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Abstract

The study of the Nuclear Pore Complex (NPC), the proteins that compose it (nucleoporins), and 

the nucleocytoplasmic transport that it controls has revealed an unexpected layer to pathogenic 

disease onset and progression. Recent advances in the study of the regulation of NPC composition 

and function suggest that the precise control of this structure is necessary to prevent diseases from 

arising or progressing. Here we discuss the role of nucleoporins in a diverse set of diseases, many 

of which directly or indirectly increase in occurrence and severity as we age, and often shorten the 

human lifespan. NPC biology has been shown to play a direct role in these diseases and therefore 

in the process of healthy aging.
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1. Introduction – The dynamic nuclear pore complex

Nuclear Pore Complexes (NPCs) are large multi-protein complexes that form aqueous 

channels bridging the cytoplasm and nucleus of all eukaryotic cells. NPCs were first visually 

observed by electron microscopy in 1949 in Xenopus laevis oocytes [1,2] and, although it is 

assumed that the evolution of the nucleus progressed through a protonucleus stage that was 

freely permeable with the cytoplasm, all extant eukaryotes possess a nucleus with NPCs [3].

After the initial discovery of the complex many experiments were done to determine the 

physical structure of the NPC, which was found to be a ~110 MDa structure (~60 MDa in 

yeast), with a central channel that allows the free diffusion of molecules less than ~90–110 

Angstrom and the active transport of molecules up to ~390 Angstrom [4]. The NPC is 

organized into 3 basic subunits: the cytoplasmic filaments and ring, the membrane-

embedded scaffold and central channel, and the nuclear ring and basket. Each of these 
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components is composed of multiples of 8 copies of ~30 proteins called nucleoporins, which 

are arranged into a highly organized structure with 8-fold rotational symmetry. Determining 

the structure/number of copies of nucleoporins per NPC is still a field of active research [5].

Previously it was thought that the nucleoporin composition of all NPCs was constant and the 

NPC was a passive structure, which served to allow diffusion of molecules between the 

cytoplasm and nucleus [2,6,7]. This view was supported by the high evolutionary 

conservation of the NPC architecture and of the fold type, domain organization, 

composition, and modularity of the nucleoporins [8]. Research over the last 25 years has 

demonstrated that not only does the protein composition of NPCs differ between different 

organisms, but it also differs between cells in a single organism [9].

Tissue specific differences in NPC composition were first described with the example of 

Nup210. This transmembrane nucleoporin is expressed at different levels in various tissues 

and during different stages of development [10,11]. Depleting Nup210 in mouse cell culture 

models was sufficient to prevent myogenic and neuronal differentiation [12]. Since Nup210, 

several other nucleoporins have been shown to have differential expression between different 

cells and tissues, and a few other pore components have also been found to be critical for 

differentiation in vitro and in vivo [13–16].

In addition to the main function of NPCs as mediators of nucleocytoplasmic transport, NPCs 

have been shown to regulate many cellular processes in a transport-independent manner 

including gene expression, chromatin organization, and cell cycle regulation. The transport-

dependent and transport-independent roles of NPCs were reviewed recently [17,18].

Much of the seminal work in NPCs has been carried out in yeast, which, despite having a 

closed mitosis (where the nuclear envelope does not break down during cell division), has 

been used as a model organism to demonstrate many fundamental aspects about the 

assembly and structure of the NPC that also hold true in metazoans. This review will focus 

on the role of NPCs in development, aging, and disease with an emphasis on the effect on 

human health. Although yeast and other single-celled eukaryotes possess characteristics that 

allow them to be studied to answer questions about aging and disease [19], they are 

evolutionarily divergent from mammals and findings in these organisms many times do not 

translate to humans, so we will focus our analysis on more closely related eukaryotic model 

organisms and studies from humans.

Most of the nucleoporin homozygous knockout mice that have been reported so far die in 

embryogenesis or shortly after birth. Of the few specific nucleoporin null mice that survive 

early development some are sterile and others have phenotypes that shorten their lifespan. 

Even mice with reduced levels of nuclear pore components often have serious health 

problems (Table 1) [13,20–37]. These studies and other examples of NPC biology will be 

discussed below demonstrating the importance of nucleocytoplasmic transport, 

nucleoporins, and NPCs in disease and healthy aging.
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2. NPCs in neurological disorders and the aging brain

2.1. Triple A syndrome

The most well studied nucleoporin-related neurological disorder is called triple A syndrome. 

Achalasia-Addisonianism-Alacrima or Allgrove syndrome is a rare autosomal recessive 

disorder characterized by adrenocorticotropin resistant adrenal cortex, inability to relax 

esophageal sphincter, and inability to produce tears as well as other neurological symptoms 

[38]. The symptoms are highly variable in both severity and timing but because of the clear 

autosomal recessive inheritance pattern, genetic mapping of the mutation was possible. The 

disease was mapped to mutations in the AAAS gene, which codes for the protein Aladin 

[39]. At the time of the genetic mapping the subcellular location of Aladin was not known 

but it was subsequently found to be a component of the NPC [40]. There are many known 

Aladin mutations that have been linked to triple A syndrome but the ones with the greatest 

disease severity cause Aladin to not localize correctly to the NPC [41]. Surprisingly, Aladin 

knockout mice have only mild neurological defects and no other symptoms associated with 

triple A syndrome (Table 1) [36].

Although there is extensive information about the different mutations in the AAAS gene and 

there are descriptive models regarding how the nucleoporin mutations might lead to triple A 

syndrome, there is little evidence supporting a molecular mechanism. Aladin is directly 

anchored to the NPC by the transmembrane nucleoporin NDC1 [42]. Depletion of NDC1 

not only affects Aladin NPC-anchoring but also impairs nuclear import [43]. Thus, an 

Aladin mutant that does not bind NDC1 will need to be used to discern if Aladin 

mislocalization results in a transport defect or if this is due to NDC1 depletion. But 

supporting a potential role for Aladin in nucleocytoplasmic transport, recent evidence 

suggests that triple A syndrome might be caused by the inability of the mutant or null allele 

of Aladin to transport proteins that are critical to protect cells from oxidative damage [44]. 

Nuclear import of a protein with known roles in oxidative stress response, Ferritin heavy 

chain (Fth1), is impaired in the absence of Aladin [45,46]. Subsequent research has shown 

that Aladin interacts directly with progesterone receptor membrane component 2 

(PGRMC2), a microsomal protein known to regulate cytochrome P450 hydroxylases and 

oxidoreductases, which are critical for maintaining cellular oxidative state and for generating 

precursors for hormones like cortisol [47]. After Aladin knockdown, the cytochrome P450 

enzymes are reduced and cells are more susceptible to oxidative stress [48]. These results 

support the hypothesis that Aladin mutations cause triple A syndrome by reducing the cells’ 

ability to respond to oxidative stress and possibly altering hormone production.

Supporting the oxidative stress model, Aladin-depleted human adrenal tumor cells had 

increased levels of oxidative damage and reduced cortisol production [49]. Cortisol is 

normally produced by the adrenal glands in response to ACTH but one of the characteristics 

of triple A syndrome is insufficient cortisol production in response to ACTH [38]. This is the 

first human evidence demonstrating how Aladin may be causing at least one of the 

symptoms of triple A syndrome, but much work remains to determine how the diverse 

symptoms of triple A syndrome manifest from Aladin mutations. The mechanistic studies to 

date have demonstrated that the loss of the Aladin protein leads to toxic cellular damage, but 
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it sill remains to be seen if the known human mutations in the AAAS gene could cause this 

same damage. Additionally, how this cellular damage could cause the remaining 

physiological symptoms of triple A syndrome is still unclear.

2.2. Frontotemporal dementia, amyotrophic lateral sclerosis and Parkinson’s disease

Frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Parkinson’s 

disease (PD) are all serious neurodegenerative disorders that cause progressive loss of 

cognitive ability (Figure 1). In recent years a link between these disparate disorders and 

NPC biology has emerged. A recent example of this connection is that a motor neuron 

specific knockout of Nup358 (also known as RanBP2), a cytoplasmic filament nucleoporin 

with known roles in oxidative stress response [50], causes a mouse ALS phenotype (Table 

1). Conditional ablation of Nup358 in mouse motor neurons causes the onset of the ALS 

symptoms of hypoactivity, hind limb paralysis, respiratory distress, and eventually death 

[51]. The ubiquitous Nup358 heterozygous null mice suffer from increased severity of 

akinetic PD when they are exposed to the neurotoxin MPTP (Table 1) [52]. The connection 

between PD and ALS has not been determined, but Nup358 does appear to play a role in 

both of these neurodegenerative phenotypes.

The first discovered genetic determinant of FTD and ALS is the GGGGCC (G4C2) 

hexanucleotide repeat expansion (HRE) found in the C9orf72 gene. The HRE causes the 

transcription of RNA that form into nuclear foci [53,54]. Because the G4C2 HRE RNA 

undergoes repeat-associated non-AUG (RAN) translation, it forms insoluble high molecular 

weight polydipeptides [55,56]. Two groups simultaneously reported that, in Drosophila, the 

G4C2 HRE disrupts nucleocytoplasmic transport and causes the neurodegeneration typical of 

ALS [57,58]. Specifically, nuclear import is impaired and genetically increasing import or 

decreasing export rescues the neurodegeneration defect. The nucleocytoplasmic distribution 

of Ran in induced pluripotent stem cells (iPSCs) derived from patients with ALS is shifted 

towards the cytoplasm as expected in cells with reduced import. Excitingly, transport defects 

and neurodegeneration are rescued by pharmacotherapeutic intervention with nuclear export 

inhibitor KPT-276 (an analog of KPT-330, now known as Selinexor) opening up the 

possibility that these inhibitors might be useful for the treatment of ALS or other 

neurodegenerative diseases where nucleocytoplasmic transport is altered [57]. Nucleoporins 

were found to play a complex role in this Drosophila model of ALS. Knocking down most 

nucleoporins enhanced the phenotype while knocking down other nucleoporins suppressed 

the phenotype [58].

RAN translation of the sense and antisense G4C2 HRE RNAs produce 5 different 

polydipeptides: Poly glycine-alanine (GA), glycine-arginine (GR), glycine-proline (GP), 

proline-arginine (PR), and proline-alanine (PA) [59]. The formation of polyGA aggregates 

was prevented when a mutated form of the protein (a single proline amino acid was inserted 

every 5 repeats) was expressed instead of the pure polyGA variant. Toxic polyGA protein 

aggregates contain HR23A and HR23B (proteins critical for transferring ubiquitinated 

proteins to the proteasome) and nucleocytoplasmic transport proteins including the 

transmembrane nucleoporin Pom121 [60]. In a yeast genetic screen for polydipeptide repeat 

toxicity, the nucleoporin NDC1 and proteins critical to nucleocytoplasmic transport and 
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regulators of the Ran-GTPase cycle were found [61]. The last few years of research into the 

pathological mechanisms of ALS increasingly suggest an important role for 

nucleocytoplasmic transport and the NPC. Thorough evaluations of the role of 

nucleocytoplasmic transport in ALS have been conducted recently [62,63].

2.3. Huntington’s Disease

Similar to the C9orf72 HRE commonly found in ALS, a CAG repeat expansion in the 

huntingtin gene leads to the formation of polyglutamine (polyQ) protein aggregates and 

causes Huntington’s disease (HD). HD is an autosomal dominant neurodegenerative disorder 

associated with neuronal cell death, motor impairment, personality changes, and dementia 

[64]. A mouse line with greater than 100 CAG repeats in the huntingtin gene was found to 

die at an advanced age after suffering from the development of a disease which possessed 

hallmark symptoms of HD. These mice formed neuronal intranuclear inclusions, which are 

also seen in patients with the disease [64,65]. Mutant forms of the huntingtin gene with 

greater than 20 CAG repeats cause perinuclear aggregates of the protein to form that are 

resistant to proteolytic degradation and cause cell death [66]. Protein aggregation in the 

cytoplasm but not the nucleus of cells leads to the mislocalization of proteins with low-

complexity and disordered regions such as nuclear transport factors [67].

Debate exists about the subcellular location of the initial polyQ aggregates [68]. Although 

mutant huntingtin protein is seen to accumulate initially in the nucleus of neurons in HD 

mouse models [69], cell culture live imaging studies suggest that mutant huntingtin protein 

exists diffusely in the cytoplasm and nucleoplasm of cells and that aggregates can form on 

either side of the nuclear membrane. When aggregates begin to form in the cytoplasm, they 

eventually become perinuclear deforming the nucleus and causing the normally postmitotic 

cells to re-enter the cell cycle and undergo cell death. Alternatively, if aggregates formed on 

the inside of the nucleus, the cells would not develop cytoplasmic aggregates and continue to 

survive [70]. Despite the disagreement about the initial subcellular location of the 

aggregates, clearance of mutant huntingtin protein via the autophagy or the ubiquitin 

proteasome pathways and maintaining efficient nucleocytoplasmic transport is thought to be 

critical to preventing the disease [68].

In a mouse model of HD, after polyQ aggregates formed, nucleocytoplasmic transport was 

greatly impaired, nucleoporins were severely mislocalized and they were labeled less with 

the posttranslational modification O-linked beta N-acetylglucosamine (O-GlcNAc) [71]. 

Many nucleoporins are constitutively modified with the O-GlcNAc carbohydrate on serine 

and threonine residues [72] and these modifications are critical to prevent NPC 

ubiquitination and subsequent proteasomal degradation. Loss of the O-GlcNAc modification 

from nucleoporins leads to the disruption of the permeability barrier of the NPCs [73]. 

Overexpression of nucleoporins and treatment with Thiamet-G, which inhibits the O-

GlcNAc removing enzyme O-GlcNAcase [74], rescues not only the transport defect but also 

prevents the cell death associated with the formation of the polyQ aggregates [71].

Interestingly, some of the large perinuclear polyQ aggregates are decorated with NPCs even 

though the nuclear envelope continues to separate the aggregates from the nucleoplasm [70]. 

Unfortunately, it is not yet known how or why the NPCs come to encircle the perinuclear 
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polyQ aggregates, but a proteomic analysis of all the proteins present in polyQ aggregates 

found many, if not all, nucleoporins [75]. Many questions remain about the role of NPCs in 

HD but there is sufficient evidence to indicate that alterations in nucleocytoplasmic transport 

are integral to the pathology of the disease.

2.4. Alzheimer’s disease

Alzheimer’s disease (AD) is a serious neurodegenerative disorder characterized by memory 

loss, cognitive dysfunction, and eventually early death. The prevalence of the disease is 

expected to quadruple in the next few decades and place an increasing burden on society 

[76]. The most common form of the disease has a genetic contribution of ~60–80% but no 

exact mechanism has been demonstrated. AD is difficult to diagnose early but can be 

characterized by the occurrence of extracellular amyloid beta protein aggregates, 

hyperphosphorylated tau (a microtubule associated protein), and intracellular neurofibrillary 

tangles (NFTs) composed of tau protein [76]. The role of NPCs in AD has not been 

established but in AD patient hippocampal neurons importin alpha1 is aberrantly localized to 

cytoplasmic inclusions [77], NPCs are found in aggregates, and nuclei are abnormally 

shaped [78].

The intracellular NFTs are analogous to the PolyQ aggregates seen in HD and the PolyGA 

aggregates seen in ALS because they all represent a failure in proteostasis, the cellular 

homeostasis of protein concentration, conformation, and location [79]. The evidence for the 

role the PolyQ and PolyGA aggregates play in nucleocytoplasmic transport is considerable 

and, while there is still little evidence that in AD NFTs might also alter transport, it seems 

likely that this disorder will also be found to have a critical NPC aspect.

2.5. Neurological development and brain injury

A study of the expression of nucleoporins in rats after a reduced blood flow brain injury 

called cerebral ischemia, found that nucleoporins Nup210, Nup107, Nup205, and Nup50 

were all increased within days after the injury and the expression continued to rise for up to 

4 weeks. RanGap1, an NPC binding protein with known roles in nucleocytoplasmic 

transport, was also found to have increased expression after injury. Expression of the 

nucleoporins surprisingly shifted from the classical perinuclear pattern to an intranuclear 

pattern [80]. The expression pattern of other nucleoporins was not examined and these 

experiments are still preliminary, but the possible role of nucleoporins in the resolution or 

pathology of brain injuries is exciting.

The first hint that nucleoporins might play a role directly in the development of the 

mammalian brain came from a study showing that mice a knockout of the nuclear basket 

nucleoporin Nup50 develop lethal neural tube defects in utero (Table 1) [32]. Additionally, 

scaffold nucleoporin Nup133 deficient mice are embryonically lethal and fail to develop 

terminally differentiated neurons (Table 1) [13]. Work looking at the role of NPCs in 

neurological development is still preliminary but there is corroborating evidence from cell 

culture assays. Knockdown of the transmembrane nucleoporin Nup210 prevents the 

differentiation of stem cells into neurons in vitro [12] and conversely knockdown of Nup153 
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in mouse embryonic stem cells induced differentiation into neurons with the associated loss 

of pluripotency [81].

2.6. Other neurological disorders and the aging brain

Infantile bilateral striatal necrosis (IBSN) is a neurological disorder characterized by the 

degradation of 2 to 3 specific areas of the brain: the caudate nucleus, the putamen, and 

sometimes the globus pallidus. A familial autosomal recessive form of the disease was 

discovered that was mapped to a Nup62 missense mutation. Surprisingly, the mutation did 

not cause the protein to be degraded or mislocalized [82]. How the mutated Nup62 protein 

leads to this disorder has yet to be determined.

Human lethal congenital contracture syndrome-1 (LCCS1), also known as fetal motor 

neuron disease, can be caused by a mutation in the predicted nucleoporin Gle1 [83]. A 

Zebrafish model showed that Gle1 is important for the survival of a subset of neuronal stem 

cells as well as arborization of axons [84]. In human cells the mutated form of the protein 

impairs Gle1 oligomerization, which is critical for the nucleoporin’s role in mRNA export 

[85].

Nup358 mutations have been shown to cause acute necrotizing encephalopathy (ANE), 

which is a sporadically occurring encephalopathy that presents in children after common 

viral infections (Figure 1) [86,87]. It is not known if the nucleoporin mutations are related to 

the infection or resolution of the viral response or what possible mechanism might cause the 

disease to occur in patients with the mutations.

Most but not all of these neurological disorders occur more frequently and more severely 

with age (Figure 1). Thus far we have not directly addressed the effect of aging on the NPCs 

in the brain and there are not many studies that directly look at this topic but the data that 

does exist warrants further study. Electron microscopy studies in rats show the density of 

NPCs in hippocampal neurons as the brain ages drops in the dentate gyrus but stays constant 

in the CA1 region [88,89]. A molecular study of aging rat brains shows that scaffold 

nucleoporins turn over at a finite but very slow rate while peripheral nucleoporins turn over 

much more quickly. Consistent with previous work using C. elegans, this study found that 

the number of NPCs did not change while the relative nucleoporin composition of NPCs 

were altered as rats aged [90–92]. This is interesting because NPCs undergo oxidative 

damage and become more leaky with age [90], suggesting that the NPC turnover rate is 

possibly too slow and damaged NPCs accumulate with age in long lived cells such as 

neurons.

3. NPCs in viral infections and immunity

3.1. NPC-based viral nuclear entry

As stated above, molecules larger than ~390 Angstrom are unable to pass into the nucleus, 

therefore large viruses such as herpes simplex virus (HSV), human immunodeficiency virus 

(HIV), and adenovirus need to use 1 of 3 established methods for entry to the nucleus: 1) 

capsid degradation in the cytosol followed by classical nuclear import, 2) docking at the 

NPC followed by capsid degradation and modified nuclear import, and 3) docking at the 
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NPC followed by direct injection into the nucleus [93]. Even smaller viruses such as 

hepatitis B virus depend on nuclear entry, which is based on an active transport mechanism 

[94]. All of these methods involve the NPC either directly or indirectly. As we will see, 

viruses have evolved mechanisms to utilize the nucleocytoplasmic transport function of their 

hosts and their hosts have evolved mechanisms to combat these viral nuclear entry methods.

Nucleoporins that, under normal conditions, play a role in nuclear import are likely targets 

of viruses to establish nuclear entry. Nup214, a cytoplasmic ring nucleoporin with known 

roles in nucleocytoplasmic transport directly interacts with and acts as the functional import 

receptor of adenovirus 2 nucleocapsids [95]. The nuclear basket nucleoporin Nup153, which 

plays direct roles in importin alpha/beta mediated protein import [96], binds to the HIV 

capsid and knockdown of this nucleoporin reduces capsid entry [97]. In a proteomic analysis 

of HCV capsid interacting proteins, Nup98 was identified as critical for HCV entry into the 

nucleus and the subsequent propagation of the virus [98]. A nucleoporin found on both faces 

of the NPC, hCG1 [99], binds to the HIV protein Vpr and this interaction aids in the nuclear 

import of the viral protein [100]. These examples highlight how viruses utilize a variety of 

host nucleoporins, regardless of the NPC structural component, to gain entry into the nuclei 

of their hosts.

3.2. Antiviral immunity and evading the host immune defense

When a viral infection occurs mammalian cells produce an antiviral immune response to 

dampen virus production or signal for apoptosis. The most characterized example is that 

infected cells secrete Type 1 interferons (alpha and beta), which signal to nearby cells to 

activate an antiviral immune response [101]. For a virus to successfully propagate, it must 

evade or inhibit this antiviral immune response. Viruses are known to utilize many different 

methods to continue their proliferation and, considering the importance of nucleoporins in 

gene expression regulation [18], it is not surprising that viruses have evolved to utilize the 

NPC.

For example, the immune response to vesicular stomatitis virus (VSV) infection requires 

mRNA export, which occurs through the complex of NPC central channel nucleoporins 

Nup98 and Rae1. In order to block the host cell immune response, VSV produces a protein 

called matrix. The viral protein binds to Nup98/Rae1 and inhibits mRNA export which 

would effectively shut down the immune response, but immune cells such as lymphocytes 

produce the cytokine Type 2 interferon (IFN-gamma) which upregulates Nup98 protein to 

saturate the VSV block on export and allows an effective response to the intracellular 

pathogen [102,103]. Also targeting the role of Nup98 in antiviral signaling, polioviruses 

induce Nup98 degradation shortly after infection [104].

Nup98 is not the only nucleoporin targeted to alter nucleocytoplasmic transport. Human 

rhinovirus encodes the 2A protease family, which proteolytically cleaves Nup62, a central 

channel nucleoporin with known roles in nucleocytoplasmic transport [105–108]. Different 

strains of the rhinovirus produce variants of the 2A proteases, which cleave Nup62 in 

distinct ways. Nup62 cleavage changes nucleocytoplasmic transport receptors depending on 

how the nucleoporin is cleaved, which partially explains some of the differences in disease 

phenotypes and host responses to the different rhinovirus strains [109]. The nuclear basket 

Sakuma and D’Angelo Page 8

Semin Cell Dev Biol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleoporin Nup153 is also degraded during picornavirus infections such as poliovirus and 

rhinovirus [105,106].

Viruses are also able to modulate the selectivity of the host NPC to directly favor viral 

proliferation. Herpes simplex virus (HSV-1) protein ICP27 directly binds Nup62 and inhibits 

nuclear import. At the same time ICP27 also plays a role in nuclear export of viral mRNA 

and protein. This allows ICP27 to simultaneously block host nuclear import receptors, which 

prevents an antiviral response and facilitates viral production [110]. A more in-depth review 

of the viral modulation of nucleocytoplasmic transport has been conducted recently [111].

It is interesting to consider if treatment with drugs that block nucleocytoplasmic transport 

could be used to treat a viral infection or if they could help elucidate the mechanisms used 

by viruses to hijack cellular transport machinery. There is some precedent for this idea. 

Chromosome region maintenance 1 (CRM1) nuclear export inhibitor Leptomycin B (LMB) 

blocks export of p53 which would be targeted for degradation in the cytoplasm by an HPV 

protein after HPV infection [112]. LMB also blocks mRNA export of an HIV protein critical 

to viral replication preventing HIV replication in monocytes [113]. Notably, Selinexor, an 

analog of the nuclear export inhibitor LMB, is in clinical trials for the treatment of many 

cancers. Because Selinexor has already proven safe enough for clinical trials, if nuclear 

export inhibitors are shown to be an effective treatment for viral infections, many of the 

barriers to approval are already reduced.

3.3. The role of nucleoporins in the immunological response

As we have seen the role of nucleoporins in virology and antiviral responses has been well 

studied, but the role of these proteins in immunological responses to not just viruses but also 

other infections is still preliminary. In a monocyte cell line the scaffold nucleoporin Nup85 

(FROUNT) was found to bind CCR2 and CCR5: chemokine receptors responsible for 

signaling for cell motility. The binding is essential to CCR2/CCR5 signaling for 

pseudopodia formation and chemotaxis [114,115]. Surprisingly, in these studies Nup85 was 

found mainly not at the NPC but at the leading edge of the cells.

Demonstrating the first in vivo evidence of a nucleoporin modulating the immune response 

heterozygous null mice for the scaffold nucleoporin Nup96 were shown to have an impaired 

response to viral infections (Table 1). The mice have a specific reduction in Nup96 with 

normal levels of other nucleoporins and normal numbers of NPCs. Lower Nup96 protein 

levels specifically reduce export of mRNA for major histocompatibility complexes (MHC) I 

and II. Because MHCs are critical for antigen presentation to immune effector cells, the 

immune response to virus in these mice was dampened [30]. Like Nup96 heterozygous 

mice, mice with hypomorphic Sec13, a scaffold nucleoporin found in a subcomplex with 

Nup96 [116], have reduced MHC I and II expression and lower levels of cytokine 

production in stimulated T cells (Table 1) [20]. Both of these mouse models demonstrate the 

importance of nucleoporins in antigen presenting cells.

A direct role of nucleoporins in effector cells of the immune system has yet to be shown in 
vivo but, in a mouse T cell line, binding of the immune adaptor SLP-76 to NPC cytoplasmic 
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filament-associated protein RanGap1 is required for nuclear entry of SLP-76 and other 

proteins critical for an effective immune response [70].

4. NPCs in the development and progression of cancers

The roles of nucleoporins in a broad spectrum of cancers have been reviewed extensively 

[117–120]. We will briefly examine the literature in the context of the overall effect on 

healthy aging and highlight some newer findings. The role of nucleoporins in cancer can be 

put into 2 broad categories: fusion proteins and altered gene expression.

4.1. Oncogenic nucleoporin fusion proteins

Over the years, several nuclear pore complex components have been found as part of 

chromosomal translocations that generate aberrant fusion proteins in cancers. Tpr, Nup98, 

Nup358, and Nup214 are termed ‘promiscuous’ because they fuse to different partners to 

produce a variety of oncogenic fusion proteins [117].

Tpr (translocated promoter region) was the first nucleoporin described as a fusion protein 

[121]. Although unknown at that time, Tpr is a nuclear basket nucleoporin, which forms 

filaments that extend inside the nucleus. In Drosophila, the Tpr homolog Megator and 

another nuclear basket nucleoporin, Nup153, bind to ~25% of the genome [122]. In different 

cancers Tpr is found fused to 4 different tyrosine kinase receptors Met, NTrk1, FGFR1, and 

ALK. All of these fusions have been shown to create or are predicted to create constitutive 

activators of growth pathways including the Ras/MAPK and PI3K pathways [118].

The cytoplasmic filament nucleoporin Nup214 is another nucleoporin found as part of 

oncogenic fusion proteins. In T cell acute lymphocytic leukemia (T-ALL) and acute myeloid 

leukemia (AML) Nup214 is commonly fused to Dek and Set, which are modifiers of 

chromatin structure [123]. Nup214 also forms an active tyrosine kinase fusion protein with 

Abl and functions as an adaptor protein with SQSTM1 [124,125]. Although they are less 

well characterized than the Nup98 fusions described later, some mechanisms have been 

demonstrated for Nup214 fusion proteins. Recently, the Set and Dek fusions to Nup214 have 

been shown to alter gene expression regulation by inhibiting nuclear export of mRNA and 

transcription factors by tethering the export factors Crm1 and Nxf1 to nucleoplasmic 

aggregates [126]. In various cancers another cytoplasmic filament nucleoporin, Nup358, is 

fused to Alk, Abl, and Fgfr. The mechanism of oncogenesis in these fusions is still largely 

unexplored [117].

The central channel nucleoporin Nup98 has been shown to play a key role in cancer as a 

fusion protein with many binding partners that promote transformation in leukemias [118]. 

The Nup98/HoxA9 fusion was simultaneously first reported by two groups [127,128] and 

has subsequently been shown to be sufficient to cause leukemic transformation in human 

cells and in vivo in mice [129]. HoxA9 is one of a family of transcription factors, called 

homeodomain proteins, which are known to control development and differentiation, and are 

commonly mutated in cancers. Nup98 has also been found fused to other homeodomain 

proteins as well as non-homeodomain proteins in leukemias having ~32 known fusion 

partners [117].
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Much research has been done studying the different Nup98 fusion proteins and many 

mechanisms of oncogenesis have been proposed. The homeodomain fusions exogenously 

upregulate HoxA cluster genes, inhibit differentiation, and increase self-renewal [130]. 

Recently, Nup98 fusion proteins were found to alter nuclear envelope morphology, which 

further expands the possible mechanisms [131]. Additionally, Nup98 fusions to TopII beta 

and SETBP1 were shown to displace wild-type Nup98 and subsequently reduce Crm1-

dependent nucleocytoplasmic export [132]. More recently, a variety of Nup98 fusion 

proteins were shown to interact with mixed lineage leukemia 1 (Mll1) and these interactions 

are necessary for binding to Hox gene promoter regions [133]. The therapeutic implications 

are that Mll1 will be a good drug target in Nup98 fusion-induced leukemia.

The Nup98-HoxA9 fusion protein is found to reside in the nucleoplasm of cells [134] and 

many of the fusion partners have known roles in the nucleus such as histone 

acetyltransferases and deacetylases. Recent evidence shows that expression of Nup98-

HoxA9 fusion protein in mouse embryonic stem cells induces Hox cluster genes by binding 

to Crm1, which is bound at specific sites. The Crm1 inhibitor LMB disassembles the fusion 

protein clusters and reduces the expression of the Hox genes [135]. These data are 

particularly interesting as this could be a secondary mechanism of action for nuclear export 

inhibitors, which would increase the efficacy of the drug in Nup98-HoxA9 fusion positive 

cancers.

4.2. Changes in nucleoporin expression and nucleocytoplasmic transport

Expression of the cytoplasmic ring nucleoporin Nup88 is elevated in cancer cell lines and 

many tumors [136]. Nup88 is known to interact with mitotic spindles and its overexpression 

causes an increase in aneuploidy [137]. The overexpressed nucleoporin is found in 

aggregates in the cytoplasm and higher expression correlates with cancer progression and 

poor prognosis [138,139]. A recent study has mapped the interactome of Nup88 and 

demonstrated that the nucleoporin blocks Misp spindle localization that is critical for normal 

spindle formation and chromosome separation [140].

An analysis of proteome alterations during prostate cancer progression revealed that Nup62 

is upregulated in metastatic and clinically localized prostate cancer when compared to 

benign prostate [141]. Nup62 was shown to directly regulate calcium signaling through 

calmodulin-dependent kinase kinase 2 (CaMKK2) in castrate resistant prostate cancer cells. 

Nup62 and CaMKK2 expression are increased in advanced prostate cancer and knockdown 

of Nup62, and not other nucleoporins (Nup98 or Nup88), reduced growth more strongly in 

an advanced prostate cancer cell line when compared to a non-malignant prostate cell line 

[142].

NDC1 is highly overexpressed in NSCLC and higher expression levels correlate with 

increased progression and poorer survival. Knockdown of NDC1 in NSCLC cell lines 

reduced cell proliferation and caused cell cycle alterations. In vivo knockdown of NDC1 in 

xenograft cancer models was able to reduce tumor growth [143].

Although the mechanisms of pathogenesis are not well characterized, most other 

nucleoporins and transport proteins have also been found dysregulated in various cancers 
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including Nup210, Nup133, Nup107, Sec13, Nup188, Nup93, Nup153, Tpr, Nup358, 

Nup214, Nup98, hCG1, RanGap1, and Rae1 [117,144].

Interestingly, in a whole genome RNAi screen against colon cancers with expression profiles 

similar to Braf(V600E) mutants, Nup358 was the gene found to have the greatest specific 

lethality when knocked down. The Braf-like mutant colon cancer cells depended on Nup358 

for efficient microtubule dynamics at kinetochores and the cells were more sensitive to the 

microtubule polymerizing poison vinorelbine. Treatment with vinorelbine was sufficient to 

block Braf-like mutant colon cancer xenograft tumor growth [145]. The critical role for 

Nup358 in mitotic spindle assembly was previously described in HeLa cells [146] but this 

study highlights how nucleoporins are capable of playing roles in cancer pathogenesis while 

not directly associated with the NPC and without being fused to other proteins. The example 

of Nup62 seen above and this case of Nup358 demonstrate how targeting nucleoporins, even 

ubiquitously expressed ones with broad cellular roles, can have differential lethality in 

cancer cells.

Thus far we have discussed the direct role of NPC components in cancer, but new research 

suggests that nucleocytoplasmic transport through the NPC may play a role in some forms 

of cancer. Not surprisingly, potent inhibitors of nuclear export like Leptomycin B prevent 

growth of cells including cancer cells. Recent work has shown that the selective inhibitor of 

nuclear export, Selinexor, is capable of specifically inhibiting the growth of human leukemia 

cells with little toxicity to the hematopoietic cells in a mouse model [147]. This form of 

treatment has proved effective and safe enough to enter into multiple late stage clinical trials 

[148]. Additionally, it was recently published that Selinexor is specifically lethal to Kras 

mutant non-small cell lung cancers when compared to Kras wild type cancer cells. In these 

cells nuclear export was necessary to prevent the cell growth factor Nfkb inactivation by 

Ikba accumulation in the nucleus [149].

4.3. Nucleoporin-based mouse cancer models

As we have seen, many nucleoporins play a significant role in different cancers. With a 

variety of nucleoporin haploinsufficient, knockout, and overexpression mice available, it is 

interesting to examine if these mice are prone to cancer. In most cases, nucleoporin knockout 

mice are embryonic lethal and tumorigenesis has not been reported in many of the non-lethal 

knockout mice but overexpression and heterozygous null mice have been studied (Table 1).

In mice Nup88 overexpression was shown to cause spontaneous intestinal tumors and 

although global nucleocytoplasmic transport was unaffected, aneuploidy and chromosome 

instability were induced. The mechanism demonstrated was that high levels of Nup88 

sequester Nup98-Rae1 away from APC/CCDH1 where they normally function to ensure 

correct centrosome segregation [31]. This is further proof that the role of Nup88 in cancer is 

mediated by its transport-independent mitotic functions.

Nup98 and Rae1 double heterozygous mice and Rae1 heterozygous mice have increased 

aneuploidy. The mice have a normal rate of spontaneous tumorigenesis but have a higher 

incidence of tumors when treated with the carcinogen 7,12-dimethylbenz[a]anthracene 

(DMBA) [28].
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Mice with Nup358 haploinsufficiency or hypomorphism develop severe aneuploidy from a 

failure to properly segregate chromosomes during mitosis. The aneuploidy manifests in an 

increased incidence of spontaneous tumors and DMBA-induced tumors [22]. Interestingly, 

in humans Nup358 levels are reduced in non-small cell lung carcinoma when compared to 

healthy controls [150], although a prospective study would better explain if low Nup358 

levels increase the risk of this type of cancer.

5. NPCs in other disorders

5.1. Primary biliary cholangitis (PBC) and other autoimmune disorders

PBC is an autoimmune T lymphocyte mediated chronic non-suppurative destructive 

cholangitis (CNSDC) disease. Nup210 and Nup62 autoantibodies were found to be 

associated with more severe primary biliary cirrhosis and poorer prognosis [151]. Nup210 

and Nup62 autoantibodies, along with automitochondrial antibodies, are so infrequent 

outside of the disease context that they are considered to be a biomarker for PBC [152]. 

Additionally, Tpr and some nuclear envelope autoantibodies have been found in PBC as well 

as other autoimmune disorders such as arthritis, systemic lupus erythematous (SLE) and 

autoimmune liver disease (ALD) [153,154].

Interestingly, Nup210 is not expressed in normal liver biliary epithelial cells, lowly 

expressed in hepatitis diseased liver cells, and highly expressed in PBC liver cells [155] 

suggesting that the abnormal expression of Nup210 in these cells may be a consequence of 

or play a role in the development of the diseases. Nup358 was found to play a critical role in 

maintaining bile acid homeostasis in biliary epithelial cells and protein levels were increased 

shortly after exposure to a primary biliary acid [156].

The role of nuclear envelope proteins including the nucleoporins Nup210, Nup62, and Tpr in 

autoimmune disorders has yet to be determined. It has been suggested that the 

autoantibodies seen in PBC are a consequence of molecular mimicry of bacterial antigens, 

which are similar to the mammalian antigens. The best evidence for this is that in a mouse 

model of CNSDC, mice inoculated with Streptococcus intermedius develop Nup210 

autoantibodies [157] but, it would be informative to determine if the autoantibodies are a 

result of the molecular mimicry or the host antigens. Another group created a mouse model 

of autoimmunity in the bile ducts by inoculating mice with Novosphingobium 
aromaticivorans, and although they did not test for Nup210 autoantibodies they did 

demonstrate that transferring the NK T lymphocytes from mice where the disease had 

already been observed, was sufficient to establish the disease in recipient mice [158]. This 

suggests that a bacterial infection may be required to trigger the disease but PBC is mediated 

by the host immune system after disease onset.

5.2. Steroid-resistant nephrotic syndrome (SRNS)

Dysfunction of the glomerular podocytes in the kidney causes SRNS, which often leads to 

chronic kidney disease. Recently homozygous and compound heterozygous mutations in 

Nup93, Nup205, and Xpo5 were identified as monogenic causes of SRNS. Nup205 or 

Nup93 mutations disrupted NPC assembly and their knockdown reduced the presence of the 
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other nucleoporins at the NPC [159]. Nup107 homozygous mutations have been found that 

cause early childhood onset SRNS [160]. All of the nucleoporins that have been shown to be 

involved in SNRS are known to be members of the critical NPC scaffold. Much research 

remains to be done but it is possible that these mutations disrupt the formation or transport 

function of the NPC.

5.3. Cardiovascular

There is building evidence that nucleoporins play a role in the cardiovascular system. An 

analysis of copy number variants in humans with heterotaxy, a rare but serious birth defect 

that affects heart development, found a duplication event in the Nup188 gene. Morpholino 

knockdown of the gene in Xenopus caused a defect in left-right patterning [161].

Patients who have had heart failure (ischemic and dilated hearts) have increased levels of 

specific nucleoporins. Specifically the transmembrane nucleoporin NDC1, the scaffold 

nucleoporin Nup160, and the nuclear basket nucleoporin Nup153 are increased in hearts of 

patients with ischemic and dilated cardiomyopathy, while Nup93 was increased only in 

dilated heart patients. NDC1 was also shown to be mislocalized in cardiomyocytes from 

both ischemic and dilated hearts [162]. Supporting these data, a point mutation in the 

scaffold nucleoporin Nup155 was sufficient to delocalize the nucleoporin from the NPC, 

which led to early sudden death due to atrial fibrillation. Additionally, Nup155 hypomorphic 

mice have atrial fibrillation and die of early sudden cardiac death (Table 1) [25].

The scaffold nucleoporin Nup35 has been shown to regulate intracellular cardiomyocyte pH 

by controlling the mRNA export of the Na+–H+ exchanger- 1 (NHE1) transcript [163]. 

NHE1 protein is responsible for maintaining intracellular pH [164]. In response to an acid 

challenge cardiomyocytes deficient in Nup35 failed to maintain intracellular pH homeostasis 

and overexpression of Nup35 blocked hypoxia-induced intracellular acidification. Both 

Nup35 and NHE1 are downregulated in ischemic cardiomyocytes [163].

After cardiomyocyte hypertrophic stimulus nuclear import is downregulated to increase 

nuclear export by changing the conformation of the cytoplasmic face of the NPC [165]. 

During cardiomyocyte differentiation there is a conformational change in the NPC that 

results in increased NPC density, larger pore size, greater likelihood of cargo occupancy, and 

Mef2c translocation from the cytoplasm to the nucleus [166,167]. Cardiomyocytes derived 

from a knockout mouse for the calcium sequestering protein, calreticulin (which is necessary 

for proper cardiac development) had altered NPC composition. NPCs from the knockout 

mouse were found to have smaller pores and Nup62, Nup214, and Nup153 were reduced 

even though Nup98 levels were unaffected and the density of NPCs remained the same 

[168]. Supporting evidence in plants for the change in conformation state of the NPC shows 

that the selectivity of pores can be altered in response to cellular stresses [169]. Although 

these studies are preliminary they suggest a new paradigm for examining the role of NPCs in 

development and diseases: not just composition of NPCs but conformational states can alter 

the fate and function of cells.
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5.4. Beta Thalassemia

The insights gained from the study of Nup98 fusion proteins have led to an unexpected 

possible treatment for the autosomal recessive hematological malignancy Beta Thalassemia, 

which causes anemia from reduced hemoglobin synthesis. A Nup98-HoxA10HD fusion 

protein was engineered and when transfected in hematopoietic stem cells, was able to 

increase the proliferative ability and maintain the undifferentiated state of the stem cells in 
vitro [170]. The Nup98 fusion protein was able to increase the number of human 

hematopoietic stem cells 4 months after initial transfer into immunodeficient mouse hosts 

[171]. This strategy has been shown to be effective in the treatment of a murine model of 

Beta Thalassemia [172].

5.5. Aging

Aging plays a role in almost all of the diseases discussed above but the normal aging process 

is also involved in NPC biology. It was identified that in postmitotic tissues NPC assembly 

does not occur or takes place at a very low rate. In postmitotic C. elegans cells, expression of 

the scaffold nucleoporins, which are essential for NPC assembly, is unnecessary after 

development as NPC scaffolds do not significantly turn over for the remainder of their lives 

(~40–50 days). This low, or lack of turnover, of NPCs in postmitotic tissues has also been 

described in mammals [173]. Pulse chase experiments in cells and rats showed that scaffold 

NPC components turn over very slowly or not at all in postmitotic cells while non-scaffold 

nucleoporins are short lived [90,91]. Subsequent experiments have shown that scaffold 

nucleoporins do turn over but very slowly [92]. Due to their extremely long life, in aging 

neurons NPCs accumulate damage to the point where they can no longer perform their 

functions [90]. This results in the loss of nuclear compartmentalization and the abnormal 

distribution of nuclear and cytoplasmic proteins in old neurons, which can have devastating 

effects for cellular homeostasis. Similarly, recent evidence indicates that as rats age their 

myocytes also have compromised nuclear compartmentalization and lower levels of the 

structural nucleoporin Nup93 which is critical for nuclear permeability [174,175].

Nucleocytoplasmic transport is also perturbed in aging by alterations in the levels of non-

nucleoporin transport proteins. In a study comparing transcriptional profiles of iPSC-derived 

neurons and directly reprogrammed induced neurons (iNs) from old and young humans, the 

nuclear import receptor RanBP17 was identified as a cause of the age-associated loss in 

nuclear compartmentalization. The protein is reduced in aged neurons and is necessary for 

maintaining nuclear compartmentalization [176].

The accumulation of protein aggregates, which have pathogenic effects in diseases like AD, 

have also been shown to be an inherent part of the normal aging process in C. elegans [177]. 

As discussed above, nucleoporins play a direct role in the prevention of protein aggregates 

and some of their negative consequences. Demonstrating that protein aggregation is 

inherently part of the aging in mammals would significantly expand the possible roles of 

nucleoporins in the aging and aging-related diseases.

The role of nucleoporins in the aging of higher eukaryotes has yet to be directly determined 

because many of the nucleoporin knockout mice are unable to complete embryogenesis 
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(Table 1) but aging and age-related diseases could be studied with the use of genetic mouse 

tools. Overexpression, hypomorphic, inducible knockout and inducible shRNA expression 

mouse lines would allow the induction, reduction or depletion of specific components of the 

NPC, at different times of development/disease progression, and in specific cells of the 

mouse. This would greatly enhance our ability to study the functions of nucleoporins in 

specific tissues and how those functions play a role in aging and aging-related diseases.

6. Conclusions

Many new advances in the study of nucleocytoplasmic transport, the NPC, and nucleoporins 

suggest that the ability of organisms to regulate these processes and structures must be 

tightly controlled to prevent diseases from arising or progressing. Many of the diseases 

discussed here are directly associated with aging such as AD and HD but most of the 

remaining diseases such as cancer and cardiovascular disease become worse indirectly with 

age. Regardless, the aging of humans increases the occurrence and severity of diseases that 

nucleoporins have been shown to play a direct role in (Figure 1). These diseases, and 

therefore nucleoporins, play at least an indirect role on human lifespan.

The original identification of a gene duplication of the Pom121 nucleoporin creating a 

protein called Pom121C opened up new possibilities for nucleoporins. Knocking down 

either Pom121 protein caused NPC clustering in HeLa cells [178]. More recently it was 

shown that the Pom121C gene codes for a soluble form of the protein that utilizes the 

Pom121 NPC interacting domains to bring a subset of nucleoporins into Nup98 

nucleoplasmic clusters. Although the role of this particular gene duplication event is not 

known, it was found that it arose multiple times in evolutionary history suggesting that there 

is a convergent advantage [179]. As seen above, this process parallels the one used by cancer 

cells to tether or bring oncogenic transcription factors into the nucleus through nucleoporin 

fusion proteins. Utilizing nucleoporins to direct subsets of proteins (including other 

nucleoporins) to specific sites in the genome could expand the mechanisms by which these 

proteins are capable of altering cell function and fate as well as diseases and aging.
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Abbreviations

NPC Nuclear Pore Complex

triple A syndrome Achalasia-Addisonianism-Alacrima or Allgrove syndrome

FTD Frontotemporal dementia

ALS amyotrophic lateral sclerosis
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PD Parkinson’s disease

HRE hexanucleotide repeat expansion

RAN repeat-associated non-AUG

GA translation, Poly glycine-alanine

GR glycine-arginine

GP glycine-proline

PR proline-arginine

PA proline-alanine

polyQ polyglutamine

O-GlcNAc O-linked beta N-acetylglucosamine

NFTs neurofibrillary tangles

IBSN Infantile bilateral striatal necrosis

LCCS1 lethal congenital contracture syndrome-1

ANE acute necrotizing encephalopathy

VSV vesicular stomatitis virus

HSV herpes simplex virus

CRM1 Chromosome region maintenance 1

LMB Leptomycin B

MLL mixed lineage leukemia

CaMKK2 calmodulin-dependent kinase kinase 2

DMBA 7,12-dimethylbenz[a]anthracene

PBC Primary biliary cholangitis

CNSDC chronic non-suppurative destructive cholangitis

SLE systemic lupus erythematous

ALD autoimmune liver disease

SRNS Steroid-resistant nephrotic syndrome

NHE1 Na+–H+ exchanger- 1

iNs induced neurons

iPSCs induced pluripotent stem cells
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T-ALL T cell acute lymphocytic leukemia

AML acute myeloid leukemia
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Figure 1. 
Onset of nucleoporin-implicated health problems. Left: a list of the nucleoporins that are 

implicated in the health problems listed on the right. Right: a list of health problems with the 

age-based prevalence indicated by the box/triangle.

Triple A: Achalasia-Addisonianism-Alacrima or Allgrove syndrome; ALS: amyotrophic 

lateral sclerosis; PD: Parkinson’s disease; IBSN: Infantile bilateral striatal necrosis; LCCS1: 

lethal congenital contracture syndrome-1; ANE: acute necrotizing encephalopathy; PBC: 

Primary biliary cholangitis; SRNS: steroid-resistant nephrotic syndrome
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Table 1

Published phenotypes of mice possessing mutations in nucleoporins

Nucleoporin Mutation Phenotype References

Aladin/AAAS Homozygous null Sterility [36]

ELYS Homozygous null Embryonic lethality [35]

ELYS Intestinal epithelium null Juvenile growth delay [37]

NDC1 Homozygous null Sterility and developmental defects [34]

Nup35 F192L Mutant Degenerative colonic smooth muscle myopathy [33]

Nup50 Homozygous null Embryonic lethality [32]

Nup88 Overexpression Increased genetic tumor model tumorigenesis [31]

Nup88 Homozygous null Not Viable [31]

Nup96 Homozygous null Embryonic lethality [30]

Nup96 Heterozygous null Reduced antigen presentation and immunodeficiency [30]

Nup98 Homozygous null Embryonic lethality [29]

Nup98 HoxA9/HoxD13 fusion Spontaneous leukemia [26,27]

Nup133 Homozygous null Embryonic lethality [13]

Nup155 Heterozygous null Atrial fibrillation and early sudden cardiac death [25]

Nup155 Homozygous null Embryonic lethality [25]

Nup214 Homozygous null Embryonic lethality [24]

Nup358/RanBP2 Homozygous null Embryonic lethality [23]

Nup358/RanBP2 Heterozygous null Reduced size and impaired glucose homeostasis [23]

Nup358/RanBP2 Hypomorph Spontaneous and carcinogen-induced tumorigenesis [22]

Rae1 Homozygous null Embryonic lethality [21]

Nup98+Rae1 Double Heterozygous Null Increased carcinogen-induced tumorigenesis [28]

Sec13 Homozygous null Embryonic lethality [20]

Sec13 Hypomorph Reduced antigen presentation [20]
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