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Abstract

Refinements to previous analyses of the natural correlation lengths within simple images and 

between images to be compounded are presented. Comparison of theoretical and experimental 

results show very good agreement for the case of Rayleigh scattering media: the correlation length 

within a simple image is comparable to the resolution cell size; the correlation length between 

images to be spatially compounded is comparable to, but smaller than, the transducer or array 

aperture; and the correlation length between images to be frequency compounded becomes a 

frequency comparable to their bandwidth. Complications arising from the presence of specular 

scattering or due to the presence of just a few scatterers are considered. It is shown that 

straightforward solutions exist for either one of these problems taken by itself. When they occur in 

combination, calibration techniques may lead to unambiguous identification of the contributions to 

the scattering from diffuse or incoherent scattering and from specular or coherent scattering, and 

to estimation of the density of diffuse scatterers.

I. Introduction

The purpose of this paper is to refine some results submitted by our group and others 

concerning the correlation lengths required for the analysis of the speckle fluctuations in 

medical ultrasonic images [1]–[4]. We shall speak of simple-scan images, i.e., conventional 

B-scan images, and images that are collected as candidates for compound scans, i.e., 

addition on an intensity or magnitude basis to reduce the coherence effects manifested in 

image speckle. We shall first discuss the correlation in the speckle within simple images; 

this is a principal determinant of the detectability of lesions in these images. Then we 

discuss the correlation between images made from different lines of sight, or at different 

frequencies, that are intended to be compounded to improve imaging performance and lesion 
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detectability. These correlations are described in terms of the natural second order statistics 

previously discussed in [1] and [2].

We shall use the expressions “complex field,” “complex amplitude” (or simply “amplitude”) 

for the result of coherent amplitude (phasor) summation of the back-scattered signals, or 

pulse-echoes, at the transducer. The result of envelope detection of this signal is called the 

“magnitude” image, i.e., the B-scan image. The square of this latter quantity is called the 

“intensity” image. The properties of the amplitude are relatively straightforward to study for 

the case of Rayleigh scattering tissue and tissue-mimicking phantoms. The properties of 

square-law-detected intensity then follow directly from the application of the moment 

theorem for complex Gaussian statist ics. The results for the envelope detected magnitude 

are less amenable to theoretical analysis but have been shown to be almost identical to the 

intensity results when similarly normalized, and are in fact of no more essential or 

fundamental value than the latter [1], [2].

We shall assume that the reader is familiar with the theoretical and experimental basis for 

assuming complex circular Gaussian statistics in the backscattered complex amplitude for 

the case of diffusely scattering materials with many fine particles per resolution cell [1]. This 

leads to the familiar exponential probability density function (PDF) for the detected 

intensity, and the Rayleigh PDF for the detected magnitude, or envelope. These are referred 

to as first order statistics since they regard values measured at single positions.

Second order statistics regard the joint probabilities of obtaining pairs of values measured at 

two distinct positions, and are frequently summarized by their expected product as a 

function of the positions, i.e., their (two-point) correlation function. It has been known for 

some time that the self- or autocorrelation properties within simple images derive from the 

resolution cell of the image (at least in the Fraunhofer zone) [1], [2], whereas the 

crosscorrelation properties between images to be spatially compounded derive from the 

transducer size directly [3], [4]. We shall first review these two conditions. Then we discuss 

frequency compounding in the same light. Finally we consider the complications that arise 

when the scattering is not purely diffuse.

II. Correlations in Simple Images

The autocorrelation RX(x1, x2) of a process X is the joint moment of the random variables 

X(x1) and X(x2), expressed as the expected product [5], [1],

(1)

The autocovariance CX(X1, X2) is found from this as

(2)
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and the superscript * refers to complex conjugation.

We showed in [1] that for the purely Rayleigh scattering condition the autocorrelation for the 

complex amplitude process X =  is just the autocorrelation of the point spread function 

(PSF) p (Δx) that sums and reads out the scattering,

(3)

where ao is the total scattering amplitude, assumed constant over the region imaged, Δx = x2 

− x1, and ⊛ is the convolution operation [1]. The normalization to the value at the origin

(4)

called k(Δx) in [1] and μ(Δx) in [6], is called the complex coherence factor. Normalized 

autocovariance functions are frequently called correlation functions.

For the Rayleigh scattering case (many fine scatterers per resolution cell) the autocorrelation 

and autocovariance for the detected intensity can be derived in very simple terms by using 

the Gaussian moment theorem, as we now show. We write the complex amplitude in terms 

of real and imaginary parts, gr and gi, for positions 1 and 2 as

(5)

respectively. The gs have the following properties, based on the complex Gaussian 

distribution with zero mean, variance along the real axis equal to variance along the 

imaginary axis, ψ, and uniform distribution of phase over −π to π:

(6)

We may write the intensity autocorrelation function as
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(7)

This can be simplified by using the Gaussian moment theorem for zero mean Gaussian 

random variables Xi [7],

(8)

Eq. (7) then reduces to

(9)

when there are many scatterers per resolution cell and effectively Gaussian statistics. Using 

the properties of (6), this becomes finally

(10a)

(10b)

A characteristic dimension of the autocovariance function that appears repeatedly in the 

analysis of signal (lesion) detectability is the average speckle correlation cell size [1], [6]

(11)

which, for the Rayleigh scattering condition, is simply

The correlation structure is actually two dimensional in ultrasound scanning. One dimension 

of the structure is due to the shape of the diffraction pattern in the transverse (x) direction, 

and one dimension is due to the shape of the pulse in the range (z) direction. Assuming 

constant lateral phase—a very good approximation in the transducer focal region—the 

spread function of the system can be factored into p (x) p′ (z). Then the correlation cell 

integrals become two dimensional, factoring into a simple product of one dimensional 

integrals of the form of (11) [1]. The two-dimensional cell size is then an area that 
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determines the smallest independent sample of the back-scattered signal from many fine 

scatterers. It is the density of these cells or samples over a lesion that determines its 

detectability [2].

It was a simple exercise in [1], then, to calculate CI(Δx) for the transverse direction x in 

ultrasonic scanning of the focal zone using the continuous wave, one-dimensional 

approximation to the diffraction pattern due to the insonification and read-out

(12a)

with fo = D′/zoλo. Here λo is the wavelength of the central frequency, zo is the distance of 

the source to the image point, D is the size of the transducer aperture [1] and D′ is its 

effective length in one dimension. For a rectangular array D′ = D; for a circular aperture the 

equivalent one dimensional length in the scanning direction is D′ = D/1.08 [1]. B is a 

normalization factor. We shall see that this one-dimensional continuous wave PSF is a good 

approximation for characterizing speckle correlation functions measured in the focal zone.

Experimental results from an analog (film) study were given in [1] and were compared with 

this simple theoretical analysis. The comparison with the normalized autocovariance 

function |ρ(Δx)|2 (4), (10b), (12a) was favorable when the long range trends due to the film 

and display were filtered out, demonstrating that the characteristic dimension for lateral 

correlation in simple images indeed derives from the lateral PSF, and is approximately equal 

to 0.9/fo. We have also confirmed this [10] using the simulations and measurements of 

Foster et al. [8]. Further confirmation has been presented by Oosterveld et al. [9] through 

simulations and laboratory measurements. In all of these cases the correlation function in 

terms of the magnitude or B-scan image is almost indistinguishable from the correlation 

function of the quadratically detected or intensity signal.

In the light of the similarity of the magnitude and intensity autocorrelation functions, we can 

also compare the normalized lateral correlation of intensities, |ρ(Δx)|2 (4), (10b), (12a), with 

recent numerical simulations and experimental data for magnitude from Zagzebski et al. 
(11). The results shown in Fig. 1(a) are in very good agreement except in the immediate 

neighborhood of the origin where the experimental result may be undersampled. (We shall 

comment further on the use of intensity correlation functions to approximate magnitude or 

B-scan correlations at the end of this section and again in succeeding sections).

Theoretical results were given in [1] for the range direction, z, but experimental data were 

then unavailable to the authors. The results of Flax et al. [12] were invoked as corroboration 

of the applicability of (3), (5), and (10) to the range direction with the point spread function 

of the pulse approximated by a Gaussian with standard deviation σz,

(12b)
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This leads to the result that the correlation cell size in the range direction, as a temporal 

dimension, is equal to 2.5 σz or 0.9/Δf where Δf is the full width at half maximum of the 

temporal frequency content of the pulse. Again, we have confirmed these results using the 

simulations and measurement data from Foster et al. [8] and further confirmation has been 

presented by Oosterveld et al. [9]. Finally, we have repeated our earlier work using a digital 

data acquisition system that does not suffer from the trends due to the (analog) film and 

display device. This gave excellent agreement with the simple theory and we present this 

next.

Digitized echo signals using a 19-mm, 3.5-MHz transducer were recorded from two 

graphite-gelatin phantoms [13] at the focal depth of about 80 mm. The phantoms contained a 

diffuse distribution of microscopic scatterers—about 2000 in a resolution cell of about 3 

mm3. When this was imaged a Rayleigh histogram was obtained for the detected envelope 

signal (magnitude) with mean to standard deviation—pointwise signal-to-noise ratio SNRo–

equal to 1.9. This is the expected result from purely diffuse scattering when there are many 

scatterers per resolution cell, and the image is often referred to as a fully developed speckle 

pattern. Intensity images were produced off-line by squaring the envelope detected RF 

signals. The average of the normalized autocovariance functions for the two cases is plotted 

in Fig. 1(b). This experimental result is in excellent agreement with the theoretically 

expected result using (12b) to calculate |ρ(Δz)|2. (For a Gaussian pulse the convolution in (3) 

is effectively undone by the squaring in (10), restoring the shape of (12b); i.e., CI(Δz) ~ p′ 
for Gaussian pulses.)

This comparison of experimental and theoretical correlations requires that a characteristic 

dimension of the transmitted pulse be determined. This was found by measuring the full 

width at half maximum, Fp, for a pulse reflected from a planar surface located at the focal 

length of the transducer, viz., Fp = 0.78 μs, or equivalently σz = 0.255 mm (see [1] and 

errata). The expected speckle cell size (11), [1], in millimeters is Scz = 2.51 σz; equivalently 

in microseconds, . The values predicted by these expressions are in very close 

agreement with Scz values measured from the experimentally determined autocovariance 

function. This is summarized in Table I. For the Rayleigh scattering case, then, the speckle 

cell size in the focal zone is completely determined by the resolution cell size, here, the 

pulse length. Thus the speckle cell size in this limit serves as a control measurement for any 

tissue characterization from second-order statistics of clinical image texture.

Almost identical results are obtained for the above exercise—when there are many scatterers 

per resolution cell—whether the analysis is carried out in terms of the magnitude signal or 

the intensity signal, as long as the autocovariance functions are normalized to unity at the 

origin. This was demonstrated in [1] and the mathematical basis for this was presented in the 

references cited there. Since the analysis in terms of intensity always leads to 

straightforward algebraic expressions we have preferred this route; the analysis in terms of 

magnitude leads to generalized hypergeometric functions [1], [14] that are not as transparent 

to intuition as the simple quadratic result in (10). (This is equally true of (17) and (22).)
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III. Correlations Between Images to be Spatially Compounded

Burckhardt [3] and then Gehlbach in further detail [4] examined the correlations between 

images formed from slightly different transducer orientations that might serve as candidates 

for spatial compounding, in order to reduce the speckle fluctuations and improve lesion 

detectability. We now review their basic argument—following Gehlbach with minor 

modifications and with interjections from Burckhardt—and include a necessary refinement. 

We then compare the results of this treatment with recent data from Trahey et al. [15].

A transducer insonifies and interrogates a resolution cell in its focal zone containing many 

scattering particles, labeled by subscript i, and uniformly distributed over the scattering 

volume with random phase. The collected amplitude signal strength of (5) at transducer 

position 1 (for a given range) can be written as

(13)

where |Ti| represents the magnitude of the scattering amplitude from the ith particle, |pi| is 

the magnitude of the point spread function from the scatterer at position i evaluated at the 

center of the cell, and exp (iϑi) represents the combined phase of Ti and pi. If the transducer 

is now translated a distance b and rotated or steered to view the same scattering region as in 

Fig. 2, an additional phase (2π/λo) (2bx − b2)/2zo will be accumulated. As before, zo is the 

range and λo is the wavelength at the center frequency. The second term in this additional 

phase is not a function of the position of the scatterers and will cancel in all subsequent steps 

where we shall only be interested in intensities. The collected signal strength at position 2 

can then be written

(14)

One factor of two in the exponent of (14) accounts for the two-way pulse-echo distance. 

This result is equivalent to Burckhardt’s invoking the Fourier shift theorem or Gehlbach’s 

ray tracing.

The intensity corresponding to the signal 1, is

(15)

WAGNER et al. Page 7

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gehlbach identifies the first term in this result as the incoherent intensity, i.e., the average 

over an ensemble of images detected with a square-law device. The second term is the 

speckle or fluctuating component. Its average over an ensemble of images is zero. The 

speckle term when the transducer is in a position corresponding to 2 has the additional 

factors from (14) yielding

We have then for the crosscorrelation of the speckle terms between transducer positions 1 

and 2

(16)

The phase factors in ϑ are uniformly distributed over 2π radians with zero mean and have 

been averaged out to give this simpler expression.

We now invoke the separability of the far field or focal zone spread function into lateral and 

range components. Then going to a continuous representation we can write |pi| = |p(x)| |p′ 
(z)|, and the sums become integrals. The range integration takes a value independent of the 

translation b and only affects the normalization; the lateral integration factors into the 

product of two Fourier transformations (FT)

(17)

since the expected values of the uniformly distributed scattering intensities are independent 

of position and of each other, and average to give constants that have been absorbed into the 

normalization. Before carrying out the required FT’s, we shall make some general 

observations concerning this result.

If we had first calculated the correlation between the complex amplitude signal 1 of (13) 

and the complex conjugate of 2 of (14), we would have obtained the complex coherence 

factor

(18)
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We could then have invoked the result of the Gaussian moment theorem cited above in (10) 

to obtain

(19)

which is equivalent to (17). We shall see that this is a general form common to many 

problems involving the random walk in the complex plane. The underlying physics 

determines the argument of the Fourier transformation, which in this section is in terms of 

the frequency variable 2b/λozo. We show next in Fig. 3 how the required Fourier 

transformations are calculated in terms of this variable and the transducer array length D.

The first row of Fig. 3 gives the well-known relation between the sinc function defined there 

and the rectangle function; the second power of the sinc function transforms to the 

selfconvolution of the rectangle yielding a triangle, which simplifies as shown in the third 

row when the Fourier domain variable is 2b/λozo as in (17). The result we require is the 

transform of p2(x) in this variable and is therefore the self-convolution of the triangle 

indicated in the fourth row. Burckhardt [3] indicated that this convolution would be a 

parabola—indicated schematically in Fig. 3 as the dashed curved and shown plotted in Fig. 

4(a). This is only an approximation. (This approximation was also used by Gehlbach [4].) 

We have carried out the convolution numerically and give the result in Fig. 4 (solid curve). 

Since the Fourier transforms in the expressions given in (17) derive from even functions, 

they are both real and are therefore equal in this case. The required correlation function is 

then the square of the Fourier transform just derived and is given in Fig. 4(b) (solid curve). 

The distance over which the correlation (or decorrelation) falls to zero is characterized in 

terms of the transducer aperture or array length, D. The correlation falls to about 0.5 when 

the transducer has been translated through a distance equal to about 0.25 D and steered to 

view the same scattering volume; it falls essentially to zero when this distance is increased to 

about 0.6D.

Gehlbach gives an argument based on a Taylor series expansion that the shape of the 

correlation of magnitudes should closely follow the correlation of intensities when similarly 

normalized. Our previous numerical experience and arguments drawn from earlier 

investigations based on Taylor series supports this conclusion when there are many scatterers 

per cell, as does much current work here based on the analysis given originally by Middleton 

[14]. This was demonstrated numerically for the case of simple images in [1], and was 

summarized at the end of the previous section. We may therefore compare the function 

derived for intensities above with experimental results obtained by Trahey et al. [15] for 

magnitude (B-scan) images following the transducer translation and rotation paradigm 

described above. The shapes of the theoretical and experimental results in Fig. 5 are seen to 

be similar; the magnitude of the theoretical result is almost everywhere above the 

experimental. This latter condition is expected since in practice new particles move into the 

resolution cell and old particles move out as the transducer is translated and resteered, thus 

hastening the decorrelation; the theoretical treatments given above ignore this second-order 
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effect. One may conclude that the argument given by Gehlbach for detected intensities and 

refined above yields a good upper bound for the speckle decorrelation in B-scans due to 

transducer translation and rotation. This bound is very close to the measured result and so 

the second order effects appear to be small.

When two uncorrelated intensity or B-scan images are compounded, the speckle contrast is 

reduced by , the SNR0—its inverse—increased by [6]. It is as if the density of speckle 

spots or image samples has been doubled. The detectability of uniform lesions [2] or 

homogeneous textures [21], [22] is as equally improved by increasing the number of 

independent images as by reducing the inherent speckle spot size. (Analysis of the 

compounding of correlated images requires the more detailed analysis of an eigenvalue 

problem as given by Goodman [6].)

The result obtained by Burckhardt [3] was for compounding complex amplitudes. That is, it 

is the result corresponding to (18) above for amplitudes, and not that corresponding to (17) 

and (19) for the intensity or magnitude. The single power of the complex amplitude 

correlation is not relevant to the problem of speckle reduction. Complex amplitude 

summation is used to synthesize large apertures from smaller subunits and requires the 

recording of phase information, for example by quadrature detection of the in phase and 

quadrature phase components of the signal. Complex summation can lead to improved 

resolution and can therefore improve signal detection indirectly through its effect on the 

speckle spot size (Section II). However, the process of complex summation by itself does not 

change the underlying statistics [6] and therefore does not reduce the speckle contrast. In 

brief, complex amplitude summing does not reduce the coherence that results in speckle; 

intensity or magnitude summing does reduce the effective coherence and speckle. It is the 

latter approach that is used in compounding, and therefore the correlation of intensity or 

magnitude is the quantity of interest, not the correlation of complex amplitude. The details 

above demonstrate the difference in these functions. Examples of the trade-off between 

resolution and independent images available within a given overall aperture limitation have 

been given by Trahey et al. [15] who demonstrate experimentally and theoretically the 

quantitative advantage of B-scan compounding for lesion detection. (Additional theoretical 

motivation and analysis of the compounding vs resolution trade-off have been presented by 

Shankar and Newhouse [16].)

Finally, we note that it can seem counterintuitive that the complex amplitude should 

decorrelate more slowly than the magnitude if one thinks in terms of factoring the magnitude 

and phase correlations. This, however, is not allowed: the correlation of the phases between 

positions 1 and 2 is not independent of the correlations of the associated magnitudes [6]. 

This makes an intuitive ordering of the decorrelations difficult without carrying out the 

calculations given above.

IV. Correlations Between Images to Be Frequency Compounded

The correlation between the complex amplitudes of scans collected in the spatial 

compounding scheme of the previous section was given in (18) in terms of the Fourier 

transform, in the variable f = 2b/λozo, of the absolute square of the lateral PSF, p(x). The 
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correlation between the corresponding intensities is then given immediately in terms of the 

absolute square of the same Fourier transform, (17) or (19). These properties of the random 

walk with a large number of phasors recur in the same form—but with different variables—

in many other applications. In particular, they appear also in the problem of scans made at 

different center frequencies that are to be compounded to reduce coherence effects. We 

exemplify this next through the results for frequency compounding given by Melton and 

Magnin [17] and these points are further demonstrated in the references that they give.

Melton and Magnin considered the problem of frequency compounding using pulsed 

sinusoids with a Gaussian temporal envelope,

(20)

where the temporal bandwidth B = 1/πT. They showed that the correlations relevant to the 

problem of frequency compounding from central frequencies f1 and f2 are dominated by the 

Fourier transform of p2(t) in the variable Δf = f2 − f1. That is, the coherence between the two 

fields is to a very good approximation

(21)

They then studied the coherence between the corresponding detected envelopes or 

magnitudes and found the same nonlinear function of ρ that we studied in [1]. However, as 

pointed out there and several times in the present paper, this nonlinear function is very 

closely equal to the absolute square,

(22)

—whenever there are many scatterers per resolution cell— and this is borne out in their 

theoretical results. Melton and Magnin also showed very good agreement between their 

theoretical result and experimental measurements in [17], and independent verification of 

this agreement has recently been presented by Trahey et al. [18]. We reproduce here in Fig. 6 

the comparison given by the latter authors.

A helpful mnemonic can be derived by applying their result to a pulse whose spectrum is 

flat, i.e., a boxcar with spectral width fD. This would derive from a temporal PSF whose 

square is given by

(23)
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The Fourier transform of this function is a triangle and its square is the parabolic shape 

whose right half is given in Fig. 7. By comparing Figs. 5 and 7 we see that the efficacy of 

working with a fixed bandwidth and shifting the center frequency to generate uncorrected 

signals may be reasonably compared with the efficacy of working with a fixed array length 

D and shifting the array to generate uncorrelated signals. The spatial decorrelation in terms 

of the fraction of the aperture dimension D is somewhat faster, however, than the frequency 

decorrelation in terms of the fraction of the uniform bandwidth fD. The qualitative difference 

in the shapes of the spatial and frequency decorrelations is due to the qualitative difference 

between the lateral and range PSF’s: the pulse-echo PSF in the lateral direction is the 

product of two one-way PSF’s, due to the first weighting the second [1]; the pulse-echo PSF 

in the range direction is the usual convolution of the two one-way PSF’s.

V. Departures from Rayleigh Scattering

A. Addition of Coherent Scatter

We return now to the statistics of simple images (i.e., without reference to compounding). 

The case considered above in Section II was that of purely diffuse or Rayleigh scattering. If 

in addition to this incoherent scatter there are scatterers with long range order, e.g. large 

scatterers, or periodic or extended structure, this cooperative or coherent scatter will 

manifest itself in the image statistics [19], [20], [21], [22]. The contrast of the speckle will 

be reduced and the average correlation length of the speckle will increase.

We may calculate the correlation length from a generalization of the derivation of (10) 

above. Here we consider only the special case of the addition of a constant level of specular 

intensity Is to the previously considered diffuse intensity Id. We may then write for the 

complex amplitudes, without loss of generality,

(24)

where . The g’s have the same properties as given above in (6). We have then for the 

autocorrelation function

(25)

where

(26)

The first terms in each parenthesis generate the Rayleigh autocorrelation function as given in 

(10). The remaining terms are simple to average since R is constant. We obtain the final 

result using the properties of the g’s given above in (6), together with
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(27)

obtaining

(28)

This expression may also be used to calculate the mean square intensity—by setting ρ = 1; 

the squared mean intensity—by setting ρ = 0; and the variance from the difference of these. 

Then the average speckle contrast follows directly from taking the ratio of the square root of 

the variance to the mean and is found to range from unity (Is = 0) to zero (Is = ∞). (The 

speckle contrast is the inverse of the intensity “signal-to-noise ratio” at a point, SNRo, which 

would range from unity to infinity.) The term in (28) that is first power in ρ is a cross term 

representing the coupling between the diffuse and specular scattering and is responsible for 

broadening the speckle cell. If a speckle cell size is defined in terms of the area under the 

autocorrelation function, or in terms of any other measure that scales linearly, e.g., the full 

width at half maximum of the autocovariance, then the increase in cell size as a function of r 
= Is/Id follows the curve given in Fig. 8 for the case where ρ has a Gaussian profile. The cell 

size increases rapidly as r increases from zero (where ρ2 dominates) to about two, then 

quickly reaches an asymptote of  corresponding to r ⇒ infinity (where ρ dominates).

This longer correlation length for combinations of diffuse and specular scattering, as well as 

the even greater correlation lengths associated with purely specular scattering, will lead to 

the requirement for greater shifts in aperture or center frequency than calculated in Sections 

III and IV when compounding to achieve a given decor-relation, or will lead to less dramatic 

effects for a given shift.

From the preceding discussion it would appear that either the speckle contrast (or its inverse, 

SNRo-see, e.g., [23]), or the speckle cell size, would serve as a tissue signature 

corresponding to the value of the specular to diffuse scattering ratio r. This is only true, 

however, when there are very many diffuse scatterers per resolution cell. We now consider 

the case where this number decreases toward zero.

B. Decrease in the Number of Scatterers per Resolution Cell

Oosterveld, Thijssen, and Verhoef [9] have generated a computer model of the ultrasound 

insonification, scattering, and detection process. Among other things they studied the 

dependence of first and second order statistics on the density of scattering particles. They 

found that the backscattered intensity depended linearly on the scatterer density, in 

agreement with the random walk theory, over several decades of scatterer density N (see also 

Insana et al [24], and Smith et al. [25]). The speckle contrast—the inverse of the point 

SNRo—decreased to an asymptote corresponding to the Rayleigh—or complex Gaussian— 

limit as the scatterer density increased to a level corresponding to roughly ten scatterers per 
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interrogated resolution cell (cf. [26]). And the axial and lateral speckle cell size decreased to 

an asymptote corresponding to the natural dimensions found here in Section II for a similar 

scatterer density. (Wagner et al. [1] and Smith and Wagner [10] found that the Rayleigh or 

complex Gaussian limit was approached in first order statistics for slightly fewer than 10 

scatterers per resolution cell and Dainty [27] indicates that this limit is approached in fourth 

order statistics for about 100 scatterers per resolution cell.) This suggests that for small N 
the speckle contrast or the speckle cell size may be taken as a tissue signature that estimates 

the density of scattering particles or their number per resolution cell. This is indeed true if it 

is known that there is only diffuse scattering without the combination of specular or coherent 

scattering to confound the analysis as indicated in the previous section. If the amount of 

coherent scatter is not known independently, several measurements may be made and the 

methods of Oosterveld et al. may be combined with methods deriving from the present work 

to solve for the physical parameters r = Is/Id and N, the number density of diffuse scatterers 

per resolution cell or per unit volume.

(If the scatterers in the medium are not identical, then all scatterers will not contribute 

equally to the echo signal and N will refer to an average appropriate to the frequency 

dependence of the scattering physics. For example, Bamber and Hill [28] have shown that in 

liver parenchyma, at low frequencies (f < 2.5 MHz), the echo signal is dominated by large 

scattering structures, whereas at higher ultrasonic frequencies (f > 2.5 MHz) it is dominated 

by smaller scatterers. The measured density of scatterers will therefore correspond to an 

average density for a range of scatterer dimensions determined by the center frequency and 

bandwidth of the pulse.)

In Fig. 9(b) we reproduce the results of Oosterveld et al. [9] for the cell size (in their terms, 

viz. FWHM) vs. the density of diffuse scattering particles; in Fig. 9(a) we reproduce their 

results for the SNR at a point vs the same average density. On the same plots we present our 

limiting values—for large values of N—of the same quantities as a function of the specular/

diffuse ratio r as found from the present work (28). If the previous investigators [9], and 

others with related computer models [8], [11], [29], [30] would introduce specular scatterers 

into their simulations, then a family of curves as indicated by the partial dashed curves could 

be completed. These curves would then serve as a calibration from which the values of r and 

N could be obtained from measurements of the SNR at a point (or speckle contrast) and the 

average speckle cell size or its characteristic dimension, by simultaneous graphical solution 

of Figs. 9(a) and (b). One further important caveat is necessary.

We have shown in other places [21], [22] that the presence of structure such as a sinusoidal 

or other oscillatory variation in the coherent scatter increases the total variance of the 

speckle fluctuations, i.e., it enhances the speckle contrast. If only first order statistics, e.g., 

the mean and variance, are considered, this increase of speckle contrast—decrease in the 

pointwise SNR—drives a first order analysis in the direction of non-Gaussian statistics, 

corresponding to the few scatterer case as shown on the left portion of Fig. 9(a). This takes 

place even though there are a great number N of diffuse scatterers per resolution cell. We 

show in these references how preprocessing of the data and partitioning of the second order 

statistics are required to unmask the underlying Gaussian statistics that are present. This 

partitioning yields yet another tissue signature corresponding to the scattering strength in the 
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structure. When this component is peeled away, leaving the steady or average level of the 

specular component, the techniques of the previous section and the calibration described 

above in this section may be applied rigorously. (Without this step the results are open to 

ambiguous interpretations, as in [19], [23]). When this calibration is measured, it will be 

possible to obtain measures of the specular/diffuse scattering ratio and the density of diffuse 

scatterers from the analysis of the statistics of the speckle texture described here.

VI. Conclusion

We have reviewed the theory of the correlation cell size and its relation to the resolution cell 

size for simple-scan images and presented additional experimental verification of the 

relationship. We have refined the Burckhardt/Gehlbach analysis of the correlation between 

images that are candidates for compounding to reduce the speckle fluctuations. This 

treatment is in very good agreement with the experimental results of Trahey et al., and shows 

that the fundamental correlation distance is a fraction of the transducer or array 

characteristic dimension. In a similar manner we showed that for frequency compounding, 

the fundamental measure is a somewhat larger fraction of the pulse bandwidth.

We have reviewed our own theoretical results for the correlations in images that result from 

the addition of coherent scatter to the Rayleigh scatter and re-presented the computer 

simulation results of Oosterveld et al. demonstrating the effects of departure from Rayleigh 

statistics due to the decrease in the number of scatterers per resolution cell. Finally, we have 

suggested computer experiments for those who have developed simulation routines that will 

allow the final two effects listed here to be separated. This means that there exist statistical 

techniques for simultaneously obtaining the ratio of specular to diffuse scattering strength as 

well as the number density of diffuse scatterers from ultrasonic B-scans of tissue 

parenchyma or tissue-mimicking phantoms.

The relationships between the correlation lengths derived in this paper and the density of 

speckle spots—or independent samples—over a lesion or region of interest are treated in [2], 

[15], and [18]. It is this density of samples that determines detectability and discrimination 

in ultrasonic images.
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Fig. 1. 
(a) Theoretical (——) and experimental (---------) [11] autocovariance functions for intensity 

or magnitude in lateral direction. (b) Theoretical (——) and experimental (.........) 

autocovariance functions for intensity or magnitude in range direction. Error bars are plus 

and minus two standard errors of the mean. (Theoretical functions for intensity and 

magnitude can differ by 0–3 percent (see [1]).)
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Fig. 2. 
Schematic illustration of transducer viewing scatterers at position x from transducer location 

1, then being translated to position 2 and rotated or steered to view same region.
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Fig. 3. 
Symbolic representation of steps leading from (17) to curves in Fig. 4, illustrating how the 

Fourier transformation in the variable 2b/λozo is equivalent to selfconvolution of a triangle 

function.
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Fig. 4. 
(a) Results of present work using numerical convolution to obtain correlation in terms of 

amplitudes of images, one of which is obtained by a transducer translation b, followed by 

rotation to view same region (——); Burckhardt’s approximation [3] to this result (---------). 

(b) The squares of the functions from (a) give theoretical correlation in terms of intensities 

or magnitudes.
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Fig. 5. 
The numerical result from Fig. 4(b) (——) accounts theoretically to first order for 

experimental data of Trahey et al. [15] for decorrelation as a function of translation. Error 

bars are plus and minus two standard errors of the mean.
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Fig. 6. 
Theoretical (——) correlation [17] and experimental (0) correlation [18] between images 

generated at different center frequencies, as function of shift or difference between these 

frequencies, when pulse shape is Gaussian ([18], with permission).
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Fig. 7. 
Theoretical correlation between images generated at different center frequencies, for pulse 

with boxcar (i.e., uniform) spectral shape, as function of shift or difference between 

frequencies given as fraction of uniform bandwidth.
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Fig. 8. 
Theoretical autocovariance cell size as function of specular to diffuse scattering ratio, r, for a 

Gaussian complex (amplitude) coherence factor (relative to r = 0 cell size).
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Fig. 9. 
(a) (Left hand ordinate) First order statistics of simulated B-mode scans in terms of ratio of 

mean to standard deviation (SNRM), as function of the scatterers, after Oosterveld et al. [9]. 

(Right hand ordinate) Limiting values of first order statistics for intensities with r = Is/Id as 

parameter. (b) Second order statistics of simulated B-mode scans as function of density of 

scatterers, after Oosterveld et al. [9], in terms by FWHM of axial or range autocovariance 

function. Dashed lines: limiting values of this parameter for either intensity or magnitude 

with r as parameter.
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TABLE 1

Measurement of Speckle Cell Size Versus Theoretical Predictions; The Axial Dimension.

Theory Measurement

Scz = 2.51 σz Scz = ∫CI(Δz)/CI(0) d Δz

Phantom 1

(c = 1540 m/s)

(α = 0.65 dB/cm-MHz)*
0.64 mm 0.624 mm

Phantom 2

(c = 1540 m/s)
(α = 0.55 dB/cm-MHz)

0.64 mm 0.604 mm

*
Attenuation coefficient
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