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Abstract

The purpose of the present study was to determine the influence of hypoxic exposure during

prolonged endurance exercise sessions (79 min in total) on post-exercise hepcidin levels in

trained male endurance athletes. Ten endurance athletes (mean ± standard deviation;

height: 169.8 ± 7.1 cm, weight: 57.1 ± 5.0 kg) conducted two endurance exercise sessions

under either a normobaric hypoxic condition [inspired O2 fraction (FiO2) = 14.5%] or a nor-

moxic condition (FiO2 = 20.9%). Exercise consisted of 10 × 3 min running on a treadmill at

95% of maximal oxygen uptake ( _VO2max) with 60s of active rest at 60% of _VO2max. After 10

min of rest, they subsequently performed 30 min of continuous running at 85% of _VO2max.

Running velocities were significantly lower in the HYPO than in the NOR (P < 0.0001). Exer-

cise-induced blood lactate elevation was significantly greater in the HYPO (P < 0.01). There

were significant increases in plasma interleukin-6, serum iron, and blood glucose levels

after exercise, with no significant difference between the trials [interaction (trial × time) or

main effect for trial, P > 0.05]. Serum hepcidin levels increased significantly 120 min after

exercise (HYPO: from 10.7 ± 9.4 ng/mL to 15.8 ± 11.2 ng/mL; NOR: from 7.9 ± 4.7 ng/mL to

13.2 ± 7.9 ng/mL, P < 0.05), and no difference was observed between the trials. In conclu-

sion, endurance exercise at lower running velocity in hypoxic conditions resulted in similar

post-exercise hepcidin elevations as higher running velocity in normoxic conditions.

Introduction

Iron deficiency is a frequent diagnosis among athletes, particularly endurance athletes[1–4].

The prevalence of iron deficiency in females competing in various sports was reported to

range from 25% to 36%[5,6]. Exercise-induced iron deficiency has been attributed to several

factors, including sweating, hemolysis mainly due to heel strike, hematuria, and gastrointesti-

nal bleeding[3,7–9]. Moreover, attention to the influence of hepcidin (a liver-derived, iron-

regulating hormone) on iron metabolism is growing[10–17]. Hepcidin regulates iron metabo-

lism [18] by degrading ferroportin (iron export protein) transport channels in the intestine

and on the surfaces of macrophages[19,20]. This process decreases dietary iron absorption and
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iron release from macrophages, which recycle iron from damaged erythrocytes, and eventually

leads to low iron availability in the blood[21,22].

Several previous studies have demonstrated that exercise transiently increases hepcidin

levels in serum [23–25] and urine[10], which peaks about 3h post-exercise. Furthermore, a

cumulative effect of exercise training on elevated hepcidin levels has also been confirmed

[13,15,26], although some studies did not find influence of long-term training on hepcidin

levels [16,27,28]. Exercise-induced hepcidin elevation is upregulated by the production of

inflammatory cytokine interleukin-6 (IL-6)[20], whereas hepcidin response is attenuated by

erythropoiesis [28–30], with concomitant elevated erythropoietin (EPO) [29–31]. Since hyp-

oxia is a strong stimulus for promoting erythropoiesis[32], exposure to hypoxia during exer-

cise may lower the magnitude of exercise-induced hepcidin elevation, which is generally

observed around 3 h following exercise. Hepcidin levels are suppressed within 48h of continu-

ous exposure to altitude[33]. Badenhorst et al.[34]revealed that following two 8 × 3 min inter-

val training sessions at 85% of maximal oxygen uptake ( _VO2max), hypoxic exposure (FiO2:

15.1%) for 3h post-exercise successfully attenuated the hepcidin response. In contrast, hypoxic

exposure (FiO2: 14.5%) during endurance exercise sessions did not affect the post-exercise ele-

vation of hepcidin[35]. However, since the exercise protocol in the above study consisted of

5 × 4 min running sets (at 90% of _VO2max), exposure to hypoxia was shorter than commonly

prescribed for daily training among well-trained endurance athletes[36]. Furthermore, the

benefit of high-intensity interval training (HIT) in hypoxia has been recently evident for

improving endurance capacity[37]. Therefore, impact of hypoxia during exercise regimens

consisting of HIT session and continuous exercise session needs to be currently clarified.

Therefore, the present study was designed to compare the post-exercise hepcidin response

between prolonged endurance exercise sessions (79 min in total) under normoxic (FiO2:

20.9%) and hypoxic conditions (FiO2: 14.5%) in trained male endurance athletes. We hypothe-

sized that the exposure to moderate hypoxia during endurance exercise sessions would attenu-

ate post-exercise hepcidin elevation.

Methods

Subjects

Ten male endurance athletes participated in the present study. Their age, height, and body

weight [mean ± standard deviation (SD)] were 19.8 ± 0.9 years (19–21 years), 169.8 ± 7.1 cm,

and 57.1 ± 5.0 kg, respectively. The average _VO2max was 63.4 ± 3.0 mL/kg/min. All athletes

were born at and living at sea level, and they had been maintaining specific training (at least

more than a year) for long distance running five days per week (approximately 70 km per

week). Inclusion criteria were maintenance of training (at least more than a year) and non-

smoking. The subjects were informed of the experimental procedures and possible risks

involved in this study, and written informed consent was subsequently obtained (August,

2015). The present study was approved by the Ethics Committee for Human Experiments at

Ritsumeikan University, Japan. All procedures performed in studies involving human par-

ticipants were in accordance with the ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki declaration and its later amendments or com-

parable ethical standards.

Experimental overview

The subjects visited the laboratory four times throughout the experimental period. During the

first two visits, two bouts of _VO2max testing were completed using a treadmill (Valiant, Load

Effect of exercise in hypoxia on hepcidin

PLOS ONE | https://doi.org/10.1371/journal.pone.0183629 August 22, 2017 2 / 10

https://doi.org/10.1371/journal.pone.0183629


Co., Netherlands) under a normoxic (FiO2 = 20.9%) or a normobaric hypoxic condition (FiO2

= 14.5%, equivalent to a simulated altitude of 3,000 m), respectively. These tests were per-

formed at least three days apart. For the determinations of _VO2max under hypoxic (FiO2:

14.5%) and normoxic conditions (FiO2: 20.9%), identical protocol was used based on prelimi-

nary experiment. In brief, the initial running velocity was set at 12 km/h (3.33 m/s), and the

running velocity was increased 2 km/h (0.56 m/s) every 2 min to 16 km/h (4.43 m/s). Once the

running velocity reached 16 km/h (4.43 m/s), it was further increased 0.6 km/h (0.17 m/s)

every 1 min until exhaustion. The first criterion for exhaustion was maintenance of prescribed

running velocity. In addition, we have confirmed all subjects met at least two of four criteria

( _VO2 plateau, respiratory exchange ratio >1.10, HR of at least 90% of theoretical maximum,

and rating of perceived exertion > 9 (10 scale) before determination of exhaustion. During

the test, respiratory samples were collected continuously using an automatic gas analyzer

(AE300S, Minato Medical Science Co., Ltd, Tokyo, Japan). The data collected were averaged

every 30s. The highest value was defined as _VO2max. Heart rate (HR) was measured throughout

the test using a wireless HR monitor (Acculex Plus; Polar Electro Oy, Kempele, Finland). In

addition, the subjects indicated their rating of perceived exertion at the end of each stage using

10 scale[38]. The order of the two repeated bouts of _VO2max testing under normoxic and hyp-

oxia was randomized.

During the third and fourth sessions, subjects conducted experimental trials in either a nor-

mobaric hypoxic (FiO2 = 14.5%, HYPO) or a normoxic condition (FiO2, = 20.9%, NOR). Each

trial was separated by 1 week. All trials were completed in an environmental chamber, and the

normobaric hypoxic condition was produced by insufflating nitrogen into the entire room.

Oxygen and carbon dioxide concentrations within a chamber were continuously monitored.

The temperature and relative humidity in the environmental chamber was maintained at 22˚C

and 50%, respectively.

The two trials were performed in a randomized crossover design (with at least a week inter-

val between the two trials), and the subjects were not informed of whether the trial was con-

ducted under normoxic or hypoxic conditions. The HYPO and NOR trials were started after

at least a week following _VO2max test. All exercise sessions, including 5 min of warm-up at 60%

of _VO2max (using _VO2max evaluated under hypoxic or normoxic conditions), were conducted

under hypoxic condition in the HYPO or normoxic condition in the NOR. After warm-up

exercise, the subjects initially performed HIT consisting of 10 × 3 min running at 95% of

_VO2max with 60s of active rest at 60% of _VO2max. After 10 min of rest, they subsequently started

30 min of continuous running at 85% of _VO2max. The total duration for exercise sessions was

79 min. We have selected the HIT protocol, because there are several evidences to support the

efficacy of HIT on endurance capacity[37,39]. Furthermore, 30 min of continuous exercise at

submaximal intensity (85% of _VO2max) was also added to ensure sufficient duration of the exer-

cise. Since running velocities during HIT and continuous running were determined based on

the _VO2max evaluated under normoxic or hypoxic conditions, selected velocities were different

between the two trials. The subjects ran at lower velocity during HIT in the HYPO [16.2 ± 0.9

km/h (4.49 ± 0.25 m/s)] than in the NOR [18.0 ± 0.8 km/h (4.99 ± 0.24 m/s), P< 0.0001].

During the continuous exercise session, the subjects also ran at lower velocity in the HYPO

[14.5 ± 0.8 km/h (4.02 ± 0.23 m/s)] than in the NOR [16.1 ± 0.7 km/h (4.47 ± 0.21 m/s),

P< 0.0001].

Venous blood samples were collected before exercise, 0, 60, and 120 min after completing

exercise to monitor time-course changes in serum hepcidin levels.

All subjects were asked to maintain physical activity levels during experimental period.
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Measurements

Physiological variables during exercise sessions. Percutaneous oxygen saturation (SpO2)

was evaluated at sets 1, 5, and 10 during HIT and every 10 min during the continuous exercise

session. The data at each point were collected during 15 s using a finger pulse oximeter (Smart

Pulse, Fukuoka Denshi, Tokyo, Japan). Heart rate (HR) was continuously recorded during

exercise every 5 s using a wireless HR monitor (Acculex Plus; Polar Electro Oy, Kempele,

Finland).

Blood variables

Following an overnight fast, the subjects visited the test site laboratory at 7:30 in the morning

and rested before the first blood collection. A baseline blood sample was subsequently ob-

tained. Blood samples were also collected at 0, 60, 120 min after exercise sessions. Serum and

plasma samples were obtained after a 10 min centrifugation at 4˚C, and the samples were

stored at -80˚C until analysis. From the obtained blood samples, blood glucose, lactate, serum

iron, hepcidin, and plasma IL-6 levels were measured. Blood glucose and lactate levels were

measured using a glucose analyzer (Free style, Nipro Co., Osaka, Japan) and a lactate analyzer

(Lactate Pro, Arkray Co., Kyoto, Japan) immediately after blood collection. Blood glucose level

measurements were duplicated, and average values were used for analysis. Serum iron levels

were measured at a clinical laboratory (SRL Inc., Tokyo, Japan). The intra-assay coefficient of

variance (CV) for serum iron measurement was 1.3%. Plasma IL-6 levels were measured with

enzyme-linked immunosorbent assay (ELISA) kits (Human IL-6 Quantikine HS ELISA kit,

R&D Systems, Minneapolis, USA). The sample was analyzed in duplicate, and average values

were determined. The intra-assay CV was 4.4%. Serum hepcidin levels were analyzed with an

ELISA kit (R&D Systems, Minneapolis, MN, USA), and the intra-assay CV was 2.3%.

Statistical analysis

All data are presented as means ± SD. A two-way analysis of variance (ANOVA) with repeated

measures was used to confirm the interaction (trial × time). When the ANOVA revealed a sig-

nificant interaction or main effect, a Tukey-Kramer test was performed as a post hoc analysis

to identify differences. The areas under the curves (AUC) for plasma IL-6 and serum hepcidin

levels were compared with respect to the HYPO and NOR conditions using a paired-test. In

addition, Cohen’s d (for paired t-test) or partial eta squared (partial η2 for two-way ANOVA

with repeated measures) were calculated to quantify effect sizes (ES). For all tests, P values<

0.05 were considered to indicate statistical significance.

Results

Serum hepcidin

Table 1 presents time course changes in serum hepcidin levels. Serum hepcidin levels for one

subject was not able to detect due to below the limit of the detection. Exercise significantly

Table 1. Changes in serum hepcidin levels.

Pre Post0 min Post60 min Post120 min

Hepcidin

(ng/mL)

NOR 7.9 ± 4.7 10.1 ± 6.1 9.7 ± 6.0 13.2 ± 7.9*

HYPO 10.7 ± 9.4 12.7 ± 9.4 11.8 ± 7.6 15.8 ± 11.2*

Values are means ± SD (n = 9).

*: Significant difference vs. Pre.

https://doi.org/10.1371/journal.pone.0183629.t001
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increased serum hepcidin levels (main effect for time: P< 0.05, ES = 0.52), and a significant

increase from pre-exercise levels was observed 120 min after completing exercise sessions in

both trials (P< 0.05 for HYPO, P< 0.01 for NOR). However, exercise-induced hepcidin

responses were similar for the HYPO and the NOR trials [interaction (trial × time, P> 0.05,

ES = 0.09) or main effect for trials (P> 0.05, ES = 0.05), with no significant difference between

the trials. The AUC for serum hepcidin levels during exercise and the post-exercise period did

not differ significantly (P> 0.05, ES = 0.30) between the HYPO (2421 ± 1692 ng/mL) and the

NOR (1991 ± 1110 ng/mL).

Physiological variables during exercise sessions

In the HYPO, SpO2 levels were significantly lower during both HIT (average SpO2: HYP

78 ± 3% vs. NOR 94 ± 2%, P< 0.001, ES = 6.28) and continuous exercise (average SpO2: HYP

79 ± 3% vs. NOR 95 ± 2%, P< 0.001, ES = 5.88). The HR neither differed significantly between

the HYPO and the NOR during HIT (average HR: HYP 178 ± 7 bpm vs. NOR 182 ± 5 bpm,

ns, ES = 0.66) nor during continuous exercise (average HR: HYP 174 ± 9 bpm vs. NOR 177 ± 9

bpm, ns, ES = 0.33).

Blood glucose, lactate, serum iron, and plasma IL-6

Table 2 presents time-course changes in blood glucose, lactate, serum iron, and plasma IL-6

levels. Blood glucose levels did not change significantly immediately after the exercise, but they

significantly decreased 60 min and 120 min post-exercise compared with pre-exercise levels in

both trials (main effect for time: P< 0.05, ES = 15.32). However, there was no significant dif-

ference between the two trials at any time points (interaction: P> 0.05, ES = 0.10, main effect

for trial: P> 0.05, ES = 0.01). Blood lactate levels significantly increased immediately after the

exercise compared with pre-exercise levels only in the HYPO (P< 0.001, ES = 0.67), with a sig-

nificant difference from that in the NOR (P< 0.01, ES = 0.51). Both trials showed similar in-

creases in serum iron levels compared with pre-exercise levels during the post-exercise period

(main effect for time: P< 0.01, ES = 0.91), with no difference between the HYPO and NOR at

any time points (interaction: P> 0.05, ES = 0.30, main effect for trial: P> 0.05, ES = 0.11).

The HYPO and NOR trials showed similar increases in plasma IL-6 levels (main effect for

time: P< 0.001, ES = 0.86), with no significant difference between the HYPO and NOR at any

time points (interaction: P> 0.05, ES = 0.13, main effect for trial: P> 0.05, ES = 0.04). Fur-

thermore, the AUC for plasma IL-6 levels during exercise and the post-exercise period was not

Table 2. Changes in blood glucose, lactate, serum iron and plasma IL-6 levels.

Pre Post0 min Post60 min Post120 min

Glucose (mg/dL) NOR 91 ± 6 88 ± 10 81 ± 8* 79 ± 7*

HYPO 92 ± 10 93 ± 11* 78 ± 11* 83 ± 13*

Lactate (mmol/L) NOR 1.7 ± 0.5 3.2 ± 2.0 1.9 ± 0.8 2.0 ± 0.7

HYPO 2.0 ± 0.8 5.1 ± 1.6*† 1.9 ± 0.8 2.1 ± 0.7

Iron (μg/dL) NOR 102 ± 38 146 ± 41* 151 ± 38* 149 ± 34*

HYPO 94 ± 41 130 ± 48* 127 ± 41* 125 ± 42*

IL-6 (pg/mL) NOR 0.5 ± 0.2 5.9 ± 2.3* 3.4 ± 1.3* 2.0 ± 1.0*

HYPO 0.6 ± 0.4 5.2 ± 2.4* 2.9 ± 1.3* 2.0 ± 0.7*

Values are means ± SD (n = 10 for glucose, lactate and iron levels. n = 9 for IL-6 levels).

*: Significant difference vs. Pre.

†: Significant difference vs. NOR.

https://doi.org/10.1371/journal.pone.0183629.t002

Effect of exercise in hypoxia on hepcidin

PLOS ONE | https://doi.org/10.1371/journal.pone.0183629 August 22, 2017 5 / 10

https://doi.org/10.1371/journal.pone.0183629.t002
https://doi.org/10.1371/journal.pone.0183629


significantly different (P> 0.05, ES = 0.20) between the HYPO (621.8 ± 272.8 pg/mL) and the

NOR (674.5 ± 264.2 pg/mL).

Discussion

The main finding of the present study was that endurance exercise at lower running velocity in

hypoxic conditions (FiO2 = 14.5%) resulted in similar post-exercise hepcidin elevations as

higher running velocity in normoxic conditions. The finding is consistent with a recently pub-

lished study that demonstrated a similar exercise-induced hepcidin response to relatively short

(about 31 min in total) interval exercise sessions in hypoxic and normoxic conditions[35].

Considering that exercise-induced hepcidin elevation was successfully impaired by hypoxic

exposure for 3h post-exercise[34], recovering under hypoxic conditions could contribute to

maintaining appropriate iron levels by reducing hepcidin production.

During endurance exercise sessions, SpO2 levels remained significantly lower in the HYPO

than in the NOR. Since _VO2max is expected to be lower under hypoxic conditions[40], we

designed the study to match the relative exercise intensity (percentage relative to _VO2max evalu-

ated under normoxic or hypoxic conditions) in NOR and HYPO conditions. Consequently,

_VO2max was significantly lower in the HYPO (44.6 ± 3.8 mL/kg/min) than in the NOR

(63.4 ± 3.0 mL/kg/min, P< 0.05). Moreover, the running velocities during both HIT and con-

tinuous exercise sessions were significantly lower in the HYPO, and the HYPO also showed

significantly lower energy expenditure. However, since HR and RPE during exercise sessions

did not differ significantly between the HYPO and NOR conditions, the physiological stress

appeared to be similar between the trials.

Exercise, particularly running, increases hepcidin levels during exercise[10,24,34,41]. In

accordance with previous studies, serum hepcidin levels in the present study were significantly

elevated at 120 min after completing exercise sessions in both trials. However, post-exercise

hepcidin levels were not significantly different between the two trials. A potential factor for

similar levels of post-exercise hepcidin would be the similarity in the exercise-induced IL-6

response. Several physiological factors are involved in hepcidin production in the liver, and

the primary mediator for hepcidin production is suggested to be inflammatory cytokine IL-6

[20]. Since both trials caused a similar increase in plasma IL-6, the similarity in post-exercise

hepcidin levels may be reasonable. This notion is supported by a previous result indicating

that IL-6 and hepcidin responses were not affected by hypoxic exposure during 31 min of

interval exercise sessions[35]. Aside from IL-6, exercise-induced hemolysis stimulates hepcidin

production [10]. Running elicits hemolysis rather than other types of exercise modalities

including cycling[42], which is reflected by a greater reduction of serum haptoglobin with

lower free hemoglobin levels[10]. Unfortunately, we did not determine changes in these vari-

ables to evaluate the magnitude of hemolysis. However, exercise-induced elevation of serum

iron, which was suggested to reflect hemolysis[43], was not significantly different between the

NOR and HYPO conditions, suggesting that exercise-induced hemolysis was comparable

between the two trials. Several previous studies demonstrated that serum hepcidin levels were

elevated at 3h after exercise[24], although urinary hepcidin levels revealed peak levels at 6h

after 60 min of running[11]. Because we collected a series of blood samples up to 120 min

post-exercise, there was a possibility that serum hepcidin levels presented further increases

after these time points. However, the exercise sessions in both trials lasted about 80 min in

total, and about 3h and 20 min passed from the onset of exercise to the final blood drawing

during the post-exercise period. Therefore, it is considered that post-exercise hepcidin levels

observed 120 min after exercise sessions would reflect, approximately, peak values.
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Several limitations should be carefully considered when interpreting these results. The run-

ning velocities during HIT and 30 min of continuous exercise was different between the two

trials, because we selected the same relative intensities (% of _VO2max) in response to _VO2max

evaluated under normoxic or hypoxic conditions. Although the use of the same relative inten-

sity between HYPO and NOR was in accordance with experimental design among previous

studies[35,40,44], lower running velocities in the HYPO may have had influence on the pres-

ent results. Therefore, further comparison under the same absolute intensities (running veloci-

ties) would be meaningful. In addition, we did not prepare a control group who did not

exercise, as we attempted to determine the impact of hypoxic exposure during prolonged

endurance exercise sessions on post-exercise hepcidin levels. Hepcidin levels display a diurnal

rhythm, i.e., lowest in the morning and then gradually increase throughout the day[31]. Thus,

post-exercise elevation of serum hepcidin levels may, at least in part, be attributed to diurnal

rhythm. In contrast, Peeling et al. [11]reported that 60 min of running significantly increased

serum hepcidin levels at 3h post-exercise, but a rest condition without exercise did not show

an increase in hepcidin levels at the identical time point. Collectively, the elevation of hepcidin

at 120 min after endurance exercise sessions would have been caused by the exercise stimulus.

Conclusions

Endurance exercise, consisting of HIT and continuous exercise, acutely increased serum

hepcidin levels at 120 min during post-exercise period compared with pre-exercise levels.

However, the post-exercise levels of plasma IL-6 and serum hepcidin were not significantly dif-

ferent when the exercise sessions were completed under normobaric hypoxic conditions (a

simulated altitude of 3000m). Therefore, it appears that endurance exercise at lower running

velocity in hypoxic conditions results in similar post-exercise hepcidin elevations as higher

running velocity in normoxic conditions.
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