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Abstract

Purpose—To develop a model to predict percent mammographic density (MD) using 

questionnaire data and mammograms from controls in the Nurses’ Health Studies’ nested breast 

cancer case-control studies. Further, we assessed the association between both measured and 

predicted percent MD and breast cancer risk.

Methods—Using data from 2955 controls, we assessed several variables as potential predictors. 

We randomly divided our dataset into a training dataset (two-thirds of the dataset) and a testing 

dataset (one-third of the dataset). We used stepwise linear regression to identify the subset of 

variables that were most predictive. Next, we examined the correlation between measured and 

predicted percent MD in the testing dataset and computed the r2 in the total dataset. We used 

logistic regression to examine the association between measured and predicted percent MD and 

breast cancer risk.

Results—In the training dataset, several variables were selected for inclusion, including age, 

body mass index, and parity, among others. In the testing dataset, the Spearman correlation 

coefficient between predicted and measured percent MD was 0.61. As the prediction model 

performed well in the testing dataset, we developed the final model in the total dataset. The final 

prediction model explained 41% of the variability in percent MD. Both measured and predicted 

percent MD were similarly associated with breast cancer risk adjusting for age, menopausal status, 

and hormone use (OR per 5 unit increase=1.09 for both).

Conclusion—These results suggest that predicted percent MD may be useful for research studies 

in which mammograms are unavailable.
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Introduction

Percent mammographic density (MD), or the percent of dense breast tissue on a 

mammogram, is a strong, consistent predictor of subsequent breast cancer risk. Women with 

over 75 percent dense tissue on a mammogram have approximately 4–6 times the risk of 

developing breast cancer compared to women with very little dense tissue.[1] Interestingly, 

percent MD has been consistently associated with several anthropometric, reproductive and 

lifestyle factors, including age, early life body size, body mass index (BMI), parity, 

menopause, and postmenopausal hormone therapy (HT) use, among others. [2–7]

While percent MD is one of the strongest risk factors for breast cancer, few large-scale 

epidemiologic studies have collected mammograms or measured percent MD in the majority 

of their participants due to monetary and/or time constraints. For example, in the Nurses’ 

Health Study (NHS) and NHSII, we have collected mammograms only on a subset of our 

participants in nested case-control studies of breast cancer. Therefore, our goal was to 

develop a model to predict percent MD using questionnaire data and mammograms collected 

from a subset of controls in the NHS/NHSII nested case-control studies of breast cancer. 

Further, we examined the association between both measured and predicted percent MD and 

breast cancer risk in the NHS/NHSII nested case-control studies.

Materials and Methods

Mammography collection

Mammograms were collected from women in the NHS/NHSII breast cancer case-control 

studies nested in the blood and cheek collection sub-cohorts. Mammograms conducted as 

close as possible to the date of blood collection (or 1997 for participants in the cheek cell 

collection) were obtained for cases (and their matched controls) diagnosed after collection, 

but before June 1, 2004 (NHS) or June 1, 2009 (NHSII). Controls were matched to cases on 

age, menopausal status at blood draw and diagnosis, current postmenopausal hormone 

therapy (HT) use, month, time of day, fasting status at time of blood collection, and luteal 

day (NHSII timed samples only). In total, mammograms were collected from 2,062 breast 

cancer cases and 4,194 matched controls.

Mammographic density measurement

A Lumysis 85 laser film scanner was used to digitize the craniocaudal views of both breasts 

for all mammograms in the NHS and for the first two batches of mammograms in the 

NHSII. The third batch of mammograms in the NHSII was scanned using a VIDAR CAD 

PRO Advantage scanner (VIDAR Systems Corporation; Herndon, VA) using comparable 

resolution of 150 dots per inch and 12 bit depth. We measured absolute dense area as well as 

the total area and calculated percent MD as the dense area divided by the total area using the 

Cumulus software for computer-assisted thresholding. Next, we averaged the percent MD of 

both breasts. In a sample of 50 mammograms digitized with both scanners, the correlation 

between percent MD measurements from the digitized images from each scanner was 0.88; 

the mean difference was 2.3 percentage points. In NHSII, a single observer read the 

mammograms in three batches (batches 1 and 2 were read three years apart, batches 2 and 3 
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were read three years apart). A small number of mammograms were included in all three 

NHSII batches. While there was high reproducibility within each batch, there was evidence 

of between batch variability in the NHSII. Therefore, for the overall NHSII breast cancer 

case-control mammography dataset, we used multivariable linear regression models to 

estimate the effect of batch on density measurements, controlling for age, menopausal status, 

BMI, and case-control status.[8] We then adjusted density measurements in the second and 

third NHSII batches by subtracting the coefficient for each mammogram batch from the raw 

value to estimate the measurements that would have been obtained if the mammogram had 

been included in the first batch. For all batches, readers were blinded to case-control status.

Candidate predictors

Candidate predictors were selected based on prior research of predictors of percent MD in 

the NHS and other studies.[2, 9–13] The following variables were evaluated as potential 

predictors of percent MD: age (continuous, centered at 53), adolescent somatotype 

(continuous), body mass index (BMI) at age 18 (continuous, centered at 21), current BMI 

(continuous, centered at 25), age at menarche (continuous, centered at 12), nulliparity (no, 

yes), parity (continuous), age at first birth (continuous, centered at 25), height (continuous 

inches, centered at 65), family history of breast cancer (no, yes), personal history of benign 

breast disease (BBD) confirmed by biopsy (no, yes), BBD not confirmed or biopsy status 

unknown (no, yes), alcohol use (grams/day continuous), menopausal status (premenopausal, 

postmenopausal), HT use (postmenopausal only: never, past, current), and duration of 

menopause (postmenopausal only: continuous). In addition, we evaluated interaction terms 

for each of the candidate predictors and menopausal status (premenopausal, 

postmenopausal); therefore, menopausal status was forced into the stepwise regression 

model discussed below. In addition, nulliparity was forced into the model to allow for the 

assessment of age at first birth during the stepwise procedure. For all variables, we used the 

information collected on the biennial questionnaire closest in time preceding the date of the 

mammogram.

Exclusions

Women with unknown menopausal status were excluded (N=496). Postmenopausal women 

whose type of menopause was not either a) natural or b) due to bilateral oophorectomy (e.g., 

due to radiation, unknown type of menopause) were excluded from the analysis (N=481). 

We further excluded women with missing data on any of the candidate predictor variables: 

adolescent somatotype (N=156), current BMI (N=97), BMI at age 18 (n=143), parity 

(n=37), age at first birth (N=4), age at menarche (n=20), alcohol use (N=269), hormone 

therapy (HT) use (n=62, postmenopausal only), and duration of menopause (N=15, 

postmenopausal only). Next, we excluded women with outlying values based on the 

generalized extreme studentized deviate many-outlier detection approach [14] for the 

following variables: adolescent somatotype (N=1), BMI (N=14), BMI at age 18 (N=16), age 

at first birth (N=6), height (N=1), age at menarche (N=2), alcohol use (N=41), and duration 

of menopause (N=4). The nested case-control sample included 1436 cases and 2955 

controls.
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Statistical analysis

In our primary analysis, we developed the percent MD prediction model among the 2955 

controls only. We randomly divided our dataset into a training dataset with two-thirds of the 

observations (N=1962 controls) and into a testing dataset with the remaining one-third of the 

dataset (N=993 controls). As the distribution of percent MD was right-skewed, we square-

root transformed percent density. We used stepwise linear regression (p<0.15 for selection 

into the model and p<0.15 to remain in the model) to identify the subset of candidate 

variables that were most predictive of square-root transformed percent MD in the training 

dataset and computed the r2 for the final model in the training dataset. We then used the 

estimates from the prediction model developed in the training dataset to calculate predicted 

square-root transformed percent MD in the testing dataset. We then back-transformed 

predicted percent MD. The Spearman correlation coefficient was calculated to assess the 

agreement between the predicted and measured percent MD in the testing dataset. We also 

performed a paired t-test to examine the mean difference between the measured and 

predicted percent MD. We plotted measured percent MD by predicted percent MD as well as 

examined mean levels of measured percent MD according to decile of predicted percent 

MD. We developed the final prediction model in the total dataset using the variables 

identified in the training dataset and computed the r2 and root mean square error (RMSE) for 

the final model.

Next, we used multivariable logistic regression to assess the association between measured 

percent MD, predicted percent MD, and breast cancer risk using data from the 1436 cases 

and 2955 controls. As cases and controls were matched on age, menopausal status, and HT 

use, we adjusted our logistic models for these variables. As a sensitivity analysis, we derived 

predicted percent MD among both the cases and controls using the same methods described 

above, with the addition of a case-control indicator forced into the model. All statistical tests 

were two-sided and analyses were performed using SAS version 9.4 for UNIX (SAS 

Institute Inc., Cary NC).

Results

The distribution of candidate predictor variables by menopausal status and percent MD 

among controls in the total dataset is presented in Table 1. Age-adjusted differences in 

percent MD by the candidate predictors among the controls are presented in Supplemental 

Table 1. In both premenopausal and postmenopausal women, women with denser breasts 

were younger, had a lower BMI at age 18 and at mammogram, were more like to be 

nulliparous, and were more likely to have a history of BBD. Further, among postmenopausal 

women, those with denser breasts were more likely to be current HT users. In the initial 

stepwise-regression in the training dataset, the following variables were selected for 

inclusion (in addition to menopausal status and nulliparity): age, current BMI, BMI at age 

18, HT use, biopsy confirmed BBD, unconfirmed BBD, adolescent somatotype, parity, and 

age at first birth as well as the interaction term between menopausal status and age at first 

birth (Table 2). The final prediction model explained 42% of the total variability in square-

root transformed percent MD in the training dataset. Using the regression coefficients 

estimated in the training dataset, we calculated predicted square-root transformed percent 
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MD for women in the testing dataset and back transformed to predicted percent MD. The 

Spearman correlation coefficient between the predicted and the measured percent MD in the 

testing dataset was 0.61 (95%CI: 0.57, 0.65). The mean difference between the measured 

and predicted percent MD was 1.06 percentage points (p=0.03). Measured percent MD 

increased with increasing predicted percent MD (Figure 1 and Supplemental Figure 1). The 

difference between measured and predicted percent MD by predicted percent MD is 

presented in Figure 2. The difference in mean measured percent MD between extreme 

deciles of predicted percent MD was 38.5. As the prediction model performed well in the 

testing dataset, we used the total dataset to develop the regression estimates for the final 

prediction model. Regression estimates for the selected predictor variables and the R-square 

for the prediction model were very similar in the training dataset, the testing dataset, and the 

total dataset (Table 2). The final prediction model explained 41% of the total variability in 

square-root transformed percent density in the total dataset. Next, we examined the 

association between both predicted and measured percent MD and breast cancer risk in the 

total dataset. The odds ratio (OR) for breast cancer per 5 unit increase in measured percent 

MD adjusted for matching factors (i.e., age, menopausal status, and HT use) was 1.09 

(95%CI: 1.07, 1.11). The association with breast cancer risk was the same for predicted 

percent MD (OR per 5 unit increase=1.09, 95%CI: 1.05, 1.13). When we predicted percent 

MD in both the cases and controls, the same variables were selected for inclusion into the 

model in the training dataset (Supplemental table 2). The coefficients in the training and 

total dataset were similar to those from the model including only controls. When derived 

using both the cases and controls, the final prediction model explained 42% of the total 

variability in square-root transformed percent density in the total dataset.

Discussion

Using mammograms and questionnaire data from controls on the NHS nested case-control 

studies of breast cancer, we derived predicted percent MD using a number of 

anthropometric, reproductive, and lifestyle factors which have been previously associated 

with breast density. Our final prediction model explained 41% of the total variability in 

percent MD. When we assessed the association between measured and predicted percent 

MD and breast cancer risk, the association was the same for the two measures (OR per 5 unit 

increase=1.09).

Percent MD has been consistently associated with breast cancer risk and is one of the 

strongest predictors of subsequent risk. [1, 15–22] However, most large-scale epidemiologic 

studies do not collect information on percent MD for the majority of participants. While 

automated measures of percent MD have been developed, it is very time consuming and 

costly to both collect mammograms and measure percent MD in large studies. Therefore, 

some studies have collected mammograms from a subset of participants, such as in nested 

case-control or case-cohort studies of breast cancer. Predicted percent MD models, such as 

the model outlined here, are advantageous in that predicted values can be estimated for most 

women in large-scale cohort analyses. This is a highly cost-effective approach that may be 

especially useful for older cohort studies in which it is not feasible to obtain mammograms 

from participants. Further, in prospective cohorts with updated data collection, predicted 

percent MD can be derived for each data collection cycle, allowing for changes over time. 
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As percent MD is a strong risk factor for breast cancer, the inclusion of predicted percent 

MD may be particularly useful for the development and expansion of breast cancer risk 

prediction models in populations for which measured percent MD is unavailable. Recent 

work suggests that adding data on mammographic density to established breast cancer 

prediction models, such as the Gail and Tyrer-Cuzick models, can significantly improve risk 

prediction. [23–27] For example, in an analysis in the International Breast Cancer 

Intervention Study I, adding breast density to the Tyrer-Cuzick model improved the AUC by 

0.11.[26] However, for the percent MD prediction model to be used in other study 

populations, data on several risk factors would need to be collected. For example, several 

studies have not collected information on early life body size even though it is strongly 

associated with both percent MD and breast cancer risk. Studies considering predicting 

percent MD in their populations would need to collect information on body size across the 

lifecourse as well as on other anthropometric, reproductive, and lifestyle factors included in 

the model.

Our final percent MD prediction model explained 41% of the total variability in percent MD, 

which is greater than the percent of variability explained for some other biomarker 

prediction models developed in large-scale epidemiologic studies. For example, in the NHS, 

NHSII, and the Health Professionals Follow-up Study, we developed a model to predict 

plasma 25-hydroxyvitamin D [25(OH)D] in which the r2 for each cohort ranged from 0.25 to 

0.33, generally consistent with the r2 from 25(OH)D prediction models derived in other 

studies.[28–30] Though these models explained only a proportion of the variability in 

25(OH)D, predicted 25(OH)D has been inversely associated with several chronic diseases 

including colorectal cancer,[31] renal cell cancer,[32] and type 2 diabetes[29] among others, 

highlighting the utility of biomarker prediction models.

There are some limitations to our analysis. While the final model r2 of 0.41 is greater than 

some prior biomarker prediction models, it does indicate that there is a substantial amount of 

unexplained variability in percent MD. This unexplained variability may be due to 

measurement error in the self-reported anthropometric, reproductive, and lifestyle factors, 

measurement error in percent MD, as well as lack of information on (or availability of) 

additional predictors of percent MD, such as genetic contributors.[33] As a result, predicted 

MD values cannot be interpreted as direct measurements of percent MD. However, the high 

correlation between measured and predicted values in the testing dataset indicates that 

women likely are appropriately ranked with respect to their percent MD values. 

Mammograms collected in this study were film whereas increasingly mammograms 

administered in the US are digital. However, much of the research which demonstrated that 

percent MD is a risk factor for breast cancer is based on data from film mammograms.[22, 

34] Further, studies which have assessed percent MD from digital mammograms and risk of 

breast cancer demonstrated that MD as assessed from digital mammography was valid and 

had similar association with breast cancer risk as was seen with film mammograms.[35] 

Additionally, recently published work from the International Pooling Project of 

Mammographic Density observed that in 128 paired images “MD differences between 

screen-film [mammograms] and processed digital [mammograms] on the subsequent 

screening round were consistent with expected time-related MD declines.”[36] Another 

limitation is that NHS and NHSII participants are predominantly Caucasian and are more 
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similar to each other in various characteristics (e.g., education) than the general population, 

potentially limiting generalizability. Additional validation of the prediction model would be 

useful, especially in diverse populations. Strengths of this analysis include the standardized 

review of mammograms and measurement of percent MD, detailed data on several 

anthropometric, reproductive, and lifestyle factors, and a relatively large sample of pre-

diagnostic screening mammograms.

Overall, our results suggest that the model developed to predict percent MD may be useful 

in large-scale epidemiologic analyses where the collection of mammograms for the majority 

of participants is not feasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Measured percent mammographic density by predicted percent mammographic density in 

the testing dataset among controls, NHS/NHSII
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Figure 2. 
The difference between measured percent mammographic density and predicted percent 

mammographic density by predicted percent mammographic density in the testing dataset 

among controls with regression line and 95% confidence interval, NHS/NHSII

Rice et al. Page 11

Cancer Causes Control. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rice et al. Page 12

Ta
b

le
 1

C
an

di
da

te
 p

re
di

ct
or

s 
by

 q
ua

rt
ile

s 
of

 p
er

ce
nt

 m
am

m
og

ra
ph

ic
 d

en
si

ty
 a

nd
 m

en
op

au
sa

l s
ta

tu
s 

am
on

g 
co

nt
ro

ls
 in

 th
e 

to
ta

l d
at

as
et

, N
H

S/
N

H
SI

I

P
re

m
en

op
au

sa
l

P
os

tm
en

op
au

sa
l

Q
ua

rt
ile

1 
(<

25
)

N
=4

03

Q
ua

rt
ile

 2
(2

5-
<3

9)
N

=4
03

Q
ua

rt
ile

 3
(3

9-
<5

4)
N

=4
03

Q
ua

rt
ile

 4
(5

4+
)

N
=4

04

Q
ua

rt
ile

 1
(<

11
)

N
=3

35

Q
ua

rt
ile

 2
(1

1-
<2

2)
N

=3
36

Q
ua

rt
ile

 3
(2

2-
<3

6)
N

=3
35

Q
ua

rt
ile

 4
(3

6+
)

N
=3

36

M
ea

n 
(S

D
)

  A
ge

 (
y)

46
.8

(4
.3

)
46

(4
.4

)
45

.7
(4

.2
)

45
(4

.2
)

61
.4

(6
.4

)
59

.7
(7

.5
)

59
.1

(7
.7

)
56

.5
(7

.6
)

  B
M

I 
(k

g/
m

2 )
29

.3
(5

.5
)

25
.6

(4
.6

)
24

.3
(4

.2
)

22
.5

(3
.1

)
29

(5
.4

)
26

.5
(4

.7
)

24
.9

(4
.2

)
23

.4
(3

.6
)

  A
do

le
sc

en
t s

om
at

ot
yp

e
3.

4(
1.

1)
2.

9(
1.

0)
2.

7(
1.

0)
2.

6(
0.

9)
3.

2(
1.

3)
2.

7(
1.

2)
2.

5(
1.

2)
2.

5(
1.

0)

  B
M

I 
at

 a
ge

 1
8 

(k
g/

m
2 )

22
.7

(3
.1

)
21

.1
(2

.6
)

20
.5

(2
.4

)
20

(1
.9

)
22

.4
(3

.1
)

21
.2

(2
.6

)
20

.7
(2

.4
)

20
.3

(2
.0

)

  A
ge

 a
t m

en
ar

ch
e 

(y
)

12
.1

(1
.3

)
12

.3
(1

.4
)

12
.6

(1
.4

)
12

.7
(1

.5
)

12
.5

(1
.4

)
12

.4
(1

.3
)

12
.6

(1
.4

)
12

.6
(1

.3
)

  P
ar

ity
 (

am
on

g 
pa

ro
us

)
2.

6(
1.

1)
2.

5(
1.

0)
2.

5(
1.

0)
2.

3(
0.

8)
3.

4(
1.

5)
3.

2(
1.

6)
3.

1(
1.

5)
2.

8(
1.

4)

  A
ge

 a
t f

ir
st

 b
ir

th
 (

am
on

g 
pa

ro
us

)
25

.1
(4

.1
)

26
.2

(3
.9

)
26

.3
(4

)
26

.4
(4

.1
)

25
.2

(3
.1

)
25

(3
.5

)
25

.2
(3

.7
)

25
.8

(3
.9

)

  H
ei

gh
t (

in
ch

es
)

64
.7

(2
.5

)
64

.7
(2

.7
)

65
(2

.5
)

65
(2

.3
)

64
.7

(2
.4

)
64

.4
(2

.3
)

64
.7

(2
.5

)
64

.8
(2

.4
)

  A
lc

oh
ol

 u
se

 (
g/

da
y)

3.
4(

5.
3)

4.
1(

6.
5)

4.
6(

6.
5)

4.
7(

6.
8)

5.
3(

8.
9)

3.
8(

6.
3)

4.
4(

7.
4)

5.
6(

7.
9)

  A
ge

 a
t m

en
op

au
se

49
(5

.0
)

48
.9

(4
.8

)
48

(5
.2

)
47

.2
(5

.4
)

N
 (

P
er

ce
nt

)

  N
ul

lip
ar

ou
s

39
(9

.7
)

51
(1

2.
7)

56
(1

3.
9)

74
(1

8.
3)

22
(6

.6
)

17
(5

.1
)

33
(9

.9
)

42
(1

2.
5)

  B
B

D
 (

bi
op

sy
 c

on
fi

rm
ed

)
48

(1
1.

9)
52

(1
2.

9)
68

(1
6.

9)
92

(2
2.

8)
50

(1
4.

9)
73

(2
1.

7)
92

(2
7.

5)
86

(2
5.

6)

  B
B

D
 (

un
co

nf
ir

m
ed

)
11

3(
28

.0
)

12
7(

31
.5

)
13

1(
32

.5
)

14
8(

36
.6

)
60

(1
7.

9)
93

(2
7.

7)
78

(2
3.

3)
11

6(
34

.5
)

  F
am

ily
 h

is
to

ry
 o

f 
br

ea
st

 c
an

ce
r

26
(6

.5
)

43
(1

0.
7)

36
(8

.9
)

36
(8

.9
)

35
(1

0.
4)

44
(1

3.
1)

47
(1

4)
41

(1
2.

2)

  P
os

tm
en

op
au

sa
l H

T
 U

se

   
 N

ev
er

16
6(

49
.6

)
13

1(
39

.0
)

91
(2

7.
2)

73
(2

1.
7)

   
 P

as
t

77
(2

3.
0)

66
(1

9.
6)

84
(2

5.
1)

43
(1

2.
8)

   
 C

ur
re

nt
92

(2
7.

5)
13

9(
41

.4
)

16
0(

47
.8

)
22

0(
65

.5
)

N
H

S=
N

ur
se

s’
 H

ea
lth

 S
tu

dy
, S

D
=

st
an

da
rd

 d
ev

ia
tio

n,
 B

M
I=

bo
dy

 m
as

s 
in

de
x,

 B
B

D
=

be
ni

gn
 b

re
as

t d
is

ea
se

, H
T

 u
se

=
ho

rm
on

e 
th

er
ap

y 
us

e

Cancer Causes Control. Author manuscript; available in PMC 2018 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rice et al. Page 13

Ta
b

le
 2

Pe
rc

en
t m

am
m

og
ra

ph
ic

 d
en

si
ty

 (
sq

ua
re

-r
oo

t t
ra

ns
fo

rm
ed

) 
m

od
el

 in
 th

e 
tr

ai
ni

ng
 d

at
as

et
 a

nd
 th

e 
to

ta
l d

at
as

et
, N

H
S/

N
H

SI
I 

am
on

g 
co

nt
ro

ls

T
ra

in
in

g 
da

ta
se

t
(C

on
tr

ol
s=

19
62

)
Te

st
in

g 
da

ta
se

t
(C

on
tr

ol
s=

99
3)

To
ta

l d
at

as
et

(C
on

tr
ol

s=
29

55
)

B
et

a
SE

p-
va

lu
e

B
et

a
SE

p-
va

lu
e

B
et

a
SE

p-
va

lu
e

In
te

rc
ep

t
6.

19
2

0.
15

3
<

0.
01

5.
90

6
0.

22
6

<
0.

01
6.

08
7

0.
12

7
<

0.
01

A
ge

 (
pe

r 
ye

ar
)^

−
0.

04
9

0.
00

6
<

0.
01

−
0.

03
4

0.
00

9
<

0.
01

−
0.

04
5

0.
00

5
<

0.
01

A
do

le
sc

en
t s

om
at

ot
yp

e 
(p

er
 1

 u
ni

t)
−

0.
15

4
0.

03
7

<
0.

01
−

0.
06

9
0.

05
6

0.
22

−
0.

12
5

0.
03

1
<

0.
01

B
M

I 
at

 a
ge

 1
8 

(p
er

 k
g/

m
2 )

^
−

0.
04

8
0.

01
7

<
0.

01
−

0.
04

6
0.

02
5

0.
06

−
0.

04
7

0.
01

4
<

0.
01

C
ur

re
nt

 B
M

I 
(p

er
 k

g/
m

2 )
^

−
0.

12
5

0.
00

8
<

0.
01

−
0.

14
2

0.
01

1
<

0.
01

−
0.

13
1

0.
00

6
<

0.
01

N
ul

lip
ar

ou
s

0.
23

4
0.

13
0

0.
07

0.
10

3
0.

19
0

0.
59

0.
18

5
0.

10
7

0.
09

Pa
ri

ty
 (

pe
r 

ch
ild

 a
m

on
g 

pa
ro

us
)

−
0.

06
8

0.
03

0
0.

02
−

0.
07

7
0.

04
4

0.
08

−
0.

07
0

0.
02

5
<

0.
01

A
ge

 a
t f

ir
st

 b
ir

th
 (

pe
r 

ye
ar

)^
0.

01
5

0.
01

2
0.

21
0.

04
6

0.
01

7
<

0.
01

0.
02

5
0.

01
0

0.
01

  A
ge

 a
t f

ir
st

 b
ir

th
*p

os
tm

en
op

au
sa

l
0.

03
6

0.
01

8
0.

05
−

0.
01

0
0.

02
7

0.
71

0.
02

3
0.

01
5

0.
13

B
B

D
 h

is
to

ry
 (

bi
op

sy
 c

on
fi

rm
ed

)
0.

51
1

0.
08

7
<

0.
01

0.
42

6
0.

13
1

<
0.

01
0.

49
7

0.
07

2
<

0.
01

B
B

D
 h

is
to

ry
 (

un
co

nf
ir

m
ed

)
0.

31
1

0.
07

7
<

0.
01

0.
40

9
0.

10
8

<
0.

01
0.

34
2

0.
06

2
<

0.
01

Po
st

m
en

op
au

sa
l s

ta
tu

s
−

1.
08

7
0.

12
8

<
0.

01
−

1.
08

7
0.

18
4

<
0.

01
−

1.
07

9
0.

10
5

<
0.

01

Pa
st

 H
T

 u
se

r 
(v

s 
ne

ve
r)

0.
24

2
0.

13
8

0.
08

0.
44

6
0.

19
2

0.
02

0.
31

8
0.

11
2

<
0.

01

C
ur

re
nt

 H
T

 u
se

r 
(v

s 
ne

ve
r)

0.
68

1
0.

11
3

<
0.

01
0.

59
4

0.
16

5
<

0.
01

0.
64

7
0.

09
3

<
0.

01

R
oo

t 
m

ea
n 

sq
ua

re
 e

rr
or

1.
43

4
1.

45
8

1.
44

3

R
-s

qu
ar

e
0.

42
0.

40
0.

41

N
H

S=
N

ur
se

s’
 H

ea
lth

 S
tu

dy
, S

E
=

st
an

da
rd

 e
rr

or
, B

M
I=

bo
dy

 m
as

s 
in

de
x,

 B
B

D
=

be
ni

gn
 b

re
as

t d
is

ea
se

, H
T

 u
se

=
ho

rm
on

e 
th

er
ap

y 
us

e

^ A
ge

 c
en

te
re

d 
at

 5
3,

 B
M

I 
at

 a
ge

 1
8 

ce
nt

er
ed

 a
t 2

1,
 c

ur
re

nt
 B

M
I 

ce
nt

er
ed

 a
t 2

5,
 a

ge
 a

t f
ir

st
 b

ir
th

 c
en

te
re

d 
at

 2
5

Cancer Causes Control. Author manuscript; available in PMC 2018 July 01.


	Abstract
	Introduction
	Materials and Methods
	Mammography collection
	Mammographic density measurement
	Candidate predictors
	Exclusions
	Statistical analysis

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2

