 3d) and the PageRank in the

bilateral PCC (Fig 3e and 3f) and bilateral caudate (Fig 3g and 3h) onto the patient-patient net-

work to visualize the neural characteristics of each subgroup.

Modularity optimizations and functional connectivity density (FCD)

Fig 4a shows the patterns of the functional connectivity and modular organization for the

three subgroups of ADHD. In brief, the default mode network (DMN), visual network (VN),

salience network (SN), executive control network (ECN), and basal ganglia network (BGN)

were identified in all subgroups, though each group had slightly different community member-

ship. These memberships are described in S5 Table online. The functional communities

obtained from the mADHD group were selected for statistical comparisons of FCD among the

three groups. As shown in Table 2, the ANOVA test revealed significant group differences in

the intra-module FCDs in the DMN, VN, and BGN (Corrected P< 0.05). Meanwhile, the

inter-module FCDs in the DMN—ECN, DMN—SN, DMN—VN, SN—BGN, and VN—BGN

were also significantly different among the three subgroups (Corrected P< 0.05).

Fig 4b shows the significant intra- and inter-module FCDs among the three groups and

presents the significance from the post-hoc analyses. Relative to the TDCs, the intra-module

FCDs within the VN and BGN, and inter-module FCD in the DMN—SN were significantly

increased in the mADHD as well as the sADHD groups (Corrected P< 0.05). Meanwhile, the

intra-module FCD within the DMN was significantly decreased in the sADHD group com-

pared to the TDC groups (Corrected P< 0.05). In contrast, the inter-module FCD in the

DMN—VN was significantly decreased in the mADHD and sADHD groups relative to the

TDCs (Corrected P< 0.05). In addition, the inter-module FCD in the SN—BGN was signifi-

cantly decreased in the sADHD relative to the TDC group (Corrected P< 0.05), and the inter-

module FCD in the VN—BGN was significantly decreased in the mADHD relative to the TDC

group (Corrected P< 0.05). Finally, the inter-module FCD of the DMN—ECN in the sADHD

group was significantly increased relative to that of the TDC and mADHD groups (Corrected

P< 0.05). These significant FCD values were mapped onto the patient-patient network, as

ADHD subgroups and functional modular organizations
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shown in Fig 3i–3p. Visualization of the variables on the topology provided a complementary

information to the F-test among the three groups.

Discussion

In the present study, we demonstrated that the use of common clinical phenotypes (symptom

severity and IQ) and an innovative unsupervised data-driven machine learning algorithm such

as TDA is an informative approach for understanding the heterogeneity of ADHD. We also

examined whole-brain intrinsic functional connectivity and identified the specific brain net-

work that shows significant differences between the mADHD group and the sADHD or the

TDC groups. This result suggests that the identification of the mADHD and sADHD

Fig 4. Functional network modular organizations for typically developing controls (TDC), children with mild symptom ADHD (mADHD),

and children with severe symptom ADHD (sADHD) (a), and statistical comparisons of the functional connectivity density among the three

subgroups (b). Modular partitions were obtained from the best community structure of the mADHD group and significant intra- and inter-module

connectivities were plotted as bar graphs. *P < 0.05 indicates a statistical significance from the post-hoc analysis after Bonferroni correction.

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; BGN, basal ganglia network; DMN, default mode network; ECN, executive control

network; SN, salience network; VN, visual network.

https://doi.org/10.1371/journal.pone.0182603.g004
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subgroups may be biologically meaningful when the functional connectome is examined using

graph theoretical approaches.

Subgroup identification of ADHD by TDA

Our results showed that TDA produced an easily recognizable branch-shaped graph with

three progressive arms and that individuals with ADHD in the same arm shared similar char-

acteristics to form specific subgroups of the disorder. Similar results were also replicated in the

independent validation dataset. The most compelling finding of this study is the identification

of two unique phenotypes (mADHD and sADHD), which overlaps with current ADHD cate-

gories identified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

(DSM-5) [44], i.e., combined, inattentive, and hyperactive/impulsive presentation. As shown

in Table 1 (see also S2 Fig online), most of the sADHD (80%) and mADHD (73%) overlapped

with the combined subtype and the inattentive subtype, respectively. Given that the wording

‘subtype’ that was used in the DSM-IV to categorize the children with ADHD has been

changed as ‘presentation’ in the DSM-5 [44], the mADHD and sADHD identified by TDA

might be called as predominately inattentive presentation and predominantly combined pre-

sentation, respectively. In fact, the combined subtype was clinically more severe than the inat-

tentive subtype (see S6 Table online). However, these two subtypes showed no significant

differences in the functional network measures (see S7–S10 Tables online). Taken together,

although mADHD and sADHD showed overlaps in the DSM-IV subgroups or DSM-5 presen-

tation, they are ‘novel subgroups’ regards to showing significant differences in the functional

network measures as well as symptom severity.

Table 2. Analysis of covariance of the functional connectivity density (FCD) among three groups. The statistical significance of the intra-module and

inter-module FCD were summarized.

Functional module TDC mADHD sADHD Analysis of Variance

Mean ± SD Mean ± SD Mean ± SD F2,42 Corrected Pa

Intra-module FCD

Default Mode Network (DMN) 0.34 ± 0.09 0.28 ± 0.08 0.25 ± 0.05 5.54 0.03

Executive Control Network (ECN) 0.28 ± 0.06 0.28 ± 0.06 0.29 ± 0.09 0.02 0.98

Salience Network (SN) 0.34 ± 0.07 0.32 ± 0.06 0.36 ± 0.08 1.21 0.45

Visual Network (VN) 0.28 ± 0.14 0.39 ± 0.12 0.40 ± 0.11 4.51 0.04

Basal Ganglia Network (BGN) 0.24 ± 0.10 0.35 ± 0.10 0.34 ± 0.08 5.98 0.03

Inter-module FCD

DMN—ECN -0.01 ± 0.09 0.00 ± 0.08 0.07 ± 0.07 4.44 0.04

DMN—SN -0.17 ± 0.08 -0.09 ± 0.08 -0.09 ± 0.07 5.87 0.03

DMN—VN 0.00 ± 0.07 -0.09 ± 0.07 -0.07 ± 0.07 5.57 0.03

DMN—BGN 0.02 ± 0.06 0.06 ± 0.05 0.07 ± 0.05 2.74 0.13

ECN—SN 0.00 ± 0.07 -0.02 ± 0.08 -0.03 ± 0.07 0.72 0.57

ECN—VN -0.08 ± 0.05 -0.06 ± 0.08 -0.10 ± 0.10 1.14 0.45

ECN—BGN -0.01 ± 0.07 -0.02 ± 0.06 0.01 ± 0.07 0.74 0.57

SN—VN -0.11 ± 0.09 -0.08 ± 0.10 -0.09 ± 0.08 0.52 0.64

SN—BGN 0.07 ± 0.06 0.05 ± 0.07 -0.01 ± 0.12 4.08 0.05

VN—BGN -0.12 ± 0.08 -0.20 ± 0.10 -0.18 ± 0.06 4.56 0.04

aCorrected P was obtained by Benjamini-Hochberg procedure to correct multiple comparisons.

Abbreviation: ADHD, attention deficit hyperactivity disorder; mADHD, children with mild symptom ADHD; sADHD, children with severe symptom ADHD;

SD, standard deviation.

https://doi.org/10.1371/journal.pone.0182603.t002
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In our previous study, we have failed to detect subgroups of ADHD using the functional

connectome data as the input features [19]. Healthy state modeling, which introduced in the

first TDA paper that identified a subgroup of breast cancers [11], was used to extract disease

components from the functional imaging data. Then, the filter metric was computed as the

size of disease component. The filter metric might have captured the overall characteristic of

ADHD, but failed to capture additional information to classify subgroups of ADHD. However,

the current study used easily obtainable clinical measures, such as ADHD symptom severity

and IQ scores, as the input features to the TDA. We used L-infinity centrality as the filter met-

ric, which computes for every data point the maximal distance to any other data point in the

set, and thus the extreme (highest or lowest) filter metric corresponds to flares (or branches) in

the patient-patient network of the TDA output. Therefore, the current approach has an advan-

tage in being readily translated into clinical practice. Notably, these two subgroups displayed

both similar and distinct functional connectivity findings in whole-brain and subnetwork con-

nectivity, suggesting the biological validity of our subgroups. It is worth noting that the advan-

tage of TDA is the ease with which it can be used to visualize similarities and differences

between the mADHD and sADHD groups by mapping variables of interest, as shown in Fig 3.

Functional network modular organization

In the analysis of functional network modular organization for the mADHD, sADHD, and

TDC groups, we observed altered functional connectivity within several large-scale brain net-

works in children with ADHD compared with TDCs. Specifically, relative to the TDC group,

the sADHD group displayed increased intra-module connectivity in the VN and BGN, and

inter-module connectivity in the DMN—ECN, DMN—SN, DMN—VN, but decreased intra-

module connectivity in the DMN and inter-module connectivity in the SN—BGN. Our results

also revealed that the mADHD group generally showed similar patterns of modular architec-

tures to that of the sADHD group. For example, intra-module connectivity in the VN and

BGN, and inter-module connectivity in the DMN—SN and DMN—VN were not significantly

different between the mADHD and sADHD groups, but the values were significantly different

between mADHD and TDC groups. Taken together, our results suggest that both intra-mod-

ule and inter-module functional connectivity are critical components of the underlying neuro-

biology of ADHD. In general, abnormal intra- and inter-module connectivity may limit

dynamic interactions among networks, which are necessary for successful processing of com-

plex stimuli in the real world [45].

Regarding the hypoconnectivity within the DMN and the decreased degree centrality and

PageRank in the bilateral PCC regions, our results support the idea that ADHD might be con-

sidered as a default network disorder [46–50]. The altered inter-module connectivity between

the DMN and the task-positive regions found in our ADHD group may be associated with a

dysfunction in the switching of the brain state from a resting to functioning state [50], thus

producing periodic lapses in on-task performance, which is a hallmark of ADHD [51].

Focusing on the subcortical system of ADHD, previous study associated the malfunction of

the cognitive control in ADHD with abnormality in the striatal circuits [52]. The mADHD

and sADHD showed an increase in PageRank in the bilateral caudate (S4 Table online) and

FCD within the BGN (Fig 2b), which includes the striatum and thalamus, relative to the TDC

group. The striatum has multiple roles relevant to ADHD such as executive function [53] and

reward processing [54]. Considering that the PageRank measures an importance of a node in

the network system [37], the increase in PageRank relative to the normal condition might be

interpreted as information overload and might be associated with dysfunction in the striatal

circuits.
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Instead of the traditional simple models of ADHD, mainly involving DMN—ECN FC or

within-DMN FC, our findings with regard to the VN and SN are consistent with the recent

neurobiological formulations of ADHD [49, 55–57], implicating atypical functional connectiv-

ity within and between networks affecting sensory and salience processing. This theory sug-

gests that enhanced bottom-up processing of external stimuli, as well as top-down processing

of executive control, can contribute to increased distractibility in ADHD patients [57, 58]. Spe-

cifically, the visual cortex interacts with the dorsal attention network [59, 60] to maintain

attention and suppress attention to irrelevant stimuli [55, 61]. Therefore, the abnormal intra-

and inter-module VN connectivity found in our mADHD and sADHD groups may affect

poor inhibition of sensory perception in ADHD patients [62–66]. The salience network inte-

grates external sensory stimuli with internal states, and it is critical for attention allocation to

stimuli that are salient to the individual [67] and units conflict monitoring, interoceptive-auto-

nomic, and reward processing centers [68]. In addition, diminished DMN connections with

the VN and SN may suggest that there is reduced information transfer from the sensory or

salience network to the DMN [69]. The role of BGN has been less studied compared to that of

other networks, but it has been implicated in working memory, motivation and reward-related

processing in prior studies [70]. Taken together, our results are consistent with the current

multi-network models in ADHD, which suggest that many psychiatric conditions, including

ADHD, are characterized by inappropriate engagement of the SN with the ECN, DMN, VN,

and BGN [55, 68, 71].

Neural characteristics of our mADHD and sADHD subgroups

Our study results revealed that aberrant connectivity in the DMN, VN, BGN, ECN, or SN

mainly concerned our sADHD group. The mADHD group shared neural signatures with the

TDC group as well as the sADHD group. First, the degree centrality and PageRank in the bilat-

eral PCC and intra-module connectivity in the DMN of the mADHD group were found to be

intermediate between the sADHD and TDC groups. In contrast, relative to the TDC group,

inter-module hypoconnectivity in the DMN—VN, inter-module hyperconnectivity in the

DMN—SN, and intra-module hyperconnectivity in the VN and BGN were observed in both

the mADHD and sADHD groups. However, inter-module hyperconnectivity in the DMN—

ECN was observed in the sADHD group, but not in the mADHD group compared to TDC

group. These findings show that mADHD and sADHD are somewhat different in terms of

their DMN—ECN connectivity, suggesting neurobiological differences between these two sub-

groups. The DMN and ECN are known as the task negative and task positive regions, respec-

tively, indicating that they should be anti-correlated in the normal brain [72]. Therefore,

ADHD subjects with mild symptoms might be different from those with severe symptoms and

more similar to TDC in terms of their DMN—ECN network.

Despite the important findings, several limitations should be considered for the proper

interpretation of our results. Our findings cannot be extended to the entire ADHD population

because we only used samples from boys to avoid possible bias from sex differences [73]. Fur-

thermore, in this analysis of archival data, we were limited by the content of the datasets avail-

able. In the ADHD-200 datasets, medication status was missing for a large number of subjects,

including the doses and types of medications and whether the subjects were under the effects

of the medication during the fMRI scan. A history of treatment with stimulant medication

may be relevant in interpreting our results. In addition, significantly higher IQ scores in TDC

subjects than children with ADHD were observed in the principal and validation datasets. As

individual differences in intrinsic functional connectivity are systematically related to mea-

sures of IQ [74] and behavioral variability [75], it is possible that the identified differences may
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be due to IQ differences rather than differences in symptom severity. The selection of the 15

subjects at the extreme of each subgroup was somewhat arbitrary. However, this was a post-hoc
comparison and selection of 15 subjects is enough to produce statistically significant results.

Our findings are somewhat dissimilar to the results from prior studies reporting reduced con-

nectivity between the DMN and other networks of brain, such as the ECN [46–49]. These

discrepancies are explained by the developmental perspective that suggests that DMN connec-

tions known to increase with development are weaker in participants with ADHD, and con-

versely, that a DMN connection known to decrease with development is abnormally increased

in the children with ADHD [47, 49]. Therefore, further work with larger samples, tighter age

ranges, and more standardized protocols for diagnosis is needed and the effects of comorbidi-

ties should be considered in future studies.

Conclusion

Despite the limitations mentioned above, we showed two notable findings in this study. First,

TDA is potentially useful in defining less heterogeneous clinical subgroups in ADHD. Second,

neuroimaging measurements are potential validators of phenotypic groups identified using

behavioral data. Taken together, data-driven and biologically relevant disease phenotypes

identified using TDA will give researchers a unique opportunity to identify objective and bio-

logically relevant disease categories. The identification of subgroups with distinct patterns of

clinical manifestation may lead to development of more effective and better-targeted interven-

tion for individualized treatment and improved patient care.
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