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Abstract

In this paper, extensive simulations are performed to compare two statistical methods to analyze 

multiple correlated quantitative phenotypes: (1) approximate F-distributed tests of multivariate 

functional linear models (MFLM) and additive models of multivariate analysis of variance 

(MANOVA), and (2) Gene Association with Multiple Traits (GAMuT) for association testing of 

high-dimensional genotype data. It is shown that approximate F-distributed tests of MFLM and 
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MANOVA have higher power and are more appropriate for major gene association analysis (i.e., 

scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT 

has higher power and is more appropriate for analyzing polygenic effects (i.e., effects from a large 

number of genetic variants each of which contributes a small amount to the phenotypes). MFLM 

and MANOVA are very flexible and can be used to perform association analysis for (i) rare 

variants, (ii) common variants, and (iii) a combination of rare and common variants. Although 

GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of rare 

and common variants and it performs well when (1) the number of genetic variants is large and (2) 

each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA 

are fixed effect models that perform well for major gene association analysis. GAMuT can be 

viewed as an extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are 

more appropriate for analyzing polygenic effects and they perform well not only in the rare variant 

case, but also in the case of a combination of rare and common variants. Data analyses of 

European cohorts and the Trinity Students Study are presented to compare the performance of the 

two methods.
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1 | INTRODUCTION

Since multi-phenotype analysis can increase power to dissect complex disorders, analysis of 

pleiotropic traits has become a very important topic. One method to analyze pleiotropic 

traits is to analyze a single polymorphism at a time to evaluate the effect of common variants 

as is routinely done in genome-wide association studies (GWAS) or exome studies (Allison 

et al., 1998; Chavali et al., 2010; Ferreira & Purcell, 2009; Galesloot et al., 2014; Huang et 

al., 2011; O’Reilly et al., 2012; Ried et al., 2012; Sivakumaran et al., 2011; Solovieff et al., 

2013). In recent years, next-generation sequencing technologies have provided rich 

resources to search for causal genetic variants. Researchers are facing ever-increasing 

amounts of data and the need to analyze such data efficiently to enable novel discoveries 

(Ansorge, 2009; Mardis, 2008; Metzker, 2010; Rusk & Kiermer, 2008; Shendure & Ji, 

2008). There are increasing interest in developing gene-based methods to analyze next-

generation sequencing data of pleiotropic traits (Broadaway et al., 2016; Maity et al., 2012; 

Vsevolozhskaya et al., 2016; Wang et al., 2015). The gene-based methods have several 

advantages such as combining multiple variants for a unified analysis, thereby increasing 

power, and reducing the number of multiple comparisons. In practice, the advantages of 

different methods are not always clear. In this article, we aim at evaluating the performance 

of two gene-based procedures described below to understand the pros and cons of each 

procedure.

In Wang et al. (2015), multivariate functional linear models (MFLM) were proposed to 

perform gene-based analysis of pleiotropic traits. The MFLM are very flexible and can be 
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used to analyze rare variants or common variants or a combination of the two. Here the rare 

variants’ minor allele frequencies (MAF) are less than 0.01 ~ 0.05. Broadaway et al. (2016) 

proposed a method of Gene Association with Multiple Traits (GAMuT) for association 

testing of phenotypes with high-dimensional rare variant data. By using simulated data of 30 

kb regions using COSI (Schaffner et al., 2005), the authors compared power levels of 

GAMuT and approximate F-distributed tests of MFLM, and found that GAMuT had higher 

power than the approximate F-distributed tests of MFLM for six and ten correlated 

quantitative phenotypes. In addition, Broadaway et al. (2016) analyzed four phenotypic 

measures of cardiovascular health using data from the Genetic Epidemiology Network of 

Arteriopathy (GENOA) (Daniels et al., 2004), and found that MFLM inflates P-values. An 

interesting question is: why and how this happens?

The data analyzed in Broadaway et al. (2016) included 48,712 rare genetic variants (MAF < 

3%) that fell within 3,277 genes. Hence, each gene region has about 15 rare variants in the 

data analysis. Note that MFLM are designed to analyze high-dimensional next-generation 

sequencing data of multiple quantitative traits (Wang et al., 2015). For a gene region with 

about 15 rare variants, the number of parameters of MFLM is about 60 for four phenotypes 

if one uses B-spline basis functions suggested by Wang et al. (2015). Therefore, the number 

of parameters is much larger than the number of rare variants in the data analysis making it 

almost impossible for MFLM to perform well. If there is only a small number of variants in 

a gene region, it would be possible to use linear regressions to perform model selection to 

pick up the important variants, and then one may be able to get a final optimal model to 

analyze the data. In that case, neither MFLM nor GAMuT is necessary because they are 

mainly for large number variant analysis.

In the simulation studies of Wang et al. (2015), genetic variants located in 3 kb regions were 

simulated using the package COSI (Schaffner et al., 2005). In the simulations of rare 

variants (defined as MAF < 3%), the 3 kb regions contain a mean of 53 variants. In the case 

that some variants are common and the rest are rare, the 3 kb regions contain a mean of 59 

variants and about 10% are common. If the simulated data used in Broadaway et al. (2016) 

are similar, the 30 kb regions would contain more than 500 rare variants (and each causal 

variant contributes a small amount to the traits). Hence, the simulation studies of Broadaway 

et al. (2016) were based on high-dimensional genotype data. In the Supplementary 

Information, Broadaway et al. (2016) presented a power comparison using genetic variants 

located in 3 kb regions for three phenotypes and found that GAMuT performed similarly to 

MFLM when genetic effect sizes are relatively large.

Some interesting questions and issues stand out: how do the two methods of GAMuT and 

MFLM perform for more simulation scenarios? When does the GAMuT perform better and 

when do the fixed models including MFLM perform better and why? MFLM are very 

flexible and can be used to perform association analysis for (i) rare variants, (ii) common 

variants, and (iii) a combination of rare and common variants. Can GAMuT be used to 

analyze a combination of rare and common variants (or just common variants), although it 

was designed to analyze rare variants only? Here we perform extensive simulations to 

evaluate the performance of the approximate F-distributed tests of fixed effect models and 

GAMuT for quantitative traits by using genetic variants located in 3–30 kb regions of 
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simulated COSI data. Data analyses of European cohorts and Trinity Students Study (TSS) 

are presented to compare the performance of the two methods.

2 | MODELS

In gene-based association analysis, the research goal is to model the association between 

multiple genetic variants and phenotypic traits. In this section, we briefly introduce the two 

procedures (i.e., GAMuT and MFLM) for gene-based analysis of pleiotropic traits.

2.1 | Gene Association with Multiple Traits

GAMuT utilizes a kernel distance covariance to build a nonparametric test of independence 

between multiple phenotypes and multiple genetic variants, and can be viewed as an 

extension of sequence kernel association tests (SKAT) (Ionita-Laza et al., 2013; Lee et al., 

2012; Wu et al., 2011). GAMuT can analyze both quantitative and categorical phenotypes 

adjusting for covariates. The kernel distance covariance framework used by GAMuT 

assesses if pairwise phenotypic similarity is independent of pairwise rare-variant genotypic 

similarity. The phenotypic similarity and genotypic similarity can be formulated as matrices 

using a projection or a weighted linear kernel function. An MAF-weighted linear kernel is 

recommended for the genotypic similarity (Broadaway et al., 2016).

2.2 | Multivariate fixed effect models

Consider n individuals who are sequenced in a genomic region that has m variants. We 

assume that the m variants are located in a region with ordered physical positions 0 ≤ t1 < ⋯ 
< tm = T. To make the notation simpler, we normalize the region [t1, T] to be [0, 1]. For the 

ith individual, let Xi = (xi(t1), …, xi(tm))′ denote her/his genotypes at the m variants and Zi 

= (zi1, …, zic)′ denote her/his covariates. Hereafter, ′ denotes the transpose of a vector or 

matrix. For genotypes, we assume that xi(tj)(= 0, 1, 2) is the number of minor alleles of the 

individual at the jth variant located at the position tj. For each individual, we assume that 

there are L quantitative traits, L ≥ 1. We assume that the quantitative traits are normally 

distributed. For the ith individual, let yiℓ (ℓ = 1, 2, …, L) denote her/his quantitative traits, 

respectively.

2.2.1 | Traditional additive effect models of MANOVA—To model the relationship 

between the quantitative traits and the m variants, one may use the following additive effect 

models of multivariate analysis of variance (MANOVA)

(1)

where αℓ0 is the overall mean, αℓ = (αℓ1, …, αℓc)′ is a c × 1 column vector of regression 

coefficients of covariates, βℓj is the effect of genetic variant xi(tj), and εiℓ is an error term. For 

each i, the error vector εi = (εi1, …, εiL)′ is normally distributed with a mean vector of 

zeros and a L × L variance-covariance matrix Σ. Moreover, ε1, …, εn are assumed to be 

independent. When the number of genetic variants is large, the number of parameters in the 
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model (1) can be large, which may lead to low power. Before fitting the model (1), the QR 

decomposition can be applied to the genotype data to remove the redundancy, i.e., to 

decompose the genotype matrix into the product of an orthogonal matrix Q and a triangular 

matrix R via Gram–Schmidt process. Since dense variants in a region can be highly 

correlated to each other, the QR decomposition could significantly reduce the dimensionality 

and could be useful in data analysis.

2.2.2 | General MFLM—In this subsection, we introduce general MFLM to connect 

genetic variants to the traits (Fan et al., 2013, 2014, 2015, 2016a,b,c; Ramsay & Silverman, 

2005; Wang et al., 2015). We view the ith individual’s genotype data as a genetic variant 

function (GVF) as Xi(t), t ∈ [0, 1]. We assume that the GVF Xi(t) is continuous, but this 

assumption can be removed as in the beta-smooth models (6).

Note that the sample includes n discrete realizations or observations Xi = (xi(t1), …, xi(tm))′ 
of the human genome. By using the genetic variant information Xi, we may estimate the 

related GVF Xi(t). To relate the GVF to the quantitative traits adjusting for covariates, we 

consider the following MFLM

(2)

where βℓ(t) is the genetic effect of GVF Xi(t) at the position t, and the other terms are similar 

to those in the MANOVA model (1).

Estimation of genetic variant functions: To estimate the GVF Xi(t) from the genotypes Xi, 

we use an ordinary linear square smoother (Fan et al., 2013, 2014; Wang et al., 2015). The 

ordinary linear square smoother method assumes that the GVF is smooth. Let ϕk(t), k = 1, 

…, K, be a series of K basis functions, such as the B-spline basis and Fourier basis 

functions. Denote ϕ(t) = (ϕ1(t), …, ϕK(t))′. Let Φ denote the m by K matrix containing the 

values ϕk(tj), where j ∈ 1, …, m. Using the discrete realizations Xi = (xi(t1), …, xi(tm))′, we 

may estimate the GVF Xi(t) using an ordinary linear square smoother as follows (Ramsay & 

Silverman, 2005)

(3)

We consider two types of basis functions: (1) the B-spline basis: ϕk(t) = Bk(t), k = 1, …, K; 

and (2) the Fourier basis: ϕ1(t) = 1, ϕ2r+1(t) = sin(2πrt), and ϕ2r(t) = cos(2πrt), r = 1, …, (K 
− 1)/2. Here for the Fourier basis, K is taken as a positive odd integer (de Boor, 2001; 

Ferraty & Romain, 2010; Horváth & Kokoszka, 2012; Ramsay, Hooker, & Graves, 2009; 

Ramsay & Silverman, 2005).
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Revised functional regression models: The genetic effect functions βℓ(t) are assumed to be 

continuous/smooth. One may expand them by B-spline or Fourier basis functions. Formally, 

let ψk(t), k = 1, …, Kβ, be a series of Kβ basis functions. We expand the genetic effect 

function βℓ(t) by ψ(t) = (ψ1(t), …, ψKβ (t))′ as

(4)

where βℓ = (βℓ1, …, βℓKβ)′ is a vector of coefficients βℓ1, …, βℓKβ. Replacing Xi(t) in MFLM 

(2) by X̂
i(t) in (3) and βℓ(t) by the expansion (4), we have the following revised MFLM

(5)

where .

2.2.3 | MFLM: beta-smooth only approach—We now introduce a simplified version of 

our MFLM, i.e., beta-smooth only model (de Boor, 2001; Fan et al., 2013, 2014; Ferraty & 

Romain, 2010; Horváth & Kokoszka, 2012; Ramsay et al., 2009; Ramsay & Silverman, 

2005; Wang et al., 2015). The beta-smooth only MFLM were developed to define the 

relationship between the ℓth quantitative trait and the m variants (Wang et al., 2015)

(6)

where βℓ(tj) is the genetic effect at the physical position tj, and the other terms are similar to 

those in the model (1). As for the general MFLM (2), the genetic effect βℓ(t) are expanded by 

a series of basis functions by relations (4). Replacing βℓ(tj) by the expansion, the models (6) 

can be revised as

(7)

where . In the model (6) and its revised version (7), 

we use the raw genotype data Xi = (xi(t1), …, xi(tm))′. The genetic effect functions βℓ(t) are 
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assumed to be smooth. Thus, the models are called beta-smooth only. In our previous work, 

we showed that beta-smooth only models perform similarly to the general MFLM in real 

data analysis and simulation studies (Fan et al., 2013, 2014, 2015, 2016a,b,c; Wang et al., 

2015).

2.2.4 | Null hypotheses and test statistics—Consider the additive effect model of 

MANOVA (1) and the revised MFLM (5) and (7). To test for association between the m 
genetic variants and the quantitative traits as a group, the null hypothesis is H0 : βℓ = (βℓ1, …, 

βℓm)′ = 0, ℓ = 1, …, L, for model (1) and H0 : βℓ = (βℓ1, …, βℓKβ)′ = 0, ℓ = 1, …, L, for 

models (5) and (7). We may test the null H0 : β1 = ⋯ = βL = 0 by approximate F-distributed 

tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks’s Lambda using 

standard statistical approaches (Anderson, 1984; Rao, 1973).

2.2.5 | Functional data analysis parameters—In the data analysis and simulations, 

we used the functional data analysis procedure in the statistical package R. We used two 

functions from the functional data analysis (fda) R package as follows to create the bases:

basis = create.bspline.basis(norder =

order, nbasis = bbasis)

basis = create.fourier.basis(c(0,1), nbasis =

fbasis)

The three parameters were taken as order = 4, bbasis = 15, fbasis = 21 for quantitative traits 

in all simulations. Specifically, the order of B-spline basis was 4, and the number of B-spline 

basis functions was K = Kβ = 15, the number of Fourier basis functions was K = Kβ = 21. To 

make sure that the results are valid and stable, we tried a wide range of parameters that 10 ≤ 

K = Kβ ≤ 21 and the results are very close to each other (data not shown).

3 | SIMULATION STUDIES

We utilize two fixed models: (a) MFLM and (b) additive models (1) of MANOVA. 

Simulations were performed to evaluate the performance of the fixed models and GAMuT 

with sample sizes 500, 1,000, and 1,500. We used the European ancestry simulated sequence 

data (Lee et al., 2012; Wu et al., 2011). The sequence data are from 10,000 simulated 

chromosomes covering a 1 Mb region simulated using the calibrated coalescent model 

programmed in COSI (Schaffner et al., 2005). The generated European haplotypes mimic 

CEPH Utah individuals with ancestry from northern and western Europe in terms of site 

frequency spectrum and linkage disequilibrium (LD) pattern.

Type I error simulations

To evaluate whether the approximate F-distributed tests control false-positive rates 

accurately, we consider either three or six correlated phenotypes for each individual. For the 

three phenotype case, we generated three correlated quantitative traits using the model
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(8)

where zi1 is a continuous covariate from a standard normal distribution N(0, 1), zi2 is a 

dichotomous covariate taking values 0 and 1 with a probability of 0.5, and (εi1, εi2, εi3)′ 
follows a normal distribution with a mean vector of 0 and a 3 × 3 variance-covariance matrix 

. The 3 × 3variance-covariance matrix Σ is taken from an 

empirical analysis of three traits from The TSS (Wang et al., 2015).

For the six phenotype case, we use the same strategy of Broadaway et al. (2016) to generate 

the correlation matrix Σ. That is, we consider scenarios of low residual correlation among 

phenotypes [pairwise correlation among phenotypes selected from a uniform (0, 0.3) 

distribution], moderate residual correlation [pairwise correlation selected from a uniform 

(0.3, 0.5) distribution], and high residual correlation [pairwise correlation selected from a 

uniform (0.5, 0.7) distribution]. The six correlated quantitative traits were generated using 

the model

(9)

where zi1 and zi1 are the same as those of (8).
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To be sure that the false positives are properly controlled, empirical type I errors are 

calculated for the approximate F-distributed tests. For the three trait case, the type I error 

rates were reported in Tables 3 and 4 of Wang et al. (2015). For six traits, the type I errors of 

the approximate F-distributed tests are reported in Tables 1 and 2, and they are around the 

nominal levels and so the false-positive rates are accurately controlled.

Empirical power simulations

For empirical power simulations of quantitative traits, we assumed that 5% of the variants 

were causal. We considered two scenarios: (1) all variants are rare (MAF < 0.03), and (2) 

some variants are common and the rest are rare. Once a subregion of size 3–30 kb was 

selected from the 1 Mb region, a subset of p causal variants located in the subregion was 

then randomly selected to obtain ordered genotypes (xi(t1), …, xi(tp)). Then, we generated 

the quantitative traits by adding genetic contributions to models (8) and (9). For instance, the 

three quantitative traits were generated by

(10)

where zi1, zi2, and (εi1, εi2, εi3)′ are the same as in the model (8), and the βs are additive 

effects for the causal variants defined as follows. We used |βij| = ci |log10(MAFj)|, where 

MAFj was the MAF of the jth variant. For the three trait model (10), we assume that 5% of 

the variants were causal and the constants ci are defined by

(11)

for the six trait case, we also assume that 5% of the variants were causal and the constants ci 

= 4.0/k for all six traits, where k depends on region size. The constants k and genetic effect 

sizes decrease as region sizes increase:

(12)
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It can be seen that the effect sizes |βij| are smaller and smaller when the region sizes in (12) 

increase. In particular, the number of causal variants is large and each causal variant 

contributes a small amount to the traits if the region sizes are larger than 12 kb for the three 

trait case (i.e., ci ≤ log(10)/(2 × 4) ≈ 0.29). For the six trait case, the constant ci = 0.4 when 

region size is 30 kb and this is the same as that in the simulations of Figure 3, Broadaway et 

al. (2016), except for an additional random contribution N(0, 1) |log10(MAFj)|. For the three 

trait case, we also consider a second type of constants: k = 3.0, i.e., effect sizes |βij| do not 

depend on region sizes and are relatively large.

For each setting of empirical power calculations, 1,000 datasets were simulated to calculate 

the empirical power levels as the proportion of P-values that are smaller than a given α = 

0.01 level for three traits and α = 2.5 × 10−6 level for six traits. The results of two 

combinations of traits are reported: one trivariate combination (y1, y2, y3) and one bivariate 

combination (y1, y2) for three trait case. We calculated the empirical power levels for the 

approximate F-distributed tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and 

Wilks’s Lambda. The results of approximate F-distributed tests based on the Pillai-Bartlett 

trace are reported, which are similar to the results of approximate F-distributed tests based 

on Hotelling-Lawley trace and Wilks’s Lambda. An MAF-weighted linear kernel is used for 

the genotypic similarity.

Three traits: Power comparison when the constants k are given by relations (12)

In this case, genetic effect sizes |βij| decrease as region sizes increase. When some variants 

are common and the rest are rare, we report in Figure 1 the empirical power of the 

approximate F-distributed tests of additive models of MANOVA (1) and MFLM (7) and 

GAMuT at α = 0.01. When the region sizes are between 3 kb and 12 kb, both the additive 

models of MANOVA and MFLM perform better than GAMuT, and the additive models of 

MANOVA perform better than MFLM. When the region sizes are 15 kb and 18 kb, both the 

additive models of MANOVA and MFLM perform similarly to GAMuT based on projection 

matrix, and the additive models of MANOVA start to perform worse than MFLM. When the 

region sizes are between 21 kb and 27 kb, both the additive models of MANOVA and 

MFLM perform worse than GAMuT based on projection matrix, and the additive models of 

MANOVA perform worse than MFLM.

When all variants are rare, we report empirical power levels in Figure 2. When the region 

sizes are between 3 kb and 9 kb, the additive models of MANOVA perform the best (i.e., 

better than GAMuT and MFLM), and MFLM performs better than or similar to GAMuT. 

When the region sizes are 12 kb and 15 kb, the additive models of MANOVA perform 

similarly to GAMuT based on projection matrix. When the region sizes are between 18 kb 

and 27 kb, the GAMuT based on projection matrix performs the best.

In Figures 1 and 2, GAMuT based on projection matrix performs similarly to GAMuT based 

on linear kernel when the region sizes are between 3 kb and 9 kb; When the region sizes are 

between 12 kb and 27 kb, GAMuT based on projection matrix perform better than GAMuT 

based on linear kernel.
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Three traits: Power comparison when the constant k = 3.0

In these cases, genetic effect sizes |βij| do not depend on the region sizes and are relatively 

large. When some variants are common and the rest are rare, the power levels are presented 

in Figure 3. When all variants are rare, the power levels are presented in Figure 4. In these 

figures, the results of 9 kb region sizes are not plotted because they are the same as those in 

plots (a3) of Figures 1 and 2. The obvious features of Figures 3 and 4 are that the additive 

models of MANOVA perform the best (i.e., better than GAMuT and MFLM). When some 

variants are common and the rest are rare, MFLM perform better than GAMuT. When all 

variants are rare, MFLM perform worse than GAMuT.

Six Traits: Power comparison when the constants k are given by relations (12)

If the residual correlations are moderate, the empirical power levels are plotted in Figures 5 

and 6. When some variants are common and the rest are rare, the power levels are presented 

in Figure 5. When all variants are rare, the power levels are presented in Figure 6. It can be 

seen that the additive models of MANOVA perform the best (i.e., better than GAMuT and 

MFLM) in Figures 5 and 6. When some variants are common and the rest are rare, MFLM 

perform better than GAMuT. When all variants are rare, MFLM perform better than 

GAMuT when the region sizes are between 6 kb and 15 kb, MFLM perform similarly to 

GAMuT when the region sizes are between 18 kb and 24 kb, and MFLM perform similarly 

to or worse than GAMuT when the region sizes are 27 kb and 30 kb.

In supplementary Figures S1 and S2, the power levels are plotted when the residual 

correlations are low. In supplementary Figures S3 and S4, the power levels are plotted when 

the residual correlations are high. The features of supplementary Figures S1 and S3 are 

similar to those of the Figure 1 when some variants are common and the rest are rare, and 

the features of supplementary Figures S2 and S4 are similar to those of the Figure 2 when all 

variants are rare.

4 | APPLICATION TO REAL DATA

In Wang et al. (2015), we analyzed data from the TSS and European lipid studies by fixed 

models. In this report, we analyzed the data by GAMuT. Table 3 reports results of MFLM, 

additive models of MANOVA, and GAMuT. In the European lipid studies, four lipid 

quantitative traits were analyzed in 22 gene regions: high-density lipoprotein (HDL) levels, 

low-density lipoprotein (LDL) levels, triglycerides (TG), and total cholesterol (CHOL). 

Three quantitative traits (i.e., A, B, and C) from the TSS were analyzed in the region of an 

enzyme gene. The associations that attain a threshold significance of P < 3.1 × 10−6 are 

highlighted in red (Liu et al., 2014). If the P-values are around 10−5 but larger than 3.1 × 

10−6, we claim the association as tentative.

In Table 3, the results of GAMuT are new but the other results are mainly from Wang et al. 

(2015). GAMuT detected only one association signal at gene LPL in the FUSION study 

based on projection matrix for a combination of (LDL, TG, CHOL) (P = 2.29 × 10−6), and 

this is one of the two cases that MFLM and MANOVA failed to detect an association (the 

other instance is from a combination of (LDL, TG) at gene LPL in study of D2d-2007). In 
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addition, GAMuT based on projection matrix detected seven tentative association signals 

and GAMuT based on linear kernel detected five. By MFLM and additive models of 

MANOVA, however, quite a few combinations of lipid traits from the five European studies 

showed associations or tentative association signals in the regions of the APOE and LDLR 
genes, and all combinations of three traits (i.e., A, B, and C) in the TSS showed association 

with the enzyme gene (Table 3). Moreover, the P-values of the approximate F-distributed 

tests of fixed models are generally much smaller than those of GAMuT. Therefore, the fixed 

effect MFLM and MANOVA perform better than GAMuT.

In supplementary Tables S3 and S4, we report the results of data analysis of the European 

lipid studies by dividing the data into rare and common variants based on a cutoff of 0.03. It 

is worth noting that the gene regions contain both rare and common variants and the 

associations are mainly from common variants. GAMuT detected a tentative association at 

gene LPL in the FUSION study in Supplementary Table S4 based on common variants for 

the combination (LDL, TG, CHOL) (P = 2.99 × 10−5), but no association signal was 

detected in Supplementary Table S3 based on rare variants (P = 3.02 × 10−1). After 

combining rare and common variants into one group, GAMuT detected an association signal 

at gene LPL in the FUSION study based on projection matrix in Table 3 (P = 2.29 × 10−6). 

Interestingly, GATuT was designed to analyze rare variants while the only association was 

detected in a combination of rare and common variants at gene LPL.

5 | DISCUSSION

In this study, extensive simulations were performed to evaluate the performance of tests of 

fixed effect models and GAMuT, by using simulated genetic variants located in 3–30 kb 

regions. We carried out simulation analyses for two scenarios: (1) all variants are rare; (2) 

some variants are common and the rest are rare. No matter which scenario, fixed effect 

MFLM and MANOVA perform better than GAMuT when the genetic effect sizes are 

relatively large, and GAMuT performs better when the region sizes are large and the genetic 

effect sizes are small. When the region size grows, MFLM and MANOVA gradually perform 

worse and GAMuT performs better if the genetic effect sizes are smaller and smaller. In 

short, MFLM and MANOVA perform well if the effective sizes are relatively large and 

GAMuT performs well when the effective sizes are small, which was also pointed out in 

Broadaway et al. (2016).

In prior studies, fixed effect functional regression models were found to outperform SKAT, 

its optimal unified test (SKAT-O), and a combined sum test of rare and common variant 

effect (SKAT-C) in most cases (Fan et al., 2013, 2014, 2015, 2016a,b,c; Luo et al., 2011, 

2012, 2013; Svishcheva et al., 2015; Vsevolozhskaya et al., 2014, 2016). In Fan et al. 

(2016c), we compared the performance of MFLM and MANOVA, and the performance of 

SKAT/SKAT-O/SKAT-C and the univariate fixed models (Fan et al., 2013). For multivariate 

analysis, no comparison was made because there was no multivariate version of SKAT/

SKAT-O/SKAT-C to compare with in Fan et al. (2016c). In this paper, we fill the gap by 

comparing the performance of MFLM and MANOVA with GAMuT.
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Geneticists have long known of the existence of polygenes, which have small effects on 

phenotypes (Fisher, 1918). If the number of causal genetic variants at a gene locus is very 

large and each variant contributes a small amount to the traits, SKAT/SKAT-O/SKAT-C and 

GAMuT perform better than the tests of fixed models. Thus, SKAT/SKAT-O/SKAT-C as 

well as GAMuT are more appropriate for analyzing polygenic effects. In major gene 

association analysis, we look for genes that have relatively large effects (otherwise, they are 

not major genes). When the number of causal genetic variants at a major gene locus is not 

very large and the contribution of a few causal variants to the traits is reasonably large, the 

fixed models should work well, which should be the case for most complex disorders.

The GAMuT procedure was designed for the analysis of rare variants but we use GAMuT to 

analyze a combination of common and rare variants. As noted in Ionita-Laza et al. (2013), 

this would be suboptimal and would lead to the common variants drowning out the effects of 

rare variants. It is very likely that GAMuT can be revised to improve power to analyze a 

combination rare and common variants by implementing a strategy similar to the combined 

sum test outlined in Ionita-Laza et al. (2013). In terms of MFLM, it does not need to be 

weighted by MAF. The genetic effect functions βℓ(t) is actually the effect of the GVFs at the 

location t, which can be thought of as a weighted effect. In Fan et al. (2014), we explored the 

issues using weighted GVFs defined by the MAF, and found that the power is very similar to 

the power without weights. Hence, it is not necessary to add weights in functional regression 

models. One benefit of treating genotype data functionally is that the genetic effect function 

naturally serves as a weighting function; this function is determined by the data, and takes 

marker spacing and LD and similarity among individuals into account. In short, the 

functional regression models are data-driven approaches.

By using gene-based tests, one may discover associations with a variant set. Gene-based 

tests do not reveal precisely which variants are associated with the disease, but the findings 

can suggest targeted follow-up and laboratory investigation (Zuk et al., 2014). If all variants 

had small effects on the phenotypes, it would be hard to locate them. If the contribution of 

some causal variants to the traits is reasonably large, it would be possible to locate them. We 

argue that MFLM and MANOVA perform better in most major gene association studies.

In our real data analysis, we found that multivariate fixed models perform better than 

GAMuT in most gene regions. Note that the European lipid data contain both rare and 

common variants. As argued by Ionita-Laza et al. (2013), it is reasonable to assume that a 

combination of rare and common variants affects the risk of many complex disorders. 

GAMuT detected only one association signal at gene LPL, while multivariate fixed models 

failed to confirm it. Hence, the two methods can be complementary instead of competing 

with each other. It is our hope that our work may shed more light in gene-based association 

analysis to facilitate dissection of complex disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The empirical power of the approximate F-distributed tests of the additive models of 

MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and 

GAMuT at α = 0.01, when some variants are common and the rest are rare, the constants k 
are given by relations (12), 20%/80% causal variants have negative/positive effects for each 

of three traits, and 5% variants are causal. The order of B-spline basis was 4, and the number 

of B-spline basis functions was K = Kβ = 15
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FIGURE 2. 
The empirical power of the approximate F-distributed tests of the additive models of 

MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and 

GAMuT at α = 0.01, when all variants are rare, the constants k are given by relations (12), 

20%/80% causal variants have negative/positive effects for each of three traits, and 5% 

variants are causal. The order of B-spline basis was 4, and the number of B-spline basis 

functions was K = Kβ = 15
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FIGURE 3. 
The empirical power of the approximate F-distributed tests of the additive models of 

MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and 

GAMuT at α = 0.01, when some variants are common and the rest are rare, the constant k = 

3.0, 20%/80% causal variants have negative/positive effects for each of three traits, and 5% 

variants are causal. The order of B-spline basis was 4, and the number of B-spline basis 

functions was K = Kβ = 15
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FIGURE 4. 
The empirical power of the approximate F-distributed tests of the additive models of 

MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and 

GAMuT at α = 0.01, when all variants are rare, the constant k = 3.0, 20%/80% causal 

variants have negative/positive effects for each of three traits, and 5% variants are causal. 

The order of B-spline basis was 4, and the number of B-spline basis functions was K = Kβ = 

15
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FIGURE 5. 
The empirical power of the approximate F-distributed tests of the additive models of 

MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 

× 10−6 for six traits and moderate correlation, when some variants are common and the rest 

are rare, 20%/80% causal variants have negative/positive effects for each of six traits, and 

5% variants are causal. The order of B-spline basis was 4, the number of B-spline basis 

functions was K = Kβ = 15, and the number of Fourier basis functions was K = Kβ = 21
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FIGURE 6. 
The empirical power of the approximate F-distributed tests of the additive models of 

MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 

× 10−6 for six traits and moderate correlation, when all variants are rare, 20%/80% causal 

variants have negative/positive effects for each of six traits, and 5% variants are causal. The 

order of B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 15, and 

the number of Fourier basis functions was K = Kβ = 21
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