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Abstract

Background

Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and

as insecticides. Although many phytochemicals act as toxins and deterrents to consumers,

the same chemicals may counteract disease and be preferred by infected individuals. The

roles of nectar and pollen phytochemicals in pollinator ecology and conservation are com-

plex, with evidence for both toxicity and medicinal effects against parasites. However, it

remains unclear how consistent the effects of phytochemicals are across different parasite

lineages and environmental conditions, and whether pollinators actively self-medicate with

these compounds when infected.

Approach

Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection inten-

sity, dietary preference, and survival and performance of bumble bees (Bombus impatiens).

We examined variation in the effects of anabasine on infection with different lineages of the

intestinal parasite Crithidia under pollen-fed and pollen-starved conditions.

Results

We found that anabasine did not reduce infection intensity in individual bees infected with

any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection
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intensity in microcolonies of queenless workers. In addition, neither anabasine nor its iso-

mer, nicotine, was preferred by infected bees in choice experiments, and infected bees con-

sumed less anabasine than did uninfected bees under no-choice conditions. Furthermore,

anabasine exacerbated the negative effects of infection on bee survival and microcolony

performance. Anabasine reduced infection in only one experiment, in which bees were

deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine

had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited

reduced—rather than increased—phytochemical consumption relative to uninfected bees.

Conclusions

Variation in the effect of anabasine on infection suggests potential modulation of tritrophic

interactions by both host genotype and environmental variables. Overall, our results demon-

strate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that

the medicinal effects and toxicity of anabasine may be context dependent. Future research

should identify the specific environmental and genotypic factors that determine whether nec-

tar phytochemicals have medicinal or deleterious effects on pollinators.

Introduction

Flowering plants produce a rich diversity of phytochemicals that have multiple functions,

including defense against herbivores and pathogens [1,2]. Chemical defenses are present not

only in leaf tissue, but also in nectar, pollen, and other floral structures [3–5]. These floral phy-

tochemicals can protect reproductive tissue from florivores, nectar robbers and thieves, and

sexually-transmitted pathogens [6–9].

Antimicrobial phytochemicals can counteract infections not only in plants, but also in

plant-eating herbivores and pollinators [10–12]. For example, ingestion of phytochemicals at

concentrations present in floral rewards such as nectar—which are typically lower than those

in other plant parts [13]—can reduce parasite infection intensity in honey and bumble bees

[14–16]. These results suggest that some flowers may have medicinal value, and that plant

communities could influence infection patterns among pollinators. However, other studies

found no medicinal effects of some compounds that previously reduced infection, including

nicotine, thymol, and anabasine [17,18]. This variability suggests the existence of factors that

alter the potential medicinal effects of phytochemicals on bees. This study considers several

candidate factors, including parasite lineage, bee genotype, phytochemical preference, and bee

rearing conditions and nutrition.

Parasite lineage or genotype can have strong effects on an infection’s sensitivity to phyto-

chemicals and pharmaceutical drugs [19–21]. One possible difference between the studies that

showed negative versus positive results relates to the parasite lineage. In each case, Crithidia
spp. parasites were collected locally at the time and place of the trial. Parasites, including those

of bees such as the trypanosome gut parasite Crithidia spp., can exhibit high levels of genetic

diversity and recombination [22,23]. However, no study has explicitly assessed variation

among pollinator parasite lineages in susceptibility to phytochemicals in vivo. Prior studies

that showed medicinal [16] vs. non-medicinal or infection-aggravating [17,18] effects of nectar

phytochemicals on bee parasites were conducted using different, locally collected, wild lineages

of Crithidia. An experiment that explicitly tests multiple parasite lineages in parallel will clarify

the degree to which parasite lineage determines the antiparasitic activity of phytochemicals in
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hosts, and how generally useful phytochemicals are likely to be against parasites in genetically

diverse pollinator-parasite communities.

Another determinant of the medicinal value of phytochemicals is whether these compounds

are actively sought and consumed by infected hosts. Although high phytochemical concentra-

tions often deter bees [24,25], lower phytochemical concentrations can be attractive [26,27]. Phy-

tochemical preferences can also change across ecological contexts. Both herbivores [10,11,28]

and bees [29,30] express infection-dependent preferences for anti-parasitic substances. This

behavioral plasticity, in which medicinal chemicals are repellent to healthy animals but preferred

by infected animals, may enable hosts to minimize the costs of potentially toxic effects of phyto-

chemical consumption while still obtaining medicinal benefits. For a chemical to be considered

medicinal, its use should benefit infected individuals [12], although it may harm uninfected indi-

viduals. For example, pyrrolizidine alkaloids increased mortality of unparasitized Grammia
incorrupta caterpillars, but reduced mortality of parasitized caterpillars. In bumble bees (Bombus
impatiens), phytochemical consumption can be costly for uninfected bees [31–33]. However,

phytochemicals can also ameliorate bee infection [16,34]. Because infection can reduce bee fit-

ness [35,36], consumption of antiparasitic compounds may be selectively beneficial for infected

bees. On the other hand, two previous studies that showed antiparasitic effects of phytochemicals

did not find that phytochemicals improved survival of infected bees [15,16]; that is, phytochemi-

cals may reduce parasitism, but it remains unknown whether such compounds are beneficial for

infected hosts. Ultimately, effects on host fitness, and not on parasites per se, determine whether

phytochemical ingestion is adaptive [12].

The effects of dietary chemicals on both hosts and parasites may also be modulated by

nutritional environment. For example, dietary protein is necessary for host expression of

immune genes [37], detoxification pathways that protect hosts from phytochemicals [38], and

survival and reproduction [39,40]. However, a well-nourished host may also provide a more

suitable environment for parasites [41], which would explain the higher infection levels found

in bees fed ample pollen [40,42]. Because of dietary protein’s importance in induction of

detoxification genes [38], phytochemical tolerance may be higher in well-nourished hosts,

such that phytochemicals are more beneficial in nutritionally rich environments. The effects of

nutrition on phytochemical-mediated benefits against infection are important for bees, which

have phytochemical-rich diets but may also face periodic food shortages [43,44]. However, no

experiments have considered how the effects of phytochemicals on bees and their parasites

vary across nutritional contexts.

Four experiments were conducted with Bombus impatiens and Crithidia to address the con-

text-dependent medicinal value of the nectar alkaloid anabasine and its isomer nicotine for

bumble bees. We addressed the following hypotheses:

1. Due to differences in sensitivity among parasite lineages, anabasine reduces infection with

some lineages of Crithidia but not others. In the Parasite Variation Experiment, we tested

for variation in anabasine’s effects across four Crithidia lineages.

2. Bees self-medicate, such that relative preference for phytochemicals is increased under con-

ditions of infection. In the Host Preference Experiment, we examined whether infection

altered preference for 30% sucrose solution containing either anabasine or nicotine com-

pared to phytochemical-free control solutions.

3. Anabasine consumption is deleterious for uninfected bees, but beneficial for infected bees.

In a Life History Experiment, we tested whether anabasine affected infection intensity in

microcolonies; and examined whether infection, anabasine, or their interaction affected

food consumption, mortality, and microcolony performance.

Anabasine consumption: Effects on bumble bee infection and fitness
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4. Anabasine consumption has greater benefits in pollen-fed than in pollen-deprived bees. In

the Pollen Deprivation Experiment, we tested whether anabasine reduced infection in bees

fed sucrose solution but deprived of pollen, and whether consumption or mortality was

influenced by infection, anabasine, or their interaction.

Study system

Parasite: Crithidia. Crithidia is a hindgut trypanosome parasite of bumble bees [45] that

is widespread and abundant. Although one study found that infection prevalence may be only

5–10% in newly-emerged queens, infection rates of mature colonies can range from 30% in

Switzerland [23] to over 50% in other areas [35,46,47]. Infection can be costly for workers and

colonies. Crithidia infection hastens mortality in starved workers [36], decreases queen colony-

founding success and colony production [35,36], evokes a potentially costly immune response

[48], and may alter worker foraging abilities [49] in Bombus terrestris and B. impatiens.
The spread of Crithidia infection is aided by transmission at flowers [50,51]. However, flow-

ers may also expose parasites to floral phytochemicals, both directly on floral surfaces, and

indirectly in the digestive tract when pollinators consume pollen and nectar [52], both of

which are rich in phytochemicals [3–5].

Crithidia populations are diverse, and different strains can sexually recombine [22]. Within

a given sampling region, the same genotype may seldom be found more than once [23], and

three-fourths of infected bees may harbor multiple Crithidia genotypes [23]. Different Crithi-
dia strains can have markedly different growth rates and levels of infectivity that vary accord-

ing to host-parasite genotype-genotype interactions [53–55]. Bombus-Crithidia host-parasite

interactions can be further modulated by host nutrition, such that each strain performs best in

a particular host genotype fed a particular dietary sugar concentration [56].

Host: Bombus impatiens. We examined Crithidia infections in the Common Eastern

Bumble Bee, Bombus impatiens. Like other bumble bee species in temperate regions, B. impa-
tiens has an annual colony cycle in which inseminated queens emerge in spring to found new

colonies. Colonies increase in size during the growing season as the worker populations in-

crease. In autumn, the colonies switch from the production of workers to the production of

reproductive drones and queens [57], and the colony senesces as floral resources diminish.

Although B. impatiens is not in decline, it is a widespread and commercially available model in

which to study the dynamics of infection, and may yield insights into the conservation of bum-

ble bee species that are threatened by infection-related decline [44,58].

Phytochemicals: Anabasine and nicotine. Anabasine and nicotine are alkaloids found in

plants of the genus Nicotiana, including in nectar [13,59]. Both compounds are acetylcholine

receptor agonists that have strong effects on the insect nervous system, resulting in convulsions

and death at high concentrations [60], and have been historically used as insecticides [61–64].

However, bees appear resistant to naturally occurring concentrations of these compounds.

Adult honey bee survival was unaffected by concentrations of up to 50 ppm nicotine [65], and

colony performance was robust to 6 ppm [32]. Both of these concentrations exceed those typi-

cally found in nectar [13,66]. Moreover, several studies have found that nicotine and anabasine

reduced Crithidia infection intensity in Bombus impatiens and B. terrestris at levels similar to

those in floral nectar [15,16], although other studies reported no or variable benefits of nectar

alkaloid ingestion [17,18]. Together, these studies suggest that nectar nicotine and anabasine

consumption could be protective against parasites but have minimal costs for bees [32,65].

In Nicotiana nectar, anabasine can range in concentration from 0–5 ppm in and nicotine

from 0–17 ppm [13,59,66]. In this study, for anabasine we used 5 ppm to correspond to the

mean anabasine concentration of N. glauca nectar [66]. For nicotine (used only in the
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preference trials), we used 2 ppm; nectar concentrations can exceed 8 ppm in Nicotiana
attenuata [59], but were below 2 ppm in all but one of 32 Nicotiana species surveyed [13].

Materials and methods

Parasite collection

Our experiments used six different Crithidia parasite lineages (defined as groups of parasites

collected at the same time and location, and incubated in the same series of laboratory colo-

nies) collected from Massachusetts and Vermont, USA. Crithidia lineages were established

from wild Bombus impatiens collected at four sites near Amherst, Massachusetts and Norwich,

Vermont, USA, in September 2014. The Parasite Variation Experiment used four lineages

named for their sites of collection: (1) “HF” (Hampshire Farm Amherst, MA (42.329918,

-72.524552)); (2) “SG” (Simple Gifts Farm Amherst, MA (42.407050, -72.529282)); (3) “SS”

(Stone Soup Farm, Amherst, MA (42.363436, -72.567973); and (4) “VT” (US Route 5, Nor-

wich, VT (43.737069, -72.263626)). The Life History Experiment used a parasite lineage that

originated from bees caught at the University of Massachusetts Amherst campus (GPS coord:

42.389, -72.522) in September 2013. The Host Preference Experiment used a separate Crithidia
lineage collected from three sites near Norwich, Vermont, USA in 2013 (GPS coordinates:

“Connor”: 44.262, -72.507; “Morse”: 44.283, -72.543; “Sharon”: 43.680, -72.392). The Pollen

Deprivation Experiment was conducted with the same lineage used in the Life History experi-

ment [17,18].

The lineages were maintained by serial propagation in deliberately infected laboratory

“source” colonies, which were used as sources of infection to inoculate experimental bees from

separate, “experimental” colonies. To initiate infection, homogenized intestinal tracts from

dissected bees were diluted in water and examined under 400x magnification. Diluted guts of

2–3 infected bees per site were mixed with 50% sucrose and individually fed to workers of the

source colonies. When colonies began to produce reproductives (usually after 2–3 months),

the infection of each lineage was transferred to young colonies by inoculation of workers and

honeypots with diluted gut extracts from infected bees of the previous source colony.

Colony rearing conditions

We used commercial colonies of B. impatiens (Biobest, Leamington, ON, Canada), with an

initial size of approximately 30–40 workers and one queen. Upon arrival, at least 10 bees per

colony were dissected to verify absence of Crithidia. Colonies were fed from a reservoir con-

taining 30% w/w sucrose (cane sugar), and given a ~20 g piece of ground multi-floral pollen

mixed with 30% sucrose (Koppert Biological Supply, Koppert, MI, USA) every 2–3 days (~1

mL sucrose solution per 3 g pollen). The colonies were kept inside acrylic plastic containers

within cardboard boxes (30 cm length x 23 cm width x 25 cm height). The deliberately infected

“source” colonies were kept separate from the uninfected “experimental” colonies, from which

bees were taken for experiments.

Parasite variation in resistance to anabasine

To test the effects of anabasine, Crithidia parasite lineage, and their interaction on Crithidia
infection intensity, we used parasites collected from four field sites near Amherst, Massachu-

setts and Norwich, Vermont, USA in fall 2014. Individual worker bees from commercial colo-

nies were experimentally inoculated with parasites from one of the four lineages and fed 30%

sucrose solutions with 5 ppm anabasine (Anabasine treatment) or 30% sucrose alone (Control

treatment) for 7 d, at which time bees were dissected to assess infection intensity [17].

Anabasine consumption: Effects on bumble bee infection and fitness
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Experimental inoculations. Adult worker bees newly emerged from pupation, identified

by their pale coloration, were removed from experimental colonies daily. Generally, 3–4 exper-

imental colonies were active at any given time, for as long as they continued to produce work-

ers (4–6 weeks). We used 12 colonies over the course of the experiment (n = 10 to 117 bees per

colony), which lasted 5 months. Bees were weighed to the nearest 1 mg and moved to 18.5 mL

snap-cap clear plastic vials, in which they were kept throughout the experiment (Figure A in

S1 File). Vials were incubated horizontally in constant darkness inside a 28˚C incubator. To

supply bees with sugar water, the open end of a 2 mL microcentrifuge tube was filled with 30%

sucrose (500 μL day-1), plugged with a ~1 cm long dental cotton wick, and inserted into a hole

in the vial’s cap. Bees were transferred daily to clean vials with fresh sucrose solution and a

small piece of pollen (~50 mg). Each bee was first incubated for 1–2 d under control condi-

tions. On the third day, bees were starved for 3–4 h, inoculated, and began receiving anabasine

treatments.

Within each colony, bees were systematically assigned to anabasine treatments and Crithi-
dia lineages as follows: a number was assigned to each bee based on temporal order of eclosion

from the pupal clump. Odd-numbered bees were given control solutions; even-numbered bees

were given anabasine. On each inoculation date, we prepared a single Crithidia inoculum from

one of the four parasite lineages, which was used to infect each bee that had emerged 2 d prior.

Each lineage was used in one of every four successive days of inoculation.

To prepare the inoculum, intestinal tracts from bees in the “source” colonies were homoge-

nized for 3–4 seconds with a plastic pestle in a 1.7 mL microcentrifuge tube along with 300 μL

distilled water. The tube was briefly vortexed, then allowed to rest at room temperature for ~5

h to allow gut contents to settle and parasite cells to swim from the intestine into the superna-

tant. A 10 μL aliquot of each gut was screened for infection intensity by surveying a 0.02 μL

volume in a Neubauer hemocytometer at 400x magnification. Gut extracts of 2–3 bees were

diluted to 1200 cells μL-1, then mixed with an equal volume of 50% sucrose to make inoculum

with 6000 parasite cells per 10 μL droplet. This dose reflects a typical parasite concentration in

feces of an infected bee [67]. Experimental bees were fed a 10 μL droplet of inoculum from a

micropipette tip.

Anabasine treatments and Crithidia quantification. Anabasine treatments commenced

immediately post-inoculation and were provided throughout the 7 d experiment. Sucrose solu-

tions with anabasine (5 ppm) were made by dissolving the liquid compound (+/- anabasine,

97% purity, Sigma-Aldrich, St. Louis, MO, USA; mixed enantiomers were also used in previ-

ous studies of Crithidia [16,18]) in 30% w/w sucrose. Solutions were stored at 4˚C and remade

every 2 weeks. (Stock solutions of nicotine and related alkaloids are stable for >3 months at

4˚C [68].) Bees were supplied with 500 μL treatment solution and fresh pollen (~50 mg) daily.

Bees were dissected 7 d post-infection to assess infection intensity using the methods

described above (see Experimental Inoculations). Crithidia infection normally reaches a maxi-

mum by this time [67].

Statistical analysis. Analyses were conducted in R version 3.2 for Windows [69]. Linear

models were fit by restricted maximum likelihood in R package “lme4” [70]; Cox proportional

hazards models were fit with the package “coxme” [71]. Least-squares means and standard

error were calculated with package "lsmeans" [72]. Graphs were generated and assembled

through R packages “ggplot2”, “cowplot”, and “survminer” [73–75].

For analysis of infection intensity, Crithidia counts were ln(x+1)-transformed to improve

homogeneity of variance and normality of residuals. A linear mixed-effects model was fitted

with Crithidia parasite count as response variable; anabasine treatment, Crithidia lineage, and

their interaction as fixed predictors, bee mass at emergence as a covariate, and experimental

colony and inoculation date as random effects. Initially colony was included as a fixed factor to
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test for colony by anabasine interactions; however, this interaction was non-significant

(p = 0.40), so the model was reconstructed with experimental colony as a random effect. Bees

from two colonies were excluded from the analysis due to insufficient replication (<3 bees per

lineage and treatment). The final analysis included 466 bees (n = 49–70 per lineage and diet

treatment (Table A in S1 File)).

Effects of diet treatments on survival (46 total deaths among 602 bees, including the two

colonies excluded from analysis of infection) were analyzed with a Cox proportional hazards

model [71], with death hazard rate as the response variable, anabasine treatment as a fixed pre-

dictor, bee mass at emergence as a covariate, and experimental colony as a random effect.

Effects of Crithidia lineage and anabasine by colony interactions were not included because we

had insufficient deaths in each lineage and anabasine treatment to test for an interaction

[76]. Models were simplified by chi-squared tests [77] to remove non-significant covariates

(p>0.15).

Effects of infection on host preference for phytochemicals

This experiment assessed how infection altered preference for nicotine or anabasine compared

to phytochemical-free control solutions. Newly emerged bees were removed and infected 2 d

post-emergence with either 6000 Crithidia parasite cells in 25% sucrose, or a control solution

of 25% sucrose without parasites. Thereafter, bees were maintained in individual vials for 7 d

(~27˚C, constant darkness), to allow the infection to develop before assessment of preference.

During the 7 d incubation period, bees were moved daily to clean plastic vials with fresh 30%

sucrose solution (500 μL) and approximately 50 mg pollen moistened with sugar water (1 mL

30% sucrose per 3 g pollen).

Preference experiments were conducted in rectangular sandwich-style deli containers (14

cm x 10.7 cm x 5.1 cm). Each arena was fitted with two 2 mL microcentrifuge tubes, inserted

into ports drilled on opposite sides of the arena (Figure B in S1 File). One tube contained a

phytochemical-free 30% sucrose solution control solution, and the other contained 30%

sucrose solution with added nicotine or anabasine. Although our other experiments focused

on anabasine, for this question we also included nicotine, which is also often present in Nicoti-
ana nectar [13]. On the side of each tube, we drilled two 2.66 mm diameter drinking holes. At

the start of trials, each tube was filled with 1200 μL of the appropriate solution. The tubes were

weighed to the nearest 0.0001 g immediately prior to adding bees to the arenas, and again after

a 24 h feeding period (constant darkness, 27˚C). Consumption was calculated as the difference

in weights before and after 24 h feeding. To correct for mass loss due to evaporation rather

than consumption, we also recorded changes in mass of tubes in 15 bee-free control arenas,

which were incubated in parallel to the preference trials. Mass loss from tubes of the corre-

sponding treatment was subtracted from gross consumption to estimate net consumption.

After each trial, bees were dissected to confirm presence or absence of Crithidia infection. No

infection was found among bees in the uninfected treatment. Bees that had been experimen-

tally inoculated but did not have microscopically detectable Crithidia infection were excluded

from analysis. The right forewing of all experimental bees was collected for measurement of

the marginal cell length, a correlate of bee body size [78] that was used as a covariate in the

analyses. The experiment with nicotine included 38 uninfected and 52 infected bees from

three experimental colonies. The experiment with anabasine included 39 uninfected and 40

infected bees from five experimental colonies. Bees from each experimental colony were tested

on separate dates.

Statistical analysis. Effects of infection and phytochemicals on consumption were ana-

lyzed with linear mixed-effects models [70], with solution consumption as the response
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variable. Infection treatment, phytochemical treatment, and their interaction were used as pre-

dictors. Marginal cell length was included as a covariate. Experimental colony and individual

bee were included as random effects. We conducted separate analyses for nicotine and

anabasine.

Effects of infection and anabasine on Life History in microcolonies

In a 2 x 2 factorial design, 87 microcolonies were randomly assigned to an infection treatment

(uninfected or individually infected with 6000 Crithidia cells) and an anabasine treatment (con-

trol or 5 ppm anabasine in 30% sucrose) (n = 27 uninfected, control solution; n = 24 uninfected,

anabasine solution; n = 16 infected, control solution; n = 20 infected, anabasine solution). Each

microcolony consisted of three newly emerged bees, all from the same experimental colony with

the same date of eclosion; in total, 10 experimental colonies were used (4 to 15 microcolonies

per colony). In this experiment, worker bees were isolated directly from pupal clumps, rather

than allowed to emerge in their colonies. The pupal clumps were excised from colonies weekly,

incubated at ~27˚C in darkness and checked daily for bee emergence. Treatments to bees in the

microcolony began following 48 h acclimation to the new nest environment (described in the

next paragraph). Each bee was individually infected with 6000 Crithidia cells. Uninfected bees

were also starved and then fed a sham 10 μL droplet of 25% sucrose solution without Crithidia
to control for handling.

Microcolonies were housed in 500 mL transparent plastic cylindrical deli containers (see

Figure C in S1 File). Each day, microcolonies were fed a ~300 mg piece of pollen paste made of

ground pollen (Koppert, Howell, MI) moistened with ~100 μL 30% sucrose. Pollen consump-

tion was estimated by weighing the pollen ball to the nearest 0.0001 g before and after the daily

feeding interval. Sucrose solutions were administered via a petri dish (90 mm diameter x 15 mm

height), with a 4 cm dental cotton wick in a hole in the dish’s cover to allow access. Petri dishes

with treatment solutions were replenished daily. Consumption was estimated by weighing the

dish and the wick to the nearest 0.001 g before and after each daily feeding interval. Microcolo-

nies were observed daily for worker death, egg production, and honeypot construction.

Microcolonies were terminated 14 d after production of their first egg. This time period

was long enough to allow larvae to develop to later instars for measurement of microcolony

reproductive output, but short enough to complete the experiment within the lifespan of a typ-

ical worker bee [57]. The workers were dissected to measure Crithidia infection (see Parasite

Variation Experiment: Experimental Inoculation), and bee size (estimated by measurement of

the marginal cell of the right forewing). Microcolonies were then frozen for at least 48 hrs and

dissected, and all larvae were weighed to the nearest 0.0001 g. If a worker died before the

microcolony produced an egg, the microcolony was terminated, and all of its workers were

immediately dissected for analysis of infection intensity (see Parasite Variation Experiment:

Experimental Inoculation). Microcolonies that neither produced eggs nor incurred worker

deaths were followed for up to 30 d, at which point they were recorded as not having laid any

eggs, and Crithidia infection and bee size were measured in the workers.

Statistical analysis. Infection intensity was analyzed as in the Parasite Variation experiment,

with anabasine treatment as a fixed predictor, and microcolony nested within experimental col-

ony as random effects to account for non-independence of bees from the same microcolony and

colony. Microcolony size dimorphism, defined as [(marginal cell length largest bee / marginal cell

length smallest bee) - 1], was initially included as a covariate [31], but excluded from the final model

because it did not explain significant variation in infection (χ2 = 0.93, df = 1, p = 0.33). Due to

unbalanced replication across colonies, we did not test for variation in effects of anabasine across
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colonies. Only experimentally infected bees were included in the analysis of infection intensity;

no bees in the uninfected treatment had detectable Crithidia infection.

Sucrose and pollen consumption were analyzed by linear mixed models with consumption

(g bee-1 day-1) as the response variable; infection, anabasine, and their interaction as predic-

tors, and microcolony as a random effect. Experimental colony was included as a random

effect in the model of pollen consumption, but omitted from the model of sucrose consump-

tion because it did not explain significant variation (χ2 = 0.29, df = 1, p = 0.59). Exploratory

plots showed that consumption rose and fell over the course of the experiment. To accommo-

date this pattern, consumption models included both time (days since inoculation) and time2

terms as covariates.

Rates of worker mortality, first egg production, and first honeypot construction were

tested by Cox mixed-effects proportional hazards models. These analyses used event hazard

rate as the response variable; infection, anabasine, and their interaction as predictors; and

experimental colony as a random effect. Microcolony size dimorphism, defined as [(mar-

ginal cell length largest bee / marginal cell length smallest bee) - 1], was included as a covariate in

the mortality model, due to its suspected influence on dominance hierarchy within the

microcolony [31]. Probability of egg production by the end of the experiment was also ana-

lyzed with a binomial model that used infection, anabasine, and their interaction as predic-

tors; and experimental colony as a random effect.

For the subset of 33 microcolonies that produced eggs, production of larvae during the 14 d

between first egg production and dissection was analyzed in a gamma family generalized linear

mixed model with a log link function. Data were transformed by adding a trivial amount of

mass (0.0001 g) to each microcolony’s total before the model was fit. This allowed inclusion of

the three microcolonies that produced eggs but no larvae in the gamma family model, which

requires positive values of the response variable. Infection treatment, anabasine treatment, and

their interaction were used as predictors, and experimental colony as a random effect. Micro-

colony size dimorphism was initially included, but excluded from the final model because it

did not explain significant variation in larval mass.

Effects of anabasine on infection under pollen deprivation

This experiment tested the effects of Crithidia infection and dietary anabasine on infection

intensity and sucrose consumption under conditions of pollen deprivation. The Crithidia
lineage was the same as that used in the Microcolony Experiment. As in the Microcolony

Experiment, bees were obtained from pupal clumps that had been excised from the colony.

Newly emerged bees were weighed, fed control diets (no anabasine) with pollen for 48 h, then

infected 2 d post-emergence using 25% sucrose with or without 6000 Crithidia parasite cells.

Thereafter, bees were maintained in individual vials for 7 d (28˚C, constant darkness). Bees

were moved to clean vials daily, at which time we provided a clean feeder lid that contained

500 μL sucrose solution either with or without 5 ppm anabasine. To estimate sucrose con-

sumption, the feeder lids were weighed before and after each 24 h consumption interval.

Deaths were recorded daily. Bees that survived the 7 d experiment were dissected to mea-

sure infection intensity. The experiment included 182 bees (n = 45–47 bees per treatment

combination).

Statistical analysis. Infection was analyzed with ln (x+1)-transformed Crithidia count as

the dependent variable, anabasine treatment as a fixed effect; bee mass at emergence as a covar-

iate; and inoculation dates as random effects. However, in this experiment we had sufficiently

balanced samples to include colony as a fixed effect to test the anabasine by colony interaction

term, to evaluate whether the effects of anabasine varied across experimental colonies. Sucrose
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consumption was analyzed with infection, anabasine, and their interactions as fixed effects;

experimental colony, individual bee, and measurement date as a random effect, and bee mass

at emergence as a covariate.

Results

Crithidia infection

In all experiments, Crithidia inoculation was successful, with high rates of parasite replication.

Median control treatment infection levels were 255 � 103 (Parasite Variation), 180 � 103 (Life

History), and 247.5 � 103 (Pollen Deprivation) Crithidia cells bee-1; these values represent 30-

to 44-fold increases over the 6 � 103 cells with which bees were inoculated.

Anabasine generally did not reduce infection intensity, with the exception of two colonies

in the Pollen Deprivation Experiment. In the Parasite Variation Experiment, which was the

largest of the three that assessed infection, the parasite lineages varied in infectivity, with 59%

higher log-transformed infection intensity in the most infective lineage, SG, than in the least

infective lineage, VT. However, there was no effect of anabasine ingestion on infection inten-

sity for any of the lineages (Fig 1A, Table 1). Similarly, anabasine had no effect on infection in

the Life History Experiment (Fig 1B, Table 1), where anabasine nonsignificantly increased

infection intensity. However, median parasite count was more than twice as high in anaba-

sine-fed bees as in controls (25 vs 12 cells per 0.02 μL gut homogenate). In contrast, anabasine

did reduce infection intensity in the Pollen Deprivation Experiment by 27% overall (Fig 1C,

Table 1). However, this effect was driven by two of the four colonies, as indicated by the signif-

icant anabasine by colony interaction (Table 1). Anabasine reduced infection in colonies L10

(t = -3.82, p< 0.001) and L9 (t = -2.07, p = 0.044), but not in colonies E21 (p = 0.27) or E22

(p = 0.85). In contrast, there was no significant anabasine by colony interaction in the Parasite

Variation Experiment (p> 0.15), and insufficient replication to test this interaction in the Life

History Experiment.

Food consumption

We did not find evidence for infection-induced alkaloid preference. In the Host Preference

Experiment, alkaloid-free solutions were significantly preferred to nicotine- and anabasine-

containing solutions regardless of infection (Table 2). Results were similar for 5 ppm anabasine

(higher consumption of control solution by 90 mg bee-1 among uninfected bees and 40 mg

bee-1 among infected bees); and for 2 ppm nicotine (higher consumption of control solution

by 65 mg bee-1 among uninfected and 56 mg bee-1 among infected bees). For neither com-

pound did infection alter relative preference (Fig 2A), as indicated by the non-significant

infection by phytochemical interaction term in each model (Table 2).

In the Life History Experiment, neither infection nor anabasine treatment affected sucrose

consumption (Table 2, Figure D in S1 File), which initially rose, then fell over time in a similar

fashion across treatments (Fig 2B). Infection significantly reduced pollen consumption by 0.99

mg bee-1 d-1 (Table 2, Figure D in S1 File), but anabasine treatment had no effect on pollen

consumption (Table 2).

For individual bees in the Pollen Deprivation Experiment, there was a significant infection

by anabasine interaction in the opposite direction of what was predicted based on the hypothe-

sis of self-medication (Table 2). Among uninfected bees, we found higher consumption of

5 ppm anabasine than control solution by 9.5 mg bee-1 day-1, whereas among infected bees, we

found lower consumption of 5 ppm anabasine than control solution by 13.5 mg bee-1 day-1

(Fig 2B). There were no significant anabasine by colony (p = 0.58) or infection by anabasine by

colony (p = 0.85) interactions.
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Survival and performance

In the Life History Experiment, we observed significant interactive effects of infection and ana-

basine on bee health, such that anabasine had neutral or beneficial effects on uninfected bees,

but deleterious effects on infected bees. In particular, anabasine increased survival among

uninfected but decreased survival among infected bees (Fig 3A; Table 3A). Effects of infec-

tion and anabasine on time to first egg production were not statistically significant (Fig 3B,

Table 3B). However, in a binomial model that considered only endpoint probability of egg

production, the infection by anabasine interaction (χ2 = 4.23, df = 1, P = 0.040) was significant.

Anabasine nearly doubled the probability of egg production among uninfected bees (58% vs

30%, post hoc pairwise comparison: Z = 2.27, P = 0.023), but resulted in a non-significant

decrease in the probability of egg production among infected bees (25% vs 38%, Z = -0.79,

P = 0.43). Time to first honeypot production was significantly affected by infection but not

anabasine (Table 3C). Over the first four weeks of the experiment, rates of first honeypot for-

mation were similarly depressed in infected bees regardless of anabasine treatment (Fig 3C).

Anabasine also had strong deleterious effects on larval production in infected microcolonies.

Anabasine had a negative main effect on larval mass that was driven by its effects in infected

microcolonies, where total larval mass was reduced more than 80% relative to all other

Fig 1. Variable effects of anabasine treatment on Crithidia infection intensity in Bombus impatiens. Y-

axis shows least squares means and standard errors for ln(x+1)-transformed parasite count in 0.02 μL gut

extract. Colors denote diet treatments (30% sucrose control and 5 ppm anabasine in 30% sucrose). (A)

Parasite Variation: Anabasine did not reduce infection with any of four Crithidia lineages from different

locations. Samples sizes: n = 49–70 bees for each combination of lineage and diet treatment (see Table A in

S1 File for exact sample sizes). HF: Hampshire Farm, Amherst, MA. SG: Simple Gifts Farm, Amherst, MA.

SS: Stone Soup Farm, Amherst, MA. VT: Route 5, Norwich, Vermont, USA. (B) Life History Experiment:

Anabasine did not reduce infection in microcolonies. Sample size: n = 29 bees per treatment. (C) Pollen

Deprivation Experiment: In two colonies, anabasine reduced infection in bees deprived of pollen. The effects

of anabasine varied across colonies (Table 1). Sample sizes: n = 3–11 bees per colony and treatment, 72

bees total.

https://doi.org/10.1371/journal.pone.0183729.g001

Table 1. Effects of 5 ppm anabasine treatment on Crithidia infection intensity in Bombus impatiens

across three experiments. (A) Parasite Variation Experiment that tested effects of anabasine on infection of

individual bees with one of four Crithidia lineages and reared individually. (B) Life History Experiment in which

bees were reared in microcolonies of three workers. (C) Pollen Deprivation Experiment in which individual

bees were deprived of pollen. Significance of terms in generalized linear mixed-effects models were tested by

χ2 tests. Crithidia cell counts were ln(x+1)-transformed to better conform to model assumptions. Marginal cell

length refers to length of the right forewing marginal cell, used to estimate bee size (see Materials and Meth-

ods). Colony refers to the bee’s experimental colony of origin.

A. Parasite Variation Experiment χ2 df P

Anabasine 0.44 1 0.51

Lineage 11.69 3 0.009

Mass 13.92 1 <0.001

Anabasine by Lineage 1.46 3 0.69

B. Life History Experiment χ2 df P

Anabasine 1.92 1 0.17

Marginal cell length 2.37 1 0.12

C. Pollen Deprivation Experiment χ2 df P

Anabasine 11.82 1 <0.001

Colony 7.39 3 0.061

Anabasine by Colony 7.97 3 0.047

https://doi.org/10.1371/journal.pone.0183729.t001
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treatment groups (Fig 4). The infection by anabasine interaction was statistically significant

(Table 3D). Together, these results indicate that anabasine aggravated the effects of infection

on colony productivity.

Little mortality was observed in the Parasite Variation (46 deaths among 602 total bees) and

Pollen Deprivation Experiments (34 deaths among 182 bees), both of which lasted only 7 d.

Mortality negatively covaried with mass in the Parasite Variation Experiment (chi-squared =

12.88, df = 1, p<0.001), such that larger bees had a reduced risk of death (z = -3.59). However,

anabasine did not affect mortality in the Parasite Variation Experiment (chi-squared = 0.19,

df = 1, p = 0.66), and neither infection treatment (chi-squared = 0.82, df = 1, p = 0.37), anaba-

sine treatment (chi-squared = 1.47, df = 1, p = 0.23), nor their interaction (chi-squared = 0.52,

df = 1, p = 0.47) affected survival in the Pollen Deprivation Experiment (see Figure E in S1 File

for survival curves).

Table 2. Effects of Crithidia infection and 5 ppm anabasine on consumption of sucrose solution and

pollen in choice and no-choice experiments. (A) In Host Preference Experiments, individual bees were

given a choice between 30% sucrose solution with and without 5 ppm anabasine. The 24 h trial was conducted

7 d post-infection. (B) Consumption in microcolonies of Life History Experiment and (C) of individual bees in

Pollen Deprivation Experiment under no-choice conditions. Consumption was measured over the entire

experiment (up to 35 d for Life History Experiment, 7 d for Pollen Deprivation Experiment). Time was not a sig-

nificant predictor of consumption in the Pollen Deprivation Experiment.

A. Host Preference Experiments

Nicotine (2 ppm) χ2 df P

Infection 0.12 1 0.72

Nicotine 8.34 1 0.004

Marginal cell length 15.14 1 <0.001

Infection by Nicotine 0.04 1 0.84

Anabasine (5 ppm) χ2 df P

Infection 0.98 1 0.32

Anabasine 6.83 1 0.009

Marginal cell length 16.90 1 <0.001

Infection by Anabasine 1.14 1 0.29

B. Life History Experiment

Sucrose consumption χ2 df P

Infection 2.42 1 0.12

Anabasine 0.11 1 0.74

Time 225.46 1 <0.001

Time2 176.53 1 <0.001

Infection by Anabasine 0.85 1 0.36

Infection by Anabasine by Time 5.93 3 0.12

Pollen consumption

Infection 5.86 1 0.015

Anabasine 0.01 1 0.92

Time 340.57 1 <0.001

Time2 175.98 1 <0.001

Infection by Anabasine 1.52 1 0.22

C. Pollen Deprivation Experiment χ2 df P

Infection 1.47 1 0.22

Anabasine 1.33 1 0.25

Mass 11.13 1 <0.001

Infection by Anabasine 3.85 1 0.0497

https://doi.org/10.1371/journal.pone.0183729.t002
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Discussion

We tested the effects of naturally occurring concentrations of the nectar alkaloid anabasine on

bumble bee infection with multiple parasite lineages of Crithidia, examined whether infection

altered phytochemical preference, and assessed phytochemicals’ effects on performance of

infected versus uninfected bees. Our results did not support any of the four hypotheses that

motivated the study. Anabasine had medicinal effects but only in one study under pollen-

starved conditions; infection did not result in preference for anabasine; and anabasine was rel-

atively innocuous for uninfected bees but deleterious for infected bees. We discuss these results

in the context of our four motivating hypotheses.

Hypothesis 1. Anabasine consumption generally reduces infection, but

medicinal effects vary due to differences in sensitivity among parasite

lineages

We tested effects of anabasine on infection with four distinct parasite lineages. Although these

lineages were phenotypically distinct in terms of overall infectivity, anabasine was not effective

against infection with any of the lineages. All our lineages were collected within New England,

and three of four came from within a single town. This area does not encompass the broad

geographic distribution of Crithidia, which is found in North America, Europe, and South

America [79,80]. Thus, we cannot rule out the possibility that anabasine has effects on Crithi-
dia collected from other parts of its range. However, we should note that one of the studies

Fig 2. Effects of Crithidia infection and 5 ppm anabasine or 2 ppm nicotine on consumption of sucrose solutions and pollen in choice (A) and

no-choice (B) experiments. (A) Host Preference Experiments, in which individual bees were given a choice between 30% sucrose solutions with and

without 5 ppm anabasine or 2 ppm nicotine. The 24 h trial was conducted 7 d post-infection. (B) Pollen Deprivation Experiment solution consumption by

individual bees under no-choice conditions. Consumption was measured over the entire experiment (7 d). Bars and error bars represent model means and

standard errors. Red bars: 30% sucrose control. Teal bars: 5 ppm anabasine. Blue bars: 2 ppm nicotine.

https://doi.org/10.1371/journal.pone.0183729.g002
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that found medicinal effects of anabasine on Crithidia used a lineage collected in the same

region [16]. The contrast between the lack of antiparasitic effects shown here with the presence

of antiparasitic effects shown previously provides further evidence for variability in anabasine’s

effects on Crithidia infection, but provides no evidence that differences between parasite line-

ages are responsible for this variation.

Our results cast doubt on the hypothesis that variation in the effects of anabasine on Crithi-
dia are due to direct effects of this compound on parasite fitness. If between-strain variation

were the explanation for this variation, then the effects of phytochemicals should at least be

consistent within a Crithidia lineage. However, anabasine did not reduce infection of microco-

lonies in the Life History Experiment, but did reduce infection on two colonies under Pollen

Deprivation, even though these two experiments were conducted with the same Crithidia line-

age. Although we cannot rule out that a lineage may change over time, in vitro experiments

suggest that Crithidia are quite robust to nicotine and anabasine. For example, concentrations

of>500 ppm of nicotine or anabasine were necessary for Crithidia growth inhibition [21,81],

which are drastically higher concentrations than the<10 ppm found in Nicotiana nectar

[13,59,66].

Rather than direct effects on parasites, anabasine’s effects on infection may reflect the com-

pound’s effects on bees, which do have demonstrated sensitivity to nicotine and other alkaloids

[24]. Nicotine, anabasine, and neonicotinoids are all agonists of nicotinic acetylcholine recep-

tors, which are abundant in insect brains [82–85]. Indeed, nicotine has inspired an entire class

Fig 3. Effects of Crithidia infection on microcolony performance in the Life History Experiment. Microcolonies were observed daily for (A) deaths, (B)

time to first egg production, and (C) time to first honeypot construction. Line type represents infection treatment (solid lines for uninfected microcolonies;

dotted lines for infected microcolonies). Line color represents anabasine treatment (red lines for 30% sucrose control; blue lines for 30% sucrose with 5 ppm

anabasine). Crosses represent events (i.e., deaths, egg production, or honeypot construction) or censoring due to removal of the microcolony from the

experiment.

https://doi.org/10.1371/journal.pone.0183729.g003

Table 3. Effects of Crithidia infection and anabasine on microcolony performance in the Life History

Experiment. Microcolonies were observed daily for (A) survival of individuals, (B) time to first egg production,

and (C) time to first honeypot construction. Differences in hazard rates across treatments were assessed by

Cox mixed-effects proportional hazards models. (D) Total larval mass per microcolony at 14 d after first egg

production was tested for the subset of microcolonies that produced eggs.

A. Survival χ2 df P

Infection 3.72 1 0.054

Anabasine 0.64 1 0.43

Size dimorphism 3.74 1 0.053

Infection by Anabasine 3.86 1 0.0495

B. Egg production χ2 df P

Infection 1.06 1 0.30

Anabasine 1.59 1 0.21

Infection by Anabasine 2.60 1 0.11

C. Honeypot construction χ2 df P

Infection 3.96 1 0.047

Anabasine 0.91 1 0.34

Infection by Anabasine 0.54 1 0.46

D. Larval mass χ2 df P

Infection 2.78 1 0.095

Anabasine 5.28 1 0.022

Infection by Anabasine 5.70 1 0.017

https://doi.org/10.1371/journal.pone.0183729.t003
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of synthetic neonicotinoid insecticides that specifically target the acetylcholine receptors of

insects [86]. All of these compounds are stimulants at low concentrations, but cause spasms,

paralysis, and death at higher levels [24,87]. It is possible that anabasine provokes intestinal

spasms that interfere with parasite attachment to the gut wall [88], or lead to midgut carbohy-

drate malabsorption that increases the sugar content in the distal gut lumen, and thereby expo-

ses hindgut parasites like Crithidia to osmotic stress that inhibits growth [89]. Our uninfected,

Fig 4. Effects of Crithidia infection on microcolony production of larvae in the Life History Experiment. Microcolonies that produced

eggs were dissected 14 d after first egg production for measurement of larval masses. Bars and error bars show least squares means and

standard errors. Error bars are asymmetric due to back-transformation via the gamma family model’s log link function.

https://doi.org/10.1371/journal.pone.0183729.g004
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ad libitum fed microcolonies did not appear harmed by, and in some cases benefited from ana-

basine. However, wild bees under more stressful conditions, including infection, might be less

robust to potential costs of anabasine ingestion.

Hypothesis 2. Bees self-medicate, such that relative preference for

phytochemicals increases under conditions of infection

In the Host Preference, Life History, and Pollen Deprivation experiments, we tested whether

infection would alter preference for anabasine and, in the Host Preference Experiment, nico-

tine. In the Host Preference Experiment, when bees were given a choice between phytochemi-

cal-containing and phytochemical-free solutions, the phytochemical-free solution was

preferred regardless of infection status. These findings contrast with prior work, in which

infected Bombus terrestris workers visited nicotine-containing artificial flowers with relatively

high frequency, whereas uninfected bees had no preference [15]. It is possible that bees do visit

nicotine-containing flowers with greater frequency when infected, but that they consume less

nectar at each visit [90]; that preferences of free-flying bees differ from those of caged bees; or

that aversion to nicotine differs in B. impatiens and B. terrestris. We also cannot exclude the

possibility that preferences may differ at time points other than 7 d post-infection. Our results

suggest that B. impatiens and B. terrestris may be more sensitive to nicotine than is Apis melli-
fera, which displayed no aversion to 2 ppm nicotine [26], and had a deterrence threshold of

300 ppm [24]. B. terrestris total sugar water consumption was likewise more suppressed by

availability of neonicotinoids than was Apis mellifera consumption [91]. The observation that

anabasine is generally deterrent for both honey bees [26] and bumble bees (our results) indi-

cates that, even if anabasine does counteract infection, the deterrent effects of anabasine and

nicotine may limit the influence of these compounds, at least in bee populations that have

access to anabasine-free flowers.

Our no-choice experiments provide additional evidence against infection-dependent bene-

fits of anabasine. If bees self-medicate with anabasine, the deterrent effects of anabasine should

be weaker when bees are infected. However, the Life History Experiment found no effect of

infection on anabasine consumption. Furthermore, the Pollen Deprivation Experiment found

the opposite pattern of what was predicted under the hypothesis of self-medication: anabasine

consumption was highest in uninfected bees, whereas infected bees consumed less anabasine

solution than control solution. These results contrast with prior work in which 20 ppm anaba-

sine increased sucrose consumption in both infected and uninfected B. impatiens microcolo-

nies under no-choice conditions [16]. Although it would be most parsimonious to assume that

the effects of anabasine are unidirectional, it is possible that higher concentrations elicit greater

consumption, possibly due to stimulatory effects that increase energetic requirements. Experi-

ments that employ a range of concentrations would be needed to test this hypothesis. Still,

given that even low doses (2.5 ppm) of nicotine can elevate bumble bee mortality [15], and

that both nicotine and anabasine have inconsistent effects against parasite infection [17,18], it

seems unlikely that preference for these compounds would be favored in host populations.

Hypothesis 3. Phytochemical consumption is deleterious for uninfected

bees, but beneficial for infected bees

If self-medication is a form of adaptive plasticity, then phytochemical consumption should be

neutral or harmful to uninfected individuals, but beneficial to infected individuals [12]. In con-

trast, we found that anabasine had neutral or positive effects on uninfected bees, but negative

effects when combined with infection. In microcolonies of our Life History Experiment, ana-

basine treatment showed no significant effect against parasites, and in fact doubled median
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infection intensity (25 vs. 12 Crithidia cells � 0.02 μL-1), a difference that is striking, but was

not statistically significant. In terms of performance, anabasine did not affect survival, time to

egg production, time to honeypot construction, or larval production by uninfected bees. We

did find significant interactive effects of infection and anabasine on survival and larval produc-

tion, such that the combination of infection and anabasine treatment had negative effects of

these fitness correlates (Fig 3, Table 3). Our results contrast with previous reports, in which

20 ppm anabasine consumption reduced survival in uninfected bees but improved survival in

infected bees [16].

However, in the context of other experiments, our results suggest that chemical sensitivity

of both bumble bees and honey bees may be exacerbated by infection. In uninfected bees, the

48 h nicotine LD50 in Apis mellifera was 2000 ppm, up to 50 ppm had no effects on forager

mortality [65], and up to 5 ppm did not affect honey production. However, in immune-chal-

lenged honey bees, a mere 0.5 ppm nicotine increased mortality [92]. Similarly, the effects of

neonicotinoid insecticides on bee mortality were exacerbated by concurrent Crithidia [93] and

Nosema infection [94,95]. Neonicotinoids are, like anabasine and nicotine, acetylcholine

receptor agonists, so it is logical that each of these compounds would have similar effects on

bees. Chemical exposure may directly suppress immunity [94,96], and the combined stresses

of chemical exposure and infection may result in trade-offs between immunity and detoxifica-

tion, both of which are energetically expensive [38,97].

Although effects of phytochemicals on colony-level fitness cannot be fully understood from

experiments on isolated workers, workers are needed to gather and distribute resources, and

their ability to do so may be compromised by infection [49], acetylcholine receptor agonists

[98], and mortality. Workers may also transmit infection to other colony members [99],

including new queens, and thereby reduce success of colonies the following year [36]. We can-

not rule out that other phytochemical concentrations might have stronger benefits against

infection or lesser costs than those observed here, or that benefits are restricted to particular

levels of infection. However, our experiments suggest that anabasine and infection may exacer-

bate one another’s effects.

Hypothesis 4. Phytochemical consumption has the greatest benefits in

well-nourished hosts, which are less susceptible to phytochemical-

induced toxicity

In contrast to our hypothesis, anabasine consumption only reduced infection intensity in two

colonies of bees that were deprived of pollen post-infection. There are several possible explana-

tions for this effect. One possibility is that the parasite lineage used in this experiment was

more susceptible to anabasine than those used in other experiments. However, this was the

same lineage used in the Life History Experiment, in which no antiparasitic effects of anaba-

sine were found. A second possibility is that anabasine only affects parasites that are already

weakened by nutritional stress due to pollen deprivation, which has been shown to reduce

infection levels [40,42]. Our data do not support this hypothesis, either. Overall infection

intensity (Crithidia cell concentration) was at least as high in the Pollen Deprivation Experi-

ment as in other experiments (Fig 1), although we cannot rule out that Crithidia cells may have

been less robust to chemicals in pollen-starved bees.

A third possibility is that the effect of anabasine depends on genetic variation in bees and

their associated gut microbiota. Anabasine and other nAchR’s have strong excitatory effects

on insect brain neurons, where acetylcholine is the primary excitatory neurotransmitter

[84,85]. These excitatory effects may raise the frequency or intensity of defensive defecation

that occurs when bees are startled. This behavior might expel parasites from the hindgut. If bee

Anabasine consumption: Effects on bumble bee infection and fitness

PLOS ONE | https://doi.org/10.1371/journal.pone.0183729 August 23, 2017 19 / 26

https://doi.org/10.1371/journal.pone.0183729


genotypes vary in sensitivity to anabasine, in the same way that diverse insect species vary in

sensitivity to nicotine [60], bees of some colonies might be more strongly affected by the com-

pound. This idea is supported by the significant variation in anabasine’s medicinal effects

across colonies. It could be that prior experiments that found medicinal effects of anabasine

[16,100] used colonies that happened to be exceptionally sensitive to this compound, harbored

microbiota with low rates of anabasine catabolism, or converted anabasine into compounds

with stronger antiparasitic effects.

Two factors may have magnified the effects of anabasine in the Pollen Deprivaiton Experi-

ment. The first is the absence of protein from dietary pollen. Pollen consumption is necessary

for induction of detoxification genes [37]; absence of pollen may lead to stronger effects of

alkaloids due to inability to metabolize these chemicals. This idea is supported by the reduced

nicotine tolerance observed in honeybees fed low-protein diets [101]. Pollen would also have

provided bees an alternative, anabasine-free food source, which could have decreased total con-

sumption of anabasine. We note that all the experiments to date that have shown medicinal

effects of anabasine included factors that promoted high anabasine intake, particularly during

the initial stages of infection. For example, whereas we starved bees for 2–3 h pre-inoculation,

Richardson et al. [16] and Anthony et al. [100] starved bees overnight, which may have resulted

in high anabasine consumption immediately following infection as bees attempted to refeed and

rehydrate. Similarly, another trial that showed medicinal effects of anabasine [18] was conducted

under hot and variable conditions that may have raised carbohydrate and water requirements

and prompted higher consumption of anabasine-containing solutions when this was the only

liquid available. Specifics of each of these prior experiments are summarized in S1 Appendix.

Second, bees in the Pollen Deprivation Experiment were taken directly from pupal clumps

that had been excised from the rest of the colony, and had no opportunity to acquire micro-

biota from nest mates. This horizontal transmission is necessary to colonize the relatively ster-

ile gut of newly emerged bees [102]. Although experimental bees were inoculated with whole-

gut homogenates at the time of infection, a lack of pre-colonization with core microbiota may

have exacerbated susceptibility to infection [103], and thereby made it easier to discern medic-

inal effects of phytochemicals. In addition, if microbiota themselves can metabolize phyto-

chemicals [104,105], lack of symbiotic microbiota may have reduced the rate of anabasine

breakdown, and thereby increased the potency of the ingested dose. Although bees in the Life

History Experiment were also taken from pupal clumps, infection in these bees was not

assessed for several weeks after inoculation with Crithidia-containing gut homogenates. This

longer period may have allowed more time for core gut microbiota to establish and modulate

anabasine metabolism over the course of the experiment. The role of the bee gut microbiome

in modulation of antiparasitic effects of phytochemicals requires further investigation.

Conclusions

Our goal was to explore how several factors contribute to variable effects of anabasine on

Crithidia infection in bumble bees. We found inconsistent evidence for medicinal effects,

which may be modulated by host genotype and food environment, and suggest that effects of

anabasine on infection intensity are more likely to reflect anabasine’s effects on insects rather

than direct effects on the parasite. Alkaloids were deterrent in preference trials regardless of

infection status; the absence of infection-induced preference may reflect uncertain benefits of

such behavior, in contrast to demonstrated negative effects of anabasine and other acetylcho-

line receptor agonists on insect survival and fitness.

Although uninfected bees in our experiments were not adversely affected by alkaloid-con-

taining diets, anabasine had deleterious effects on infected bees. This is the first report of
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exacerbation of floral alkaloids’ negative effects by Crithidia infection. This exacerbation is

consistent with a growing body of work that suggests the negative effects of combined stress-

ors—including infection, diet quality, and consumption of pesticides—on pollinator health

[44], and that widespread infection could have consequences for bees’ ability to tolerate phyto-

chemicals. The reasons for variable effects of nectar phytochemicals on parasite infection

warrant further investigation. Especially needed are factorial experiments that test multiple

environmental factors and phytochemical concentrations simultaneously. Knowledge of the

environmental factors that determine beneficial vs. detrimental effects of phytochemicals on

bee health will help explain the ecological implications of phytochemical occurrence, and how

these compounds can be applied in pollinator conservation and management.
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