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Abstract Changes in the antioxidant enzymes, lipid per-

oxidation, sodium and potassium, chlorophyll, H2O2 and

proline content were monitored in the leaves of 42 rice

varieties which were not yet well-documented for the

salinity tolerance under different salinity levels. The tol-

erant varieties (FL478, Hassani, Shahpasand, Gharib and

Nemat) showed signs of tolerance (lower Na?/K? ratio,

high proline accumulation, less membrane damage, lower

H2O2 production, and higher superoxide dismutase and

catalase activity) very well. The positive relationship

between the level of salt tolerance and the amount of

proline accumulation in the rice varieties support the

important role of proline under the salt stress. The varieties

were genotyped for 12 microsatellite markers that were

closely linked to SalTol QTL. The results of association

analysis indicated that RM1287, RM8094, RM3412 and

AP3206 markers had the high value of R2 for the regression

models of the studied traits. It shows the important role of

SalTol in controlling physio-biochemical traits. The results

can be used in the future marker assisted selection (MAS)

directly, if the results are confirmed.

Keywords Antioxidant enzymes � Hydrogen peroxide �
Lipid peroxidation � Rice � Salt

Introduction

Salinity is the most important abiotic stress, which reduces

the plant growth and productivity (Nazar et al. 2011;

Kordrostami et al. 2016). The researchers express the salt

stress as the accumulation of the ions such as sodium,

sulphate and chloride in the rhizosphere in a way that

disrupts the natural growth of the plant (Munns 2002;

Ashraf and McNeilly 2004). Distribution and dispersion of

saline lands is not uniform throughout the world, so that

Australia and Asia have the highest surface of the saline

lands. In Asia, Iran is in the fifth place for the area of saline

soils after the former Soviet Union, China, India and

Pakistan (ICARDA 2002). According to the various ref-

erences, Iran saline lands are estimated between 23 and

34 million hectares. Furthermore, the statistics of FAO

(2010) suggests that 25.5 million hectares of agricultural

lands of Iran are saline and 8.5 million hectares are

extremely saline. Most crops are sensitive to the salt stress

and cannot survive in these circumstances. Plant response

to salinity stress is complex and depends on various factors

such as type and concentration of the solutes, plant growth

stage, the genetic potential of the plant and environmental

factors. Salinity reduces the growth in different ways

(Dieriga et al. 2003). Reduced cell membrane stability,

reduced photosynthesis and activity of the photosynthetic

enzymes, reduced cells inflammation and thus reduced leaf
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development, disorder in ion absorption; especially the

accumulation of sodium and chlorine ions in the leaves,

and ultimately reduced growth and economic performance

are the effects of salinity on the crops (Munns 2002).

Rice is the world’s most important food plant and the

first food source for more than half of the world’s popu-

lation. It is also considered as a model for the cereals

(Eckardt 2000). The reaction to the salt stress is very

diverse among rice varieties. Therefore, understanding the

mechanisms of the salt tolerance and the mechanisms for

establishing the tolerance is very important in the agro-

nomic and physiological studies. Rice is a salt sensitive

crop (Grover and Pental 2003). Excessive salt always

affects the underlying metabolic activities in rice including,

the cell wall damage, plasmolysis, cytoplasmic degradation

and the endoplasmic reticulum damage, accumulation of

citrate, malate and inositol in the leaf blade, increase in the

amount of proline (6–63 times), reduced the maximum

quantum efficiency of photosystem II (Fv/Fm), overall

reduction in germination and seedling growth, which ulti-

mately leads to a lower growth and grain yield (Sahi et al.

2006). So, salinity is considered as one of the main con-

straints to produce of this crop, especially in the irrigated

areas all over the world (Octávio et al. 1999).

Since rice is the main crop in the world, several studies

have been conducted on salt tolerance of different varieties.

The studies have shown that rice plants are relatively tol-

erant to salinity in the germination stage, very sensitive in

the early seedling (3 leaves) and tolerant in the vegetative

stage (Moradi and Ismail 2007). Researches showed that

salinity strongly affects the photosynthesis. Photosynthesis

in rice plants is controlled by various environmental fac-

tors. The factors depend on the variety, growth stage and

environmental conditions. Availability of the nutrients in

the environment is essential for rice and any environmental

stress will reduce the growth (Postini and Bieker 1994). An

increase in salinity can reduce nutrient uptake by the rice

plants. Salinity is defined as the presence of the excessive

amounts of soluble salts in the soil or irrigation water. The

critical level of salinity for rice has been reported between

3 and 4 dS.m-1. But the critical concentration of salt in the

rice leaf tissue, causing damage to plants is different

among the various varieties (Zeng et al. 2003). One of the

effects of salinity on the rice is the leaf area reduction, a

key factor in the photosynthesis decline. The researchers

showed that in rice, the fully expanded leaves are affected

by salinity before the young ones. In fact, due to salinity

the leaf area will be reduced, as the first reaction of the

plant (Alam et al. 2004). The soil water potential will be

reduced by the increase in salinity and stomatal closure is

an initial and rapid response of the plants to the salt stress.

Quick stomatal closure may be due to low water potential

and Na? harmful effects on the root signals and the

stomatal guard cells of the leaves (Moradi and Abdelbagi

2007). The balance of K? and Na? ions within the cell are

very important for the activity of many cytosolic enzymes,

protection of membrane potential and as an osmotic regu-

lator for regulating the cell volume (Koji et al. 2008). One

of the secondary effects of high Na? concentrations in the

root zone is preventing the absorption of essential nutrients

like potassium and calcium. Salinity has direct effects on

the levels of enzymatic activity, cell membrane function

and metabolic processes (Moradi and Abdelbagi 2007).

Salinity causes the water shortages which its result affects a

wide range of metabolic activities of the plants. Reactive

oxygen species arise due to the hyperosmotic effects and

ionic stresses, causing decline in the membrane and cell

death (Parida and Das 2005). Plants have mechanisms to

prevent the toxic effects of the ROS, which divided to

enzymatic (superoxide dismutase, catalase, glutathione

reductase, ascorbate peroxidase and peroxidase) and non-

enzymatic (tocopherol, ascorbic acid, glutathione, etc.)

mechanisms (Reddy et al. 2004; Demiral and Türkan 2005;

Sekmen et al. 2007). The relationship between antioxidant

capacity and the salinity tolerance have been observed and

discussed in some plant species (Jithesh et al. 2006; Cicek

and Cakirlar 2008; Ashraf 2009).

The research has shown that rice in seedling stage is

more sensitive to salt than the reproductive stage (Sahi

et al. 2006). The mechanisms of salinity resistance in

higher plants include osmotic adjustment, ion adjustment

and hormonal regulation (Chinnusamy et al. 2005).

However, to improve the salt tolerance in crop plants via

breeding programs, further exploration of the defense

mechanisms against salinity in the susceptible and resis-

tant varieties is essential (Cha-um et al. 2009). Therefore,

understanding the mechanisms of salinity resistance in

existing rice varieties and finding a way to transfer it to

the high yielding varieties is one way of increasing the

rice production in the world. On the other hand, one of the

most important approaches for increasing the efficiency of

the breeding for salt tolerance is to discover the genetic

markers that are tightly linked to the tolerance related

traits. The molecular breeding can facilitate the devel-

opment of crop plants with improved salt tolerance,

compared to traditional phenotypic selection methods

(Foolad 2004; Collins et al. 2008; Witcombe et al. 2008).

SalTol is a major quantitative trait locus (QTL) which is

located on chromosome one. This QTL confers salinity

tolerance to the rice varieties at the seedling stage and

explains from 64 to 80% of the phenotypic variation

(Bonilla et al. 2002). There are several reports about this

QTL in some other rice varieties (Ren et al. 2005;

Takehisa et al. 2004).

Based on the facts above, the present study was con-

ducted to evaluate the best rice varieties which tolerate the
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salt stress using physiological and biochemical character-

istics, assess the genetic variation of rice varieties based on

the SSR markers tightly linked to the SalTol QTL and

identify salt tolerant rice varieties with putatively novel

salinity tolerance sources.

Materials and methods

Plant materials

A total of 42 rice varieties (Supplementary Material 1)

obtained from the Rice Research Institute of Rasht, Iran

(RRII), together with salt-tolerant and susceptible varieties

(FL478 and IR29) as the check varieties were screened for

salinity tolerance. FL478 and IR29 are often used as check

varieties to assess the salt tolerance (Gregorio et al. 1997).

The other 42 varieties are not yet well-documented for

salinity tolerance. This research was carried out in the form

of three separate experiments based on the completely

randomized design (CRD) with two factors, 44 rice vari-

eties and salinity in three levels (control, 6 and 12 dS.m-1

NaCl). The research was conducted at the seedling stage of

the studied varieties at the Biotechnology laboratory of

Faculty of Agricultural Sciences, University of Guilan,

Rasht, Iran, in 2015.

Screening for salinity tolerance

The plants grown in the greenhouse under natural light

conditions. A preliminary test for salt tolerance was carried

out using Gregorio et al. (1997) method. Seeds were sur-

faced sterilized with 5% sodium hypochlorite, imbibed for

48 h and sown on the plastic grids placed above 4 L black

plastic pots containing distilled water. Three replications

were used (each replication had 15 seedlings). When

seedlings were 5 days old, distilled water was replaced

with nutrient solution and after 14 days, nutrient solution

was replaced with the nutrient solution containing the

salinity with EC *6 and *12 dS.m-1 corresponded to the

studied salinity levels. Also, for the induction of severe

stress at 12 dS.m-1, nutrient solution was initially replaced

with salinized nutrient solution at EC *6 dS.m-1 for

3 days and finally at EC *12 dS.m-1 for 14 days. The pH

of the nutrient solution was maintained between 5.0 and 5.5

throughout the growth period. Salt stress symptoms were

recorded according to the International Rice Research

Institute standards (IRRI 1996) from all 15 samples in each

replications. Visual rating of salinity tolerance was done

according to Supplementary Material 2. After 14 days in

the salinized solutions, plants were harvested (all 45 sam-

ples from three replications) for determination of physio-

logical traits and enzyme assays.

H2O2 content

The H2O2 content from the leaves of rice seedlings was

measured as described by Vellikova et al. (2000). The

H2O2 content was determined using an extinction coeffi-

cient (e) of 0.28 lMle cm-1.

Chlorophyll content

Leaf chlorophyll content was measured on the fully

expanded leaves of all the plants per pot with a chlorophyll

meter (SPAD-502 Chlorophyll Meter, Minolta Camera Co.

Ltd., Japan) at the harvest time.

Measurement of chlorophyll a fluorescence

The first intact, fully expanded leaf from the top was used

for the measurement of chlorophyll a fluorescence using a

plant efficiency analyzer (Handy PEA, Hansatech Instru-

ments Ltd, Norfolk, UK). The data were recorded from

10 ms up to 1 s with data acquisition every 10 ms for the

first 300 ms, then every 100 ms up to 3 ms and thereafter

every 1 ms. The signal resolution was 12 bits (0–4000).

The maximal quantum yield of PSII photochemistry (Fv/

Fm) was calculated using the software supplied by the

manufacturer.

Enzyme assay

Rice leaves (0.25 g) were homogenized in 1 mL of 50 mM

potassium phosphate buffer, pH 7.0, containing 1 mM of

EDTA in the presence of PVP. The homogenate was cen-

trifuged at 15,000 g for 15 min at 4 �C. The supernatant

was used to measure the activities of SOD, POD and CAT

and to determine total protein content. All assays were

done at 25 �C using a spectrophotometer (T80, ‘‘PG

Instrument’’, UK).

SOD (EC 1.15.1.1) activity was determined by mea-

suring its ability to inhibit the photo-reduction of nitro blue

tetrazolium (NBT) according to the methods of Beauchamp

and Fridovich (1971). The reaction mixture contained

50 mM phosphate buffer (pH 7.0), 200 mM methionine,

1.125 mM NBT, 1.5 mM EDTA, 75 lM riboflavin, and

0–50 lL of the enzyme extract. Riboflavin was added as

the last component. The reaction was carried out in test-

tubes at 25 �C under illumination supplied by two fluo-

rescent lamps (20 W). The reaction was initiated by

switching on the light for 15 min, and light switching off

stopped the reaction. The tubes were then immediately

covered with aluminum foil in order to stop the reaction,

and absorbance of the mixture was then read at 560 nm.

SOD activity of the extract was expressed as activity unit/g

fr wt.
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POD (EC 1.11.1.7) activity in leaves was assayed by the

oxidation of guaiacol in the presence of H2O2. The increase

in absorbance was recorded at 470 nm (Chance and

Maehly 1955). The reaction mixture contained 100 lL of

crude enzyme extract, 500 lL of 5 mM H2O2, 500 lL of

28 mM guaiacol, and 1900 lL of 50 mM potassium

phosphate buffer (pH 7.0). The POD activity of the extract

was expressed as activity unit/(g fr wt min).

CAT (EC 1.11.1.6) activity was assayed according the

method of Beers and Sizer (1952). The decomposition of

H2O2 was monitored by the decrease in absorbance at

240 nm. The assay mixture contained 2.6 mL of 50 mM

potassium phosphate buffer (pH 7.0), 400 lL of 15 mM

H2O2, and 40 lL of enzyme extract. The CAT activity of

the extract was expressed as activity unit/(g fr wt min).

Malondialdehyde (lipid peroxidation) and proline

content

For the measurement of lipid peroxidation, the thiobarbi-

turic acid (TBA) test was used to measure MDA level as an

end product of lipid peroxidation. The amount of MDA-

TBA complex present was calculated using an extinction

coefficient (e) of 155 mM-1 cm-1. Proline content was

determined spectrophotometrically by adopting the ninhy-

drin method of Bates et al. (1973). Three hundred mg of

fresh leaf samples were homogenized in sulfosalicylic acid;

then 2 mL of each acid ninhydrin and glacial acetic acid

were added. The samples were heated at 100 �C for

60 min. The mixture was extracted with toluene, free

toluene was quantified at 520 NM using L-proline as a

standard, and its content was expressed as lmol/g fr wt.

DNA extraction and SSR analysis

The fresh leaves were used for DNA extraction according

to the CTAB method (Saghai-Maroof et al. 1984) with the

slight modifications. The quality and quantity of the

extracted DNA were evaluated by electrophoresis on a

0.8% agarose gel and spectrophotometer (LAMBDA

1050UV). A total of 12 SSR DNA markers, all of them

near to the SalTol QTL region on the rice chromosome one,

which were previously introduced by Bonilla et al. (2002),

Gregorio et al. (2002), Islam (2004) and Niones (2004),

were selected (Supplementary Material 3). A total of 3 ll
PCR products were denatured and run on 6% polyacry-

lamide denaturing gels and electrophoretic bands were

revealed using the silver staining described by Panaud et al.

(1996). The observed alleles were scored in all studied

varieties as (1) for existence and (0) for absence of each

allele according to molecular weight using DNA size

marker 100 bp Fermantas.

Data analysis

The combined analysis of variance was performed for

combined data from three experimental conditions (non-

stress and salinity stress of 6 and 12 dS.m-1) to assess the

effect of genotype, salinity and genotype 9 environment

interaction using the SAS software ver. 9.2 (SAS Institute

2010). The Pearson’s correlation coefficients among the

studied traits were also calculated using the SPSS software

ver. 19.0 (IBM Corp 2010). All the marker indices were

previously reported by Kordrostami et al. (2016) for these

varieties. Association analysis was performed to identify

informative markers associated with each of the 12 studied

traits using stepwise regression analysis between molecular

data (as the independent variables) and morphological data

(as the dependent variables) by SPSS software ver. 19

(SPSS 2010). To select the informative markers as the

independent variables in the regression equation, 0.05 and

0.10 probability levels as the type I errors were used to

enter and remove, respectively (Roy and Bargmann 1958;

Affifi et al. 2004).

Results

The effect of salt stress on morphological

and physiological traits

The results of combined analysis of variance for all the

studied traits are shown in Table 1. The results showed that

three mentioned salt stress conditions (0, 6 and 12 dS.m-1

NaCl) were significantly different for all the evaluated

traits. As shown in Table 1, the influences of genotype,

salinity and genotype 9 salinity interaction were signifi-

cant (p\ 0.01) on all studied traits, indicating the signifi-

cant differences of seedling characteristics among the 44

rice varieties and among the salinity levels and different

physiological and biochemical responses of the varieties

from one salinity condition to another (Table 1).

All the rice varieties had normal growth in the non-

salinized condition. Under the salt stress conditions, the

rice cultivars showed wide range in visual rankings ranging

from score 1 (tolerant) to score 9 (susceptible) (Table 2).

Totally, the mean comparisons of the genotype 9 salinity

interactions showed that the most tolerant varieties were

Ahlami-Tarom, Binam, Domzard, FL478, Gharib, Hassani,

Nemat and Shahpasand according to visual scoring (under

12 dS.m-1). Thirteen moderate salt tolerant rice varieties

were identified as Ali Kazemi, Amol, Bahar, Domsiah,

Domsefid, Dular, Gohar, Hasanjoo, Kadus, Sadri, Sahel

and Salari. The most susceptible rice varieties were

Anbarboo, IR29, Khazar and Sepidrood (Table 2).
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The results showed that sodium content increased sig-

nificantly in all the varieties in the both salinity levels

(Table 2). Maximum accumulation of sodium was

observed in the susceptible varieties including IR29,

Sepidrood, Khazar, Anbarboo, Neda and Bejar followed by

moderately sensitive cultivars Gohar, Tarom Amiri and

Tarom Molaee. The shoots of the tolerant varieties had the

lowest sodium but a higher amount of potassium than the

sensitive ones in the both salt stress conditions (Table 2).

The results also showed that the salt stress decreased the

total chlorophyll content significantly in all the varieties,

especially in the susceptible ones. The highest value for of

total chlorophyll content was observed in Ghasroddashti,

Chmpabudar, Gil 3, Sahel, Sadri, Hassani (non-stress

conditions), Chmpabudar (EC *6 dS), Dorfak, Nemat and

Dasht (non-stress conditions), Sahel (EC *6 dS), Dom-

siah, Tarmamiri and Sangetarom (non-stress conditions),

Hassani, Gil- 3 and Sadri (EC *6 dS). In addition, the

lowest chlorophyll content was observed in Ghasroddashti

(EC *6 dS), Anbarboo, Bejar, Binam, IR29, and Bahar

(EC *12 dS), Binam, Bejar and Anbarboo (EC *6 dS)

and Hassansaraee (EC *12 dS), respectively. The values

of the Fv/Fm changed dramatically in all the rice varieties,

especially in the sensitive ones (Table 2). Under normal

conditions, Fv/Fm were recorded in the range of 0.75–0.80

for all the rice varieties. Under the salt stress conditions,

this ratio was reduced about 7–19.69% in all the varieties.

The decrease in this ratio was dependent on the rice vari-

eties. The lowest rate of reduction was observed in the

tolerant genotypes such as Hassani, Nemat, Shahpasand

and Ghasroldashti and the highest reduction was observed

in Anbarbo, Khazar, Speedroud, Neda, Sangtaroom and

Hashemi (Table 2).

The results of our study showed that the amount of

hydrogen peroxide varied among different cultivars in all

three salinity conditions. The greatest amount of the

hydrogen peroxide was observed in Anbarboo, IR29, Mehr,

Bijar, Sangetarom, Khazar, Speedroud, Neda, Shiroodi and

Hashemi (12 dS.m-1 NaCl). The minimum value for H2O2

was observed in Gohar, Taromamiri, Kadous, Saleh, Sha-

fagh, Sadri, Sahel, Domsiah, Domsefid, Hassanjo, Sangjo,

Dular, AliKazemi, Gil 1, Shiroodi, Salari, Neda, Hashemi,

Bahar, Tarommolaee, Chmapaboodar, Mohammadi and

Sepidrood (Nonstress conditions). Totally, the amount of

H2O2 in the salt-tolerant varieties was lower than in the

sensitive ones. Since the H2O2 content varied significantly

among the varieties, the activity of major H2O2 scavenging

enzymes, superoxide dismutase (SOD), guaiacol peroxi-

dase (POD) and catalase (CAT), was variable in these

varieties under the salt stress conditions (Table 2). Inter-

estingly, CAT activity in control and stressed seedlings of

FL478, Hassani, Shahpasand, Binam and Domzard was

significantly higher than those of IR29, Seidrood, Khazar,T
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Anbarboo in both salinity levels. Thus, it seems that the

varieties had an efficient enzymatic detoxification system

for H2O2 scavenging.

Mean comparisons of the genotype 9 salinity interac-

tions showed an increase in proline in all cultivars, especially

in the tolerant varieties (Table 2). The salt-tolerant varieties

FL478, Hassani, Shahpasand, Binam and Domzard accu-

mulated the highest amount of proline. The shoot proline

content in FL478, Hassani, Shahpasand, Binam and Dom-

zard treated with 14 days m-1 NaCl showed a high increase,

respectively comparedwith the control plants in both salinity

levels. Under both 6 and 12 dS.m-1 NaCl,MDAcontent was

increased in all the varieties (Table 2). Under control con-

dition, the MDA level in Sepidrood and Khazar was higher

than it in the other varieties. At 12 dS.m-1NaCl, the increase

in Malondialdehyde (MDA) content in FL478, Hassani,

Shahpasand, Binam andDomzardwere 9.65, 9.75, 10.56 and

10.85%, respectively compared with the control plants,

which means less increase.

The results of correlation analysis are presented in

Table 3. The results showed that Na and Na/K ratio had a

significant negative correlation with all the studied physi-

ological and biochemical traits except H2O2, MDA and

tolerance score. It showed that the sensitive genotypes with

higher tolerance score had high levels of H2O2, MDA and

sodium in their tissues. All the antioxidant enzymes had a

negative correlation with H2O2 except CAT. It is because

CAT had a low affinity to H2O2 and the amount of the

enzyme increases only when Hydrogen peroxide is

increased. Proline followed the same model and had a

negative correlation with H2O2, MDA, Na and Na/K ratio.

The results of cluster analysis

Cluster analysis based on the physiological and biochem-

ical data using Euclidean distance coefficient grouped the

rice varieties into three main clusters (Supplementary

Material 4). The first cluster included Ahlami-Tarom,

Binam, Domzard, FL478, Gharib, Ghasroddashti, Hassan-

Saraee, Hassani, Nemat and Shahpasand. Anbarboo, Bijar,

Hashemi, IR29, Khazar, Mehr, Neda, SangeTarom, Sepi-

drood and Shiroodi were clustered in the second group.

Finally, the third cluster included Abjibooji, AliKazemi,

Amol, Bahar, ChampaBoodar, Dular, Dasht, Dorfak,

DomSefid, DomSiah, Hassnjoo, Gil.1, Gil.3, Gohar, Kadus,

Mohammadi, Sadri, Sahel, Salari, Saleh, Sangjoo, Shafagh,

TaromAmiri and TaromMolaee respectively. UPGMA-

dendrogram clearly separated the varieties according to

their tolerance. In this regard, the first cluster included the

varieties with the highest tolerance (Binam, FL478 and

Hassani), while the second cluster had the sensitive vari-

eties (IR29, Khazar, Anbarboo). Some moderate tolerant

varieties were clustered together in the third group.

Association analysis

The association analysis of microsatellite markers with the

salt tolerance related traits were investigated using the

Table 3 Correlation coefficients among physiological and biochemical parameters from 44 rice cultivars exposed to 12 dS NaCl

H2O2 Total

Chl

Fv/Fm POX CAT MDA Proline SOD Tol score Na K Na/

K

H2O2 1

Total

Chl

-0.340* 1

Fv/Fm -0.305* 0.305* 1

POX -0.723** -0.060 -0.241 1

CAT 0.550** -0.386** -0.107 -0.154 1

MDA 0.966** -0.260 -0.319* 0.791** -0.173 1

Proline 0.405** -0.207 -0.011 0.368* 0.740** -0.375* 1

SOD -0.450** -0.386** -0.107 -0.154 0.998** -0.173 0.740** 1

Tol.

score

0.788** -0.133 -0.130 0.753** -0.379* 0.867** -0.542** -0.379* 1

Na 0.842** -0.121 -0.288 0.774** -0.393** 0.943** -0.618** -0.393** 0.905** 1

K -0.775** 0.345* 0.161 -0.489** -0.036 -0.664** -0.001 -0.036 -0.526** -0.462** 1

Na/K 0.954** -0.243 -0.291 0.792** -0.247 0.984** -0.432** -0.247 0.893** 0.937** -0.734** 1

* Significant at the p\ 0.05

** Significant at the p\ 0.01

H2O2 H2O2 content, T.Chl total chlorophyll, Fv/Fm chlorophyll fluoroscence, POX Peroxidase, CAT catalase, MDA malondialdehyde, SOD

superoxide dismutase, Tol.S tolerance score, %Na sodium percentage in shoot, %K potassium percentage in shoot, Na/K sodium/potassium ratio

in shoot
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stepwise regression analysis. Twelve highly polymorphic

SSR loci were used for association analysis. In this regard,

at the significant threshold of p B 0.01, 10 out of 12

markers (AP3206, RM5, RM140, RM490, RM493,

RM562, RM1287, RM3412, RM8094 and RM10793) were

detected to be associated with physio-biochemical traits

(Table 4). The high value of R2 for the regression models

of the studied traits demonstrated the important role of

SalTol in controlling physio-biochemical traits associated

with SSR markers linked to SalTol QTL. The most

important markers in the study included AP3206, RM1287,

RM3412 and RM8094 which showed a significant associ-

ation even with more than two physio-biochemical traits

(Table 4).

Discussion

The salinity can cause negative effects on the plant

growth and development. The decrease in the activity of

meristem cells and knock out the important physio-

biochemical processes of the plant, prevents plant growth

and subsequently grain yield. The results of this study

showed that rice cultivars examined in this research

responded variably to the salt stress in terms of sodium,

potassium and Na?: K? ratio in the leaves after 14 days

salt stress. Under salinity, by increasing in the Na con-

centration, ion toxicity, imbalance and nutrient deficiency

occurs. The lack of K and Ca absorption due to the high

concentrations of Na, will reduce plant growth and

development (Mousa et al. 2013). Like this study, the

results show that salinity increases the sodium entry to

the plants and its accumulation causes Na: K replacement

and ion toxicity effects (Munns 2002). Maintaining a high

ratio of K/Na in the plants tissues is necessary for the

plant salt tolerance (Ashraf and McNeilly 2004; López-

Aguilar et al. 2012) and normal cell activities (Munns

2002; Azuma et al. 2010). These results are in line with

ours. Potassium/sodium ratio has a strong relationship

with growth and yield in the plants and like this study,

has been introduced as an effective indicator for salt

tolerance by many researchers (Aktas et al. 2006; Maggio

Table 4 The characteristics of informative markers related to salinity tolerance in seedling stage under 12 dsm-1

Trait Informative markers Regression coefficient Significant level Coefficient of determination (R2)

H2O2 RM493 0.51 0.0002 0.751

RM1287 -0.48 0.0001

T.Chl RM3412 0.28 0.004 0.482

Fv/Fm RM140 0.41 0.001 0.314

RM5 -0.38 0.0001

POX RM10793 -0.43 0.0005 0.652

RM490 0.55 0.0004

CAT RM3412 0.42 0.0005 0.812

MDA RM5 0.49 0.0001 0.722

Proline RM809 0.51 0.0001 0.654

SOD RM341 -0.39 0.0001 0.554

Na% RM8094 0.42 -0.0009 0.523

RM341 0.35 0.004

AP3206 0.31 0.044

K% RM140 0.76 0.031 0.485

RM490 -0.17 0.007

Na/K RM3412 0.61 0.005 0.781

RM1287 -0.36 0.008

RM5 0.37 0.047

RM10793 0.39 0.007

Tol.S AP3206 -0.12 0.027 0.452

RM10793 0.62 0.0035

RM490 0.65 0.038

RM3412 0.37 0.0072

RM493 0.39 0.0003

H2O2 H2O2 content, T.Chl total chlorphyll, Fv/Fm chlorophyll fluoroscence, POX Peroxidase, CAT catalase, MDA malondialdehyde, SOD

superoxide dismutase, %Na sodium percentage in shoot, %K potassium percentage in shoot, Na/K sodium/potassium ratio in shoot, Tol.S

tolerance score
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et al. 2007; Rubio et al. 2009; Niu and Cabrera 2010; Niu

et al. 2010; Babu et al. 2012; Zhani et al. 2012; Mousa

et al. 2014).

Perhaps the photosynthetic processes are the most

important cellular reactions that are affected by salinity.

The disruption of these processes directly reduces the

carbon fixation and biomass production in the plants

(Flowers 1999). In our study, the chlorophyll content was

affected by the salinity which is in line with Wang et al.

(1997). They reported that under salinity stress, sodium is

accumulated in the shoots, while the concentration of

potassium, calcium, magnesium and subsequently the

photosynthesis are reduced. Salt stress reduces the amount

of chlorophyll in the leaves by degradation or inhibiting the

synthesis of chlorophyll (Ashraf and Harris 2013). High

levels of salinity increases the chlorophyllase enzyme

activity (enzymes degrading chlorophyll). This can be one

of the most important factors in the reduction of photo-

synthesis under salt stress. Salt stress causes the oxidative

stress which decreases the number and size of chloroplasts

and destroys it (Santos 2004; Khafagy et al. 2009). Hence,

variation in the chlorophyll content can be used as a stress

indicator (Naumann et al. 2008), because chlorophyll

content decreased in the sensitive crop plants under the salt

stress conditions (Ashraf and Harris 2013). In our research,

the sensitive varieties had lower chlorophyll content. The

results of our research was in line with the other plants such

as wheat (Raza et al. 2006), peas (Yildirim et al. 2008),

safflower (Siddiqi et al. 2009) and rapeseed (Mukhtar et al.

2013).

Among the photosynthetic indices, Ashraf (1999)

offered Fv/Fm as a valid indicator to determine the stress

tolerance. Our results also confirmed this fact, so that the

proportion of Fv/Fm in the salt sensitive varieties signifi-

cantly decreased, while in the salt tolerant ones a signifi-

cant decrease in the ratio was not observed. The results of

the other researches show that increasing the sodium

chloride in the chloroplasts of the plants, inhibit the activity

of photosystem II and increase the sensitivity to photo

inhibition (Sudhir and Murthy 2004). In different studies,

the most photochemical efficiency (Fv/Fm) for leaves were

recorded in the range of 0.75–0.85 under normal conditions

and a decrease in this amount show the photo inhibition

damage (Kaouther et al. 2013). In this study, Fv/Fm ratio

decreased significantly by the salinity. Accordingly, it can

be concluded that salinity can cause disruption in the

electron transport of photosystem II (Megdiche et al.

2008). In the other words, salinity prevents the transfer of

electrons from the first acceptor, quinine Qa to the second

acceptor quinine Qb in the receptors of photosystem II

which implies reduced Fv/Fm ratio (Shu et al. 2012).

Effects of salinity on Fv/Fm ratio depend on the salinity

tolerance and can be varied among species or genotypes

(Lee et al. 2004; Jiang et al. 2006). Our results were con-

sistent with the previous studies on pepper (Kaouther et al.

2013), eggplant (Wu et al. 2012), tomatoes (Al-aghabary

et al. 2005), cucumbers (Shu et al. 2012), wheat (Kanwal

et al. 2011) and Brassica species (Wani et al. 2013; Jamil

et al. 2014). According to the results of the different studies

it can be concluded that Fv/Fm ratio is widely used as a

technique for rapid diagnosis of the stress (Baker and

Rosenqvist 2004).

In the various sources, it is specified that salt stress

increases ROS production and the activity of antioxidant

enzymes in the plants. NaCl-induced H2O2 accumulation

reduces plant growth, development and productivity

(Uchida et al. 2002; Vaidyanathan et al. 2003). The results

of this study showed that the H2O2 content was lower in the

tolerant varieties (FL478, Shahpasand, Hassani, Gharib)

than the sensitive ones (IR29, Sepidrood, Khazar and

Anbarboo) in both salinity levels. On the other hand,

removal of the free oxygen radicals is an important

mechanism of salt tolerance in the plants (Motohashi et al.

2010). In this study, the salinity stress affected the activity

of antioxidant system which is in line with Wi et al. (2006).

They reported that the activity of antioxidant enzymes in

the rice tolerant varieties was more than the susceptible

ones under salt stress conditions. Catalase, peroxidase and

superoxide dismutase are the most effective antioxidant

enzymes. Increase in the activity of these enzymes

increases the salinity tolerance. In the present study, it was

found that salinity significantly increased the antioxidant

enzyme activity in the tolerant varieties. For instance, the

tolerant varieties such as FL478, Hassani, Shahpasand and

Gharib poses higher amount of SOD activity in high

salinity levels. SOD plays an important role in the immune

system of the cells against oxidative stress, so that its

activity directly modifies the amounts of O2
- and H2O2

(two Haber–Weiss reaction precursors which generate OH

radicals) (Sudhakar et al. 2001). Super oxide dismutase

(SOD) catalyzes the conversion of superoxide anion to

hydrogen peroxide and oxygen (Stepien and Klobus 2005).

There were significant differences among the rice varieties

in SOD enzyme activity, so that Hassani and FL478 (which

are more tolerant to salinity) showed totally higher enzyme

activity. The differences in SOD activity can be seen

among and within species (Ashraf 2009). The higher

activity of SOD was also observed in other salt tolerant

plants (Sekmen et al. 2007; Sairam et al. 2002).

Guaiacol peroxidase activity rose sharply in all the

varieties under the salt stress conditions. Previous studies

have determined that peroxides plays a key role in the

metabolism of reactive oxygen species, biosynthesis of

plant cell walls by accelerating the last stage of the syn-

thesis of lignin and suberin (Quiroga et al. 2000). Salinity

induces peroxidase activity by the production of reactive
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oxygen species. Like this study, many researchers stated

the activity of this enzyme is a key factor to protect plants

against environmental stresses. Ashraf and Ali (2008)

observed that salinity increases peroxidase activity in the

leaves of canola and reduces the adverse effects of salinity

stress. Meloni et al. (2003) by studying the cotton plants

under salinity condition, observed that an increase of per-

oxidase activity influenced by salinity leading to reduction

of H2O2 and decrease in cell membranes damage. Given

the role of this enzyme in the oxidative stress, it can be

concluded that increasing the activity of peroxidase redu-

ces the effects of oxidative stress and improving the plant

stress tolerance (Vaidyanathan et al. 2003). Overall, our

results are confirmed by other researchers which have

suggested that salinity tolerance could be a result of

increased activity of antioxidant enzyme defense system

(Hernandez et al. 2003; Stepien and Klobus 2005). Sariam

et al. (2002) reported that Na concentration influenced by

salinity in wheat, leading to the increasement of cell

membranes destruction, while research has shown that

peroxidase activity plays an important role in decreasing

the activity of free radicals induced by the salt stress and

accumulation of sodium ions in the shoot and roots of

crops. The results were consistent with the results of this

study. In this study, POD enzyme activity was increased in

the tolerant cultivars faster than the susceptible ones.

The results of mean comparison indicated that the CAT

enzyme activity was so high in Hassani, FL478, Shah-

pasand, Nemat. The changes in CAT enzyme activity

under the salinity conditions in the rice, depends on

varieties and the levels of stress. Catalase is considered as

one of the main enzymes in ROS detoxification (espe-

cially H2O2); it is reported that the activity of this enzyme

increases under environmental stresses (especially salin-

ity) (Vaidyanathan et al. 2003; Kumar et al. 2009) and

this increase is associated with its role in improving the

environmental stress tolerance (Sairam et al. 2002). In this

study, the activity of this enzyme increased in salt-tolerant

varieties which suggest that this enzyme plays an impor-

tant role in improving the stress tolerance (Sairam et al.

2002; Saha et al. 2010; Abu-Muriefah 2015). It has been

found that the activity of catalase to increase under salt

stress in cucumber (Lechno et al. 1997), soybean (Comba

et al. 1998) and mulberry (Sudhakar et al. 2001) mustard.

De Azevedo Neto et al. (2006) also found more catalase

activity in two maize cultivars differing in the salt

tolerance.

In plant stress physiology, it is generally considered

that the accumulations of compatible solutes are involved

in cellular osmotic balance (Valliyodan and Nguyen

2006). For example, proline accumulation in plant

increases salinity tolerance (Kishor et al. 2005). What-

ever, the amount of proline is higher in plant tissues, the

plants will be more resistant to stress. In this study, NaCl

treatments significantly increased the proline contents in

all the rice varieties (Table 2). Based on the findings in

our study, it is interesting to mention that the proline

accumulation in rice under salt stress treatments com-

pletely correspond to the extent of improved salinity

resistance. Our results were contrary to Chunthaburee

et al. (2015). They believed that there is no relationship

between proline content and salt tolerance. Like their

study, Lutts et al. (1999) showed that the proline accu-

mulation was related to the salt injury rather than an

indicator of salt tolerance. Our findings were consistent

with Ghosh et al. (2011) who reported that the salt-tol-

erant Pokkali and Nonabokra exhibited the increase in

proline in the rice seedlings under salt stress conditions.

In a similar way, Kong-ngern et al. (2012) showed that the

proline was so high in the roots of the salt-sensitive

KDML 105 followed by the salt-sensitive Pathumthani 60

and the moderately tolerant Luang Anan and the tolerant

Pokkali under salinity stress. In addition, Kanawapee

et al. (2013) also showed that under salt stress treatment,

the highly susceptible cultivars had the higher levels of

proline than the tolerant ones. However, Igarashi et al.

(1997) found a relationship between proline accumulation

and the degree of salt tolerance. The results show that

glycine, proline, pinnitol etc. as the stress markers will

increase in the plant organs with increasing salinity to

adjust the osmotic potential of the cells. Proline also acts

as source of carbon and nitrogen for post stress recovery

in the plants, as a sink for energy to regulate redox

potential and also serves to protect the protein against

denaturation (Saha et al. 2010; Fariduddin et al. 2013).

In this study, the MDA content increased in the leaves

of rice seedlings under the salt stress conditions. It shows

that ROS production leading to oxidative stress will cause

membrane damage due to peroxidation of lipids.

Increasing in the amount of lipid peroxidation in other

plants (under salt stress) was reported by the other

researchers (Azuma et al. 2010; Abu-Muriefah 2015).

Salinity induces water stress and causes stomatal closure,

reduction of CO2 concentration in the mesophilic cells

and accumulation of NADPH in the chloroplast. In these

circumstances, the amount of available NADP? for pho-

tosynthetic light reaction is reduced; therefore O2 acts as

an electron acceptor, produces superoxide radicals fol-

lowed by other reactive oxygen species and finally causes

the oxidative stress (Abdul-Jaleel et al. 2009; Sudhakar

et al. 2001). Malondialdehyde (MDA) is the main product

of the decomposition of unsaturated fatty acids in bio-

logical membranes, which increases under salt stress

conditions (Meloni et al. 2003; Sudhakar et al. 2001).

Significant increases in the levels of lipid peroxidation

(malondialdehyde (MDA) and other aldehydes), as an
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indicator of damage to the membrane, have been observed

in salinity in some of the plant species (Stepien and

Klobus 2005; Sudhakar et al. 2001). In this study, an

increase in salinity increased the lipid peroxidation, which

represents the membrane damage (resulting in increased

oxidative stress from ROS) in sensitive varieties (Saha

et al. 2010).

The results of molecular analysis showed that AP3206,

RM1287, RM3412 and RM8094 are the most common

markers, which have been found in the regression model of

the majority of traits. Among the regression models, the

highest coefficient of determination was related to CAT,

K/Na and MDA respectively. Our results were in line with

Mohammadi-Nejad et al. (2010) to some extent. They

haplotyped 30 rice genotypes using SSRs tightly linked to

SalTol and found two markers, RM8094 and RM10745,

can be found in the regression model of the majority of

traits related to the salinity tolerance. High coefficient of

determination for most physiological and biochemical

traits associated with salt tolerance in this study, reflecting

the effective role of SalTol locus (on chromosome 1) in

controlling of these traits. According to this analysis,

SalTol can be considered as an effective locus for salt

tolerance in Iranian rice varieties.

Conclusion

The results of the present study showed that salt stress

can affect the early growth of the studied rice cultivars.

Due to the reduced chlorophyll content, it can be con-

cluded that the photosynthetic machinery were also

damaged by the salinity stress. The results also showed

that salt stress induced oxidative stress and membrane

damage by lipid peroxidation. Rice, like other cops, has

different mechanisms for salt tolerance; among them it

can be pointed out antioxidant system. Catalase, super-

oxide dismutase and proline showed that they can be

considered as important factors for salinity tolerance in

rice. According to the results, RM8094, RM1287,

RM493, RM3412, RM5, RM140, RM10793, RM490 and

AP3206 were detected to be linked with important

physiological and biochemical traits related to salt toler-

ance and Hassani, Shahpasand, Gharib, Binam, Ahlami-

tarom, Nemat, Hassansaraee, Domzard, Ghasroddashti,

Sadri and Hassanjoo are introduced as the most salt tol-

erant varieties in this research.
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