
EEG signatures of dynamic functional network connectivity 
states

EA Allen1, E Damaraju1,2, T Eichele3,4,5, L Wu1, and VD Calhoun1,2

1The Mind Research Network & LBERI, Albuquerque, New Mexico, USA

2Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, 
New Mexico, USA

3K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen 5009, 
Norway

4Department of Biological and Medical Psychology, University of Bergen 5009, Norway

5Department of Neurology, Section for Neurophysiology, Haukeland University Hospital, Bergen 
5021, Norway

Abstract

The human brain operates by dynamically modulating different neural populations to enable goal 

directed behavior. The synchrony or lack thereof between different brain regions is thought to 

correspond to observed functional connectivity dynamics in resting state brain imaging data. In a 

large sample of healthy human adult subjects and utilizing a sliding windowed correlation method 

on functional imaging data, earlier we demonstrated the presence of seven distinct functional 

connectivity states/patterns between different brain networks that reliably occur across time and 

subjects. Whether these connectivity states correspond to meaningful electrophysiological 

signatures was not clear. In this study, using a dataset with concurrent EEG and resting state 

functional imaging data acquired during eyes open and eyes closed states, we demonstrate the 

replicability of previous findings in an independent sample, and identify EEG spectral signatures 

associated with these functional network connectivity changes. Eyes open and eyes closed 

conditions show common and different connectivity patterns that are associated with distinct EEG 

spectral signatures. Certain connectivity states are more prevalent in the eyes open case and some 

occur only in eyes closed state. Both conditions exhibit a state of increased thalamocortical 

anticorrelation associated with reduced EEG spectral alpha power and increased delta and theta 

power possibly reflecting drowsiness. This state occurs more frequently in the eyes closed state. In 

summary, we find a link between dynamic connectivity in fMRI data and concurrently collected 

EEG data, including a large effect of vigilance on functional connectivity. As demonstrated with 

EEG and fMRI, the stationarity of connectivity cannot be assumed, even for relatively short 

periods.
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Introduction

The human brain is seldom at rest, exhibiting correlated and spontaneous activity dynamics 

between distant brain regions even in the absence of external inputs (Buzsaki, 2006). Until 

recently, functional connectivity (FC) between brain regions using resting state functional 

imaging data was estimated as pairwise statistical association, typically correlation, using 

time series for whole scan period. This assumes stationarity of functional connectivity. Since 

the demonstration of functional connectivity dynamics (time varying strength in 

connectivity) between posterior cingulate cortex (PCC) and a task-positive network (a 

network that shows increased activity when task demand increases) during “resting-state” 

functional neuroimaging scan (Chang and Glover, 2010) and another study showing 

dynamic inter-network connectivity across the whole brain for both rest and task data 

(Sakoğlu et al., 2010), recent years has seen a surge in studying the dynamics of functional 

connectivity (Allen et al., 2012; Hutchison et al., 2012; Keilholz et al., 2013; Smith et al., 

2012; Tagliazucchi et al., 2012). This has led to a broader insights into the understanding of 

spatio-temporal dynamics of large-scale brain networks, referred to as “chronnectomics” 

(Calhoun et al., 2014). Several methodologies are being developed to investigate these 

functional connectivity dynamics including sliding-windowed correlation on raw functional 

imaging time courses from predefined regions of interest (Gonzalez-Castillo et al., 2014; 

Keilholz et al., 2013) or on independent component analysis (ICA) derived time courses 

(Allen et al., 2012; Sakoğlu et al., 2010), dynamic conditional correlation (Lindquist et al., 

2014), independent temporal fluctuation modes of ICA time courses (Smith et al., 2012; 

Yaesoubi et al., 2015b), eigenconnectivities (Preti et al., 2015), multiplication of temporal 

derivatives (Shine et al., 2015), dynamic coherence (Yaesoubi et al., 2015a), and meta-state-

space characterizations (Miller et al., 2016).

In our previous work, we demonstrated that functional network connectivity (FNC) between 

time courses of intrinsic connectivity networks (ICNs) in a resting-state scan (Jafri et al., 

2008), estimated using tapered sliding-window correlation analysis, changes continuously 

over a time scale of 10–100 seconds transitioning through patterns of connectivity states that 

reoccur in time and are consistent across subjects (Allen et al., 2012). We ensured that these 

dynamics are not driven by variability due to stochastic noise in low frequency time courses 

(Handwerker et al., 2012), since distinct FNC states are not observed in null data obtained 

by disrupting covariance structure but preserving frequency characteristics of time courses. 

Using resting state data from 405 healthy subjects, we observed seven distinct FNC states 

with different frequencies of occurrences and modularity of connectivity patterns during a 5 

minute scan (See Figure 5 in Allen et al., 2012). In particular, we speculated that a state with 

reduced thalamocortical connectivity (State 3) represents subjects’ reduced vigilance or 

drowsiness based on a greater frequency of occurrence over time and temporal similarity 

across group. However, the expected concomitant electrophysiological changes during these 

FNC states are currently unknown.
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In this work, we sought to address this issue by utilizing an existing dataset with 

simultaneous electroencephalography (EEG) and resting-state functional neuroimaging scan 

(Bridwell et al., 2013; Wu et al., 2010). EEG collected from the scalp has the potential to 

capture more detailed and complementary temporal/spectral dynamic inputs (Chang et al., 

2013; Huster et al., 2012; Tagliazucchi et al., 2012; Turner et al., 2015; Ullsperger and 

Debener, 2010). The data was collected both during an eyes open (EO) and eyes closed (EC) 

resting states on a smaller sample of 23 subjects. Although both EO and EC states are 

considered unconstrained resting states, these correspond to distinct electrophysiological 

properties as measured by EEG (Barry et al., 2007) and shows distinct functional 

connectivity (Bianciardi et al., 2009; Zou et al., 2009) providing an additional manipulation 

to study the association between connectivity dynamics and electrophysiological correlates. 

Therefore, our goals are threefold: (1) replicate previous findings in independent sample; (2) 

characterize FNC state prevalence as a function of behavioral state; and (3) identify EEG 

spectral signatures associated with different FNC states.

Methods

Subjects

Twenty-five healthy participants were recruited via advertisements at the University of New 

Mexico and by word-of-mouth. All subjects provided written, informed consent at the Mind 

Research Network and were compensated for their participation. Data from two participants 

were excluded due to inadequate spatial coverage in the MR images, thus data from 23 

subjects (16 males, 29 ± 8.8 years, 1 left-handed) were included in the analysis. Further 

details on the sample and screening can be found in (Wu et al., 2010).

Data acquisition

The experiment comprised a single session of simultaneous EEG-fMRI recording. Each 

scanning session was composed of a structural MRI scan (7 min), followed by a functional 

MRI resting-state scan with EO (8.5 min), and a subsequent second fMRI scan with EC (8.5 

minutes). Subjects were instructed to simply lie still awake and relax inside the dimly lit 

scanner and keep their EO or EC, respectively. Note that the order of the EO and EC 

conditions were not counter balanced. To ensure that the subjects did not fall asleep, a 

researcher continuously monitored subject’s eyes using Eyelink 1000 eye tracker during the 

scan and alerted the participants on any sign of early sleep.

A 32-channel BrainAmp MR-compatible system (Brainproducts, Munich, Germany) was 

used for EEG recordings using the BrainCap electrode cap (Falk Minow Services, 

Herrsching-Breitbrunn, Germany). Ring-type sintered nonmagnetic Ag/AgCl electrodes 

were placed on the scalp according to the international 10–20 system. Two additional 

channels were recording electrocardiogram (ECG) and eye movements (EOG). The 

reference channel was placed at FCz. The impedance of each electrode was kept lower than 

5 kΩ using conductive and abrasive electrode paste. Data were collected with a sampling rate 

of 5 kHz and band-pass filtered from 0.016 to 250 Hz. The EEG amplifier and fMRI were 

synchronized using an in-house device.
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Functional images were acquired with a Siemens Sonata scanner at 1.5 T by means of T2*-

weighted echo planar imaging free induction decay sequences with the following 

parameters: TR=2 s, echo time TE=39ms, field of view=224 mm, matrix size=64×64, flip 

angle=80°, voxel size=3.5 × 3.5 × 3 mm, slice gap=1 mm, 27 slices, ascending acquisition.

EEG preprocessing

Preprocessing of EEG data was performed in Matlab (www.mathworks.com) with the 

toolbox EEGLAB (http://sccn.ucsd.edu/eeglab). After removal of EPI gradient artifacts 

using standard moving average subtraction (Allen, Josephs, & Turner, 2000) continuous 

EEGs were down-sampled to 1000 Hz and filtered from 1 to 45 Hz (24 db/octave). EEG data 

were then corrected for ballistocardiac artifacts by an effective heart beat detection from 

electrocardiogram channel followed by an optimal basis set technique implemented in the 

EEGLAB-plugin FMRIB (Niazy et al., 2005). Hereafter the EEG was re-referenced to a 

common average reference, segmented into 2 s epochs for each EPI volume acquisition, and 

subjected to an individual temporal ICA as implemented in EEGLAB to identify and remove 

residual pulse and eye movement artifacts from the data, retaining minimally 12 out of 30 

components (Delorme and Makeig, 2004). The cleaned and epoched EEG data were then 

frequency transformed using a multi-tapered FFT (http://chronux.org/; 3 tapers, bandwidth = 

1 Hz), retaining spectral content from 1 to 20 Hz. Remaining outliers in amplitude spectra (> 

3 standard deviations above the mean) were replaced by the median value from neighboring 

channels and epochs. Additionally, subject EEG data was sleep staged into one of awake, or 

sleep stages N1 (drowsiness characterized by irregular slow waves at 3–7 Hz), N2 (light 

sleep stage with presence of V waves and sleep spindles along with increased slow waves of 

2–7 Hz) in 30 second epochs using spectral properties of the EEG data.

fMRI preprocessing

Functional images were preprocessed using tools provided in AFNI (afni.nimh.nih.gov/afni) 

and SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Preprocessing included the 

removal of the first image volume to allow T1 equilibration, despiking, slice-time correction, 

realignment, spatial normalization into Montreal Neurological Institute (MNI) space, 

reslicing to 3 × 3 × 3 mm voxels, and blurring with an adaptive kernel to a desired 

smoothness of FWHM = 6 mm (“3dBlurToFWHM” in AFNI). Voxel time series were z-

scored to normalize variance across space, minimizing bias in subsequent variance-based 

data reduction steps.

Group ICA of fMRI

FMRI data were decomposed into functional networks using group-level spatial ICA 

(Calhoun and Adali, 2012; Calhoun et al., 2001) as implemented in the GIFT toolbox (http://

mialab.mrn.org/software/gift/). Spatial ICA for fMRI data decomposes the data into spatially 

independent components each associated with coherent time course. Among these 

components, certain components correspond to physiological and imaging artifacts, while 

others in the gray matter represent functionally homogenous networks, referred to as 

intrinsic connectivity networks. Prior to ICA, subject-specific data reduction via principal 

components analysis (PCA) retained 160 principal components (from 255 time points) using 

a standard economy-size decomposition. Global mean signal per time point is removed as a 
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standard PCA processing step during subject-level PCA reduction. These time reduced 

subject data from each scan were concatenated in time both across conditions and subjects 

and performed a group data reduction using PCA to retain C = 76 PCs. The Infomax ICA 

algorithm (Bell and Sejnowski, 1995) was repeated 20 times in ICASSO (Himberg et al., 

2004) (http://www.cis.hut.fi/projects/ica/icasso) and aggregate spatial maps were estimated 

as the modes of the component clusters. Subject-specific spatial maps and timecourses (TCs) 

were estimated using spatial-temporal regression (Erhardt et al., 2011). Unlike seed-based 

functional connectivity approach where connectivity strength is assessed using fixed regions 

of interest defined a priori, subject-specific maps in ICA approach retain inter-subject spatial 

variability in functional activations. As in (Allen et al., 2011, 2012), we semi-automatically 

identified a subset of C1 = 43 components as ICNs, as opposed to physiological, movement-

related, or imaging artifacts. The features that help identify non-artefactual components 

include presence of peak component activations in grey matter, low spatial overlap with 

known vascular, ventricular, motion, and susceptibility artifacts, and depiction of TCs 

dominated by low frequency fluctuations (Cordes et al., 2001).

Component TCs underwent additional post-processing to remove remaining noise sources. 

These include low frequency trends related to scanner drift, motion-related variance, and 

other non-specific “spikes” or noise artifacts not decomposed well by a linear mixing model. 

Post-processing included (i) detrending linear, quadratic and cubic trends, (ii) multiple 

regression of the six realignment parameters and their temporal derivatives, (iii) removal of 

detected outliers, and (iv) lowpass filtering with a high frequency cutoff of 0.15 Hz. We 

replaced outliers with the best estimate using a third-order spline fit to the clean portions of 

the TCs. Outliers were detected based on the median absolute deviation, as implemented in 

3dDESPIKE (http://afni.nimh.nih.gov/afni). As a final step in post-processing, we 

normalized the variance of each TC, thus covariance matrices (below) correspond to 

correlation matrices.

fMRI FNC estimation

The pairwise statistical association, typically correlation, between ICN time courses is 

referred to as functional network connectivity (Jafri et al., 2008). While pairwise correlation 

between regional brain time courses is referred to as FC, FNC captures the linear statistical 

association between independent spatial networks. For each fMRI dataset, i = 1…M, static 

FNC was estimated from the TC matrix as the C1 × C1 sample covariance matrix Σi. 

Dynamic FNC was estimated with a sliding window approach, wherein we computed 

covariance matrices Σi(w), w = 1…W, from windowed segments of the TC matrix. We used 

a tapered window created by convolving a rectangle (width = 30 TRs = 60 s) with a 

Gaussian (σ = 3 TRs), and slid the window in steps of 1 TR for a total of W = 225 windows. 

The FNC estimates for each window are then concatenated to form Σi, a C1 × C1 × W array 

representing the changes in covariance (correlation) between components as a function of 

time. Both stationary and dynamic FNC estimates were Fisher-transformed to stabilize 

variance prior to further analysis. The details of fMRI data processing are presented in 

Supplemental Figure 1.
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Component ordering, as presented in correlation matrices, was determined from the static 

FNC estimate by a combination of empirical and manual methods. Specifically, an initial 

ordering was determined by algorithms optimizing modularity 

(“modularity_louvain_und_sign”, “modularity_probtune_und_sign”, and “reorder_mod”, 

from the Brain Connectivity Toolbox, http://www.brain-connectivity-toolbox.net/) (Rubinov 

and Sporns, 2010). Because the results of these algorithms depend on initial parameters and 

vary from run-to-run, we selected the solution that provided the best visual segregation 

between modules, then manually reordered modules to facilitate comparisons with previous 

work.

fMRI FNC states

To identify re-occurring FNC patterns, we applied the k-means clustering algorithm (Lloyd, 

1982) to the windowed covariance matrices using the correlation distance function. Only 

covariances between the C1 = 43 ICNs were used in the clustering analysis, resulting in (43 

× (43−1))/2 = 903 features. We first applied clustering at the subject-level and propagated 

subject centroids to a second group-level clustering. The number of clusters (k) was 

determined using the elbow criterion of the cluster validity index, computed as the ratio 

between average within-cluster distance to between-cluster distance. At the subject level k 
ranged from 6 to 10 (mean ± SD: 7.28± 0.83), and was 5 for the group-level clustering. At 

subject and group-levels, the clustering algorithm was repeated 500 times to increase 

chances of escaping local minima, with random initialization of centroid positions. 

Centroids from the group-level clustering were then used to initialize a clustering of all data, 

resulting in the final cluster centroids and state vectors, referred to as the assignment of each 

subject dFNC windows in time to the nearest cluster by k-means algorithm.

Clusters were ordered as FNC states 1–5 based on relative occurrence as a function of time 

(considering both EO and EC conditions). For each state, occurrence time series were 

computed from the state vectors, normalized from zero to one, and fit with a linear 

regression model. Clusters were then arranged in order of ascending slope. Thus, state 1 

shows the largest negative change in relative occurrence as a function of time and state 5 

shows the largest positive change. We note that this ordering method is distinct from that 

used in (Allen et al., 2012), which considered cluster emergence as a function of k.

We used network-based measures of modularity and global efficiency to quantitatively 

characterize FNC states. Modularity was described by the modularity index Q*, defined in 

(Rubinov and Sporns, 2011), which considers both positive and negative weights of the 

unthresholded connectivity matrix. Global efficiency, EW as defined in (Rubinov and 

Sporns, 2010), was determined from the positive weights in the matrix (negative weights 

were set to zero). Additionally, we evaluated the temporal properties of FNC states by 

calculating the transition matrix (TM), i.e., the probability of changing from one state to 

another (see Figure. 3B), and subsequently the principal eigenvector of the average TM, π, 

which represents the steady-state, or “long-run” behavior of the system (Meyer, 2000). The 

variability of each descriptive parameter (Q*, EW, and π) was determined with 

bootstrapping, resampling subjects over 500 iterations.
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EEG spectra segregated by fMRI FNC states

EEG spectra from each TR were segregated into different groups based on concurrent FNC 

state vectors. FNC state vectors were aligned to EEG using the time point corresponding to 

the center of the sliding window. Differences between the segregated spectra were then 

quantified in two ways. First, we calculated the Euclidean distance between average state-

specific spectra to obtain a single statistic summarizing all differences. Second, we 

calculated the difference between each state-specific amplitude and the global average 

(obtained over all subjects and epochs), at delta (1–4 Hz), theta (4–8 Hz), and alpha (8–12 

Hz) frequency bands. This measure provides directional and spectral specificity regarding 

differences between states. For both methods, calculations were performed separately at 

each channel.

We used non-parametric permutation testing (Nichols and Holmes, 2002) to determine 

whether the observed differences measures between state-specific EEG spectra were greater 

than would be expected by chance; standard parametric models, such as an ANOVA, are 

challenging to implement here due the non-independence of neighboring windows and 

uneven sampling of states by different subjects. To create appropriate null distributions, 

fMRI FNC state vectors were permuted across subjects and shifted in time relative to the 

EEG data. Temporal shifts were drawn randomly from [−W/2, W/2] and values were shifted 

circularly. Such a permutation scheme maintains the autocorrelation structure of the original 

FNC state vectors and approximates transition statistics, but destroys EEG-fMRI synchrony 

within subjects as well as EEG-fMRI temporal trends that may be common across subjects. 

Difference measures between spectra were computed using the permuted state vectors to 

create null distributions, and p-values were determined by comparing observed statistics to 

the null (10,000 permutations). To facilitate visual comparisons in topographic displays, 

difference measures were converted to z-scores based on the mean and standard deviation of 

the null distributions at each channel.

Results

Figure 1A displays the ICNs identified with group ICA. Based on their anatomical and 

presumed functional properties, ICNs are arranged into groups of sub-cortical (SC), auditory 

(AUD), somatomotor (SM), visual (VIS), cognitive control (CC; referring loosely to the 

planning, monitoring, and adapting one’s behavior), default-mode (DM) and cerebellar (CB) 

components. Peak activations and coordinates of each component are provided in Table 1. 

Figure 1B displays the average static FNC between ICNs in the EO condition to facilitate 

visual comparison with our earlier work (see Fig. 2A of (Allen et al., 2012)).

Connectivity States

Clustering results with k = 5 are shown in Figure 2. FNC states are characterized by the 

cluster centroids (Fig. 2A) and their occurrence as a function of time (Fig. 2B). States are 

arranged in order of their temporal precedence, considering both EO and EC scans (see 

Methods). State 1 (S1) is characterized by highly modular FNC, with prominent connectivity 

among SM networks. It occurs throughout the EO condition but is almost completely absent 

during EC. S2 shows similar FNC (though little distinction of the SM module) and temporal 
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trends, with decreased occurrence at later time points in the EO condition and relatively few 

occurrences in EC. S3 exhibits a different pattern in time, with a moderate presence during 

EO followed by a large jump in occurrence at the start of EC that decays over the duration of 

the scan. With regard to FNC, S3 shows VIS components less correlated to CC networks and 

more correlated to DM networks. FNC patterns of S4 and S5 differ considerably from S1‒
S3. In S4, all primary sensorimotor and higher-modal association areas (AUD, SM, VIS, as 

well as some CC and DM components) are highly correlated, resulting in a reduction in 

modularity (Q*; Fig. 3A, left) and increase in global efficiency (EW; Fig. 3A, right). 

Temporally, S4 exhibits a prominent linear increase during EO and then maintains a 

relatively constant presence during EC. S5 shows even greater “hypersynchronization””, as 

it lacks the antagonism/anticorrelation between SC and sensorimotor components seen in 

S4. Regarding occurrence, S5 is largely absent during EO but exhibits increasing presence 

throughout EC. Quantitative comparisons of within and between module connectivity 

assessments are provided in Supplemental Figure 2.

Note that the removal of global mean signal prior to subject-specific PCA enforces the ICA 

decomposition space to be null space of global signal and introduces anti-correlations (Fox 

et al., 2009). The change in strength of connectivity from state to state still holds, however 

the sign change need to be interpreted with caution. Global signal removal is included in the 

PCA step in ICA framework. The removal of global signal (either regression or mean 

subtraction) has been intensely debated in the community and pros and cons are reviewed in 

detail in Power et al., 2015. The global mean subtraction referred to as frame-to-frame 

intensity stabilization removes a constant value per time point across all voxels unlike 

regression which removes weighted version of the global signal with different weighting per 

voxel. While both methods force the distribution of correlation around zero value, regression 

might introduce interregional biases in correlation estimates (Saad et al., 2012).

The temporal properties of FNC states can also be characterized by studying the transitions 

between states. Figure 3B (left) shows the average transition matrix (TM), representing the 

probability of changing from one state to another. White squares along the diagonal signify a 

very high probability of staying in the same state. Notably, the probability of transitioning 

from S2 to S3, P(S2 → S3), is larger than P(S3 → S2). Likewise, P(S3 → S4) is larger 

than P(S4 → S3), and P(S4 → S5) is greater than P(S5 → S4), conveying a directionality 

to the transitions. This notion is supported by the steady-state probability (π) computed from 

the TM, displayed in Figure 3B (right), which suggests that subjects are most likely to be 

found in S4 or S5 in the long run.

EEG segregation

To determine the electrophysiological signatures of different FNC states, EEG spectra 

computed over each 2 s TR were segregated into groups based on the FNC state label for the 

window centered on that TR (see Methods and Fig. 4A). The result of this segregation is 

shown in Figure 4B for central channel Cz (left) and occipital channels O1 and O2 (right). If 

the fMRI-derived FNC patterns were unrelated to electrophysiology, we would expect the 

spectra from different states to overlap with one-another. In contrast, we find large 

differences between the spectra, summarized as follows: S1 shows little synchronization in 
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delta/theta ranges and a weak peak in the alpha band; S2 exhibits relatively greater alpha 

power over central but not occipital electrodes; S3 exhibits robust alpha synchronization, 

primarily over occipital electrodes but also extending more anteriorly; S4 shows alpha 

synchronization similar in magnitude to S2, though the alpha peak is broadened toward 

lower frequencies, and slower oscillations (< 7 Hz) are also present; S5 shows the most 

distinct electrophysiological profile, with strong and widespread synchronization at delta 

and theta frequencies and desynchronization of occipital alpha. Statistical differences 

between spectra were determined with Monte Carlo permutation tests (see Methods) and 

confirmed that spectral signatures of states at central electrodes were significantly (P < 0.01, 

FDR corrected) more distant from each other than would be expected by chance (Fig. 4D). 

Comparing state-specific amplitude to the global average also supported topographic and 

band-limited spectral differences (Supplementary Figure 3).

For comparison, EEG spectra segregated by behavioral state (EO vs EC) are shown in 

Figure 4C for the central and occipital electrodes. As expected (Berger, 1929; Santamaria 

and Chiappa, 1987), EC shows much greater posterior alpha power than EO, but also shows 

elevated delta and theta power over central electrodes, which is typically associated with 

reduced alertness (Åkerstedt et al., 1990; Laufs et al., 2006; Makeig and Inlow, 1993; 

Makeig and Jung, 1996) rather than eye-closing per se. The fMRI FC-driven segregation 

suggests a clear distinction between these electrophysiological signatures: alpha 

synchronization is associated with S3, which is most likely to occur at the onset of eye-

closing (Fig. 2B), while increased delta and theta rhythms are strongly associated with S5, 

which is observed increasingly at later time points in the EC condition and possibly reflects 

N1 sleep stage. Thus, FNC-derived states appear to provide better segregation of EEG 

signatures than the observed behavioral states.

Figure 5 shows the FNC states and corresponding EEG spectra for three representative 

subjects. Non-stationarities in EEG spectra are clearly visible, particularly in subjects 7 and 

17 who undergo alpha desynchronization 1–2 minutes after eye-closing, and FNC dynamics 

are evident. The average state-specific spectra for each subject (left, upper panels in Fig. 

5A–C) show trends that resemble the group results displayed in Figure 4B. Importantly, 

while these examples show that state-specific EEG and FNC patterns found at the group 

level can also be seen at the level of the individual, they also illustrate the high degree of 

variability between subjects (e.g., windows classified as S4 in subject 7 show many 

differences from those classified as S4 in subject 17) as well as within subjects (e.g., 

windows classified as S4 in subject 17 during EO share limited features with those classified 

as S4 in EC). These issues are addressed further in the Discussion.

Discussion

In this work we successfully replicate our earlier findings on the presence of distinct FNC 

connectivity states in resting conditions, which reoccur within and across subjects, obtained 

from clustering of sliding windowed correlation matrices. Even in a much smaller sample 

compared to our previous study, two of the three states obtained in EO condition resemble 

those obtained from that study. The state S4 from current study is comparable to state S3 in 

previous analysis exhibiting similar thalamo-cortical antagonism and increased frequency 
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with time in EO condition. Also state S2 in current study resembles state S7 from earlier 

study and shows similar decrease in frequency of occurrence as scan progresses in EO 

condition. Additionally, we show that these FNC states correspond to neuro-electric brain 

activity with distinct EEG spectral signatures validating our approach to estimate 

connectivity dynamics despite its shortcomings (see limitations). The state S4 which we 

speculated to be associated with decrease in vigilance in fact exhibits increase in delta and 

theta power in EEG spectrum along with a decrease in alpha power compared to EO awake 

state S1, a well-established characteristic of reduced vigilance (Makeig and Jung, 1995). 

These transitions from more alert state to less alert state (and probably light sleep) occurs 

gradually as scan progresses, which is in good agreement with (Olbrich et al., 2009; 

Tagliazucchi and Laufs, 2014). Recent sleep classification study using fMRI resting data 

also observed that the subcortical-cortical connections are more discriminatory in awake to 

sleep stage1 transition (Altmann et al., 2016).

In some ways, the current work represents the inverted/reverse approach to (Tagliazucchi 

and Laufs, 2014; Tagliazucchi et al., 2012). Long periods (hours) of concurrent EEG-fMRI 

recordings, the authors first sleep-scored EEG into corresponding sleep stages, then used 

these labels to train FNC-based sleep-stage classifiers in a supervised learning framework. 

Here, rather than start with manual sorting and labelling of EEG, we use an unsupervised 

learning approach (k-means) to identify and segregate FNC patterns, then examined EEG 

spectra based on these classifications. Despite different goals and assumptions these 

approaches arrive at a number of similar conclusions regarding the changes in FNC 

associated with different EEG patterns: (1) Sleep staging of EEG data suggests that subjects 

are more likely to get into drowsy states and early sleep stages during EC condition than EC 

condition. EEG spectra from 20 of 23 subjects in EO condition depict strong alpha power 

suggesting vigilant state throughout the scan. Only a mix of slow theta and alpha waves with 

no evidence of vertex sharp waves in the rest of three subjects during EO scan suggesting a 

reduced vigilance state and/or reaching a slightly drowsy (sleep stage 1) state. In contrast, 

during EC scan, 12 out of 23 subjects exhibit prominent alpha power in their EEG spectra 

throughout the scan. In the rest of the subjects, as scan progresses, subjects show a shift of 

EEG power from higher alpha to a mix of alpha and theta. (2) Perhaps the most prominent 

feature of transition into sleep is the change in thalamo-cortical connectivity from positive 

correlation to anti-correlation, which we previously described in Allen et al., 2014 as 

“cortical-subcortical antagonism”. This is particularly consistent with Spoormaker et al., 

who additionally show that negative correlation between thalamus and cortex are most 

notable in the first stages of sleep, and diminish as individuals transition to deeper sleep 

(Spoormaker et al., 2010). However, a state with similar thalamo-cortical antagonism has 

been shown to be a signature of loss of arousal in resting state by Chang and colleagues 

using simultaneous fMRI and intracortical electrophysiological recordings in macaques 

(Chang et al., 2016). Therefore, future studies should investigate if there are specific 

differences between states corresponding to drop in arousal versus drowsiness.

The relationship of the thalamus and functional connectivity to other regions is particularly 

interesting as it is known to play important role in consciousness and exhibits distinct 

electrophysiological signatures during EO and EC states. Previous studies found that the 

thalamus is involved in coordinating alpha rhythm (Hughes and Crunelli, 2005). Our study 
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supports the view that the thalamus plays an important role in terms of governing/tuning 

spontaneous alpha band signals, however it behaves as a sophisticated thalamo-cortical 

chronnectome system, rather than an isolated ‘pacemaker’. The transmission of sensory 

information to cortex from the thalamus is state-dependent, i.e. it is significantly reduced 

during drowsiness or fatigue while enhanced during vigilance, which may cause the 

observation of large anti-connectivity of thalamo-cortex in state 4 from our study. 

McCormick et al. showed that the transfer performance of corticothalamic fibers impacted 

how the cerebral cortex ‘gates or controls selective fields of sensory inputs in a manner that 

facilitates arousal, attention, and cognition’ (McCormick and von Krosigk, 1992). 

Nevertheless, the correspondence between posterior alpha and the ‘drowsy FNC signature’ 

(state 4) that we found needs further investigations.

In this work, we utilize EO and EC conditions that correspond to distinct neurophysiological 

state with EO state representing more aware “exteroceptive” state characterized by overt 

attention and oculomotor activity, while EO state corresponds to more “interoceptive” state 

characterized by imagination and multisensory activity (Hüfner et al., 2009, 2008) and have 

been recently been shown to correspond to different functional topologies (Jao et al., 2013; 

Xu et al., 2014). Our observations of greater integration within sensory systems during EC 

compared to EO condition, as seen in S4, are consistent with the earlier reports (Bianciardi 

et al., 2009; Xu et al., 2014). Furthermore, as reported by Xu and colleagues, we observe 

reduced modularity and increased global efficiency during EC condition (Figure 3A and 3B) 

compared to EO condition. The greater modularity in EO condition is thought to facilitate 

increased local efficiency during exteroceptive processing.

In a concurrent EEG-fMRI sleep study, Tagliazucchi et al. presented compelling evidence 

for increased network modularity in N3 stage sleep as compared to wakefulness, but no 

change from wakefulness to N1 sleep, and demonstrated positive covariation between delta 

band power and modularity, and negative covariation between alpha power and modularity 

(Tagliazucchi et al., 2013a). Also Boly et al, 2012 report similar modularity increases 

specific to deeper sleep (Boly et al., 2012). However, our current findings show decreased 
network modularity in S4 and S5 as compared to S1–3 (see Figure 3A). In combination with 

(Spoormaker et al., 2011, 2010), our results suggest that due to increased inter-module 

connections, modularity decreases with drowsiness in light sleep conditions. Modularity 

then increases substantially as subjects attain deep sleep and cortico-cortico connectivity is 

significantly reduced, (Boly et al., 2012; Tagliazucchi et al., 2013b) is consistent with TMS 

and notions of sleep. Increase in positive functional connectivity (and loss of inter-modular 

negative correlations) in the descent to light sleep is not well understood, though 

Spoormaker and colleagues hypothesize it reflects more random network organization that 

interferes with information integration (Spoormaker et al., 2011).

Decreased modularity in these states is congruent with visual comparisons of the FNC 

centroids displayed in Figure 2A; compared to S1–3, S4 and S5 exhibit more strong positive 

connections between larger sets of ICNs, and many fewer negative correlations between 

well-defined modules. Thus it is visually more difficult to subdivide ICNs into clearly 

delineated groups, consistent with lower modularity scores. Though analogous visualizations 

are not available for inspection in (Tagliazucchi et al., 2013a), one possible reason for the 
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apparent contradiction between studies is the use of a different modularity metrics. Here, we 

use Q*, based on the definitions provided by Rubinov and Sporns, which considers both 

positive and negative weights of the unthresholded connectivity matrix (Rubinov and 

Sporns, 2011). Tagliazucchi et al. use Q, which considers only the positive elements of a 

thresholded connectivity matrix. As shown in Figure 1 of (Rubinov and Sporns, 2011), for a 

given network with fixed intra-module connections, increasing the presence of inter-module 

negative connections will increase Q* values but decrease Q values; thus it is possible that 

differences in modularity estimates are related to sensitivity (or lack thereof) to inter-module 

negative correlations.

Implications for future work

Combined with previous work, the current results advocate a more rigorous characterization 

of subject states when assessing functional connectivity. Describing an “eyes-closed resting-

state” is unlikely to sufficiently describe the changes in vigilance states subjects may 

experience, even during relatively short experiments. As demonstrated comprehensively by 

Tagliazucchi and Laufs, when scanning participants with EC, a loss of wakefulness should 

be expected in a third of subjects after 4 minutes of rest, and nearly half of subjects after 10 

minutes (Tagliazucchi and Laufs, 2014). In particular, one should be wary of comparing 

subject groups that may exhibit different resting behavior (e.g., are more or less likely to 

become drowsy due to anxiety, medication, comfort, etc.). A dynamic FNC analysis that 

segregates time periods into different states and then analyzes the FNC within states may 

circumvent this problem, an approach we have applied in a recent study examining resting-

state FNC in Schizophrenia (Damaraju et al., 2014). We found that segregating FNC states 

(and therefore, likely cognitive and vigilance states) prior to group comparisons yielded 

more specific group differences in connectivity and revealed additional differences that were 

obfuscated in stationary FNC comparisons.

Topological descriptions are very useful to condense networks into summary properties, but 

one should be careful not to use them as a substitute for examining the networks themselves. 

For example, the modularity and global efficiency of states 4 and 5 are not statistically 

different, however the networks themselves and occurrence profiles show profound 

differences.

This work also suggests caution in interpreting observed FC/FNC dynamics as shifts in 

cognition. This is not to say that FC changes are not sensitive to changes in internal 

behaviors, which have been demonstrated unequivocally (Gonzalez-Castillo et al., 2015; 

Shirer et al., 2012). However, in the absence of any experimentally guided behaviors 

(recollecting events, silent humming), subjects are likely to do a large number of very 

different things [unknown to the experimenter]. In terms of data-driven analysis, it is likely, 

then, that many large sources of variance will be related to vigilance shifts (Czisch et al., 

2012; Olbrich et al., 2009). Wong et al, 2013 show that this time-varying decreases of 

vigilance, as evidenced by increases in delta and theta spectral EEG power, exhibits an 

inverse relationship to global signal amplitude (and therefore functional connectivity) and 

argue that global signal regression performed in seed-based connectivity approaches 

probably reduces the variance associated with vigilance shifts across subjects to certain 
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extent (Wong et al., 2016, 2013). Similar results to Wong and colleagues (Wong et al., 2013, 

2012), showing a strong relationship between EEG measures of vigilance and the amplitude 

of the global signal (which is related to antagonism), we observe that states S4 and S5 show 

a marked reduction in the number of negative inter-modular connections, which is directly 

related to the amplitude of the global signal.

Comparisons to Other EEG-fMRI Integration Approaches

Until recently the majority of EEG-fMRI integration studies have focused on amplitude 

modulations, i.e., change in band-limited power in EEG is expected to relate to change in 

BOLD signal (Laufs et al., 2008). This is perhaps the most reasonable model given the 

established causative relationship between neural activation and hemodynamic response 

(Logothetis, 2008; Mukamel et al., 2005). However, neural signaling need not involve the 

changes in the amplitude power of on ongoing oscillations. A number of investigations show 

that functional networks are formed by phase relationships between distant neural 

populations as well as cross frequency coupling (Canolty et al., 2006; Montemurro et al., 

2008) spurring the development of alternative models that consider the relationship between 

electrophysiological signals and fMRI-derived FC.

Several studies have considered time-varying FC as a function of EEG power: Using 

psychophysiological interaction analysis using low and high alpha power segments as 

intrinsic task condition, Scheeringa and colleagues report reduced FC within visual cortex 

with increases in alpha power and reductions in anti-correlation with thalamus (Scheeringa 

et al., 2012). Using sliding window analysis, Chang and colleagues demonstrate time-

varying connectivity between default-mode network and dorsal attention network whose 

strength is inversely correlated with alpha power potentially reflecting state dependent 

dynamics (Chang et al., 2013). Using a similar analysis but extended to whole brain regions 

of interest, Tagliazucchi and colleagues investigate dynamic FC electrophysiological 

correlates by and report decreases in FC with increases in alpha and beta EEG spectral 

power and increases in dynamic FC with theta power increases (Tagliazucchi et al., 2012).

Here, we use a similar approach but use clustering of the fMRI-FC to segregate time 

windows, removing the assumption of a linear relationship between FNC and EEG power. 

Some advantages of our approach: (1) inherently multivariate, so doesn’t (erroneously) 

consider correlations between brain regions as independent quantities. (2) Doesn’t suffer 

from a multiple comparison issue (i.e., testing correlations between all brain regions 

separately. (3) perhaps most importantly does not assume that the relationship between EEG 

power and FNC is static thereby has better ability to capture dynamic reconfiguration of 

network connections both with vigilance shifts as well as internal behaviors.

Limitations

Because both FNC and EEG show systematic changes over time (and with EO/EC) it’s 

possible that we are vastly overestimating any “link” between the two modalities. Despite 

capturing dynamic connectivity reconfiguration, one can expect to lose some detail with 

clustering, as estimates of FNC using shorter windowed time series can be noisy, and 

focusing on FNC states/centroids results in some loss of specificity between single regions 
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in some cases. Furthermore, a great deal of subject heterogeneity is lost in the k-means 

approach – e.g., in Fig. 5, the S4 in individual subjects are different. We observed that 

subjects tend to “drowsy FNC states” sooner in EC condition than EO condition. This is 

consistent with earlier reports that suggest increased likelihood of falling asleep in eyes 

closed state than eyes open state in general (Tagliazucchi and Laufs, 2014), however, we 

could not rule out the possibility that this could be due to the fact that EC scan was 

performed later than EO scans for all subjects and the subjects are likely more tired by the 

EC scan time as the scan order was not counterbalanced. Obvious large confound is motion. 

Though we have tried to minimize the influence of motion by using ICA and regressing 

motion-derived signals from the timecourses of components of interest based on a previous 

study of motion effects in ICA (Damaraju et al., 2014), we cannot eliminate the possibility 

that residual motion-related variance has impacted the FNC estimates (Laumann et al., 

2016). Also, some of the choices made for example model order selection in ICA, window 

length for dFNC estimation are subjective, however the settings we did use have given 

consistent results across many different datasets. Despite this the empirical choices should 

still continue to be explored in future work.

Conclusions

In this work we demonstrate that dynamic FNC states estimated using k-means clustering of 

correlations estimated using sliding windowed ICA time courses results in meaningful 

clusters that correspond to distinct electrophysiological mental states. Our work supports the 

earlier works that simultaneously acquiring EEG with functional MRI data can provide 

complementary information that enables the investigator to make informed inferences about 

observed FNC dynamics. As evidenced by EEG spectral signatures associated with FNC 

states, our data suggests that evaluation of drowsiness is important in both eyes open and 

eyes closed resting state conditions and researchers should carefully account for these when 

comparing different populations. Although dynamic FNC estimation using sliding-window 

technique can be noisy, we can be relatively confident that the FNC dynamics estimated 

using this method reflect, to some degree, changes in local and distal neural 

coherence(Berger, 1929).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by NIH P20GM103472, Ro1EB006841 and NSF EPSCoR # 1539067.

References

Åkerstedt T, Arnetz BB, Anderzén I. Physicians during and following night call duty—41 hour 
ambulatory recording of sleep. Electroencephalogr Clin Neurophysiol. 1990; 76:193–196. 
[PubMed: 1697247] 

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking Whole-Brain 
Connectivity Dynamics in the Resting State. Cereb Cortex. 2012

Allen et al. Page 14

Brain Topogr. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries 
J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo 
J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, 
Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher 
U, Thoma RJ, Calhoun VD. A baseline for the multivariate comparison of resting-state networks. 
Front Syst Neurosci. 2011; 5:2.doi: 10.3389/fnsys.2011.00002 [PubMed: 21442040] 

Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG 
recorded during functional MRI. Neuroimage. 2000; 12:230–9. DOI: 10.1006/nimg.2000.0599 
[PubMed: 10913328] 

Altmann A, Schröter MS, Spoormaker VI, Kiem SA, Jordan D, Ilg R, Bullmore ET, Greicius MD, 
Czisch M, Sämann PG. Validation of non-REM sleep stage decoding from resting state fMRI using 
linear support vector machines. Neuroimage. 2016; 125:544–555. [PubMed: 26596551] 

Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG differences between eyes-closed and 
eyes-open resting conditions. Clin Neurophysiol. 2007; 118:2765–2773. [PubMed: 17911042] 

Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind 
deconvolution. Neural Comput. 1995; 7:1129–59. [PubMed: 7584893] 

Berger H. Über das elektrenkephalogramm des menschen. Eur Arch Psychiatry Clin Neurosci. 1929; 
87:527–570.

Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Duyn JH. Modulation of 
spontaneous fMRI activity in human visual cortex by behavioral state. Neuroimage. 2009; 45:160–
168. [PubMed: 19028588] 

Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, Pélégrini-Issac M, Maquet P, Benali 
H. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl 
Acad Sci U S A. 2012; 109:5856–61. DOI: 10.1073/pnas.1111133109 [PubMed: 22451917] 

Bridwell DA, Wu L, Eichele T, Calhoun VD. The spatiospectral characterization of brain networks: 
Fusing concurrent EEG spectra and fMRI maps. Neuroimage. 2013; 69:101–111. DOI: 10.1016/
j.neuroimage.2012.12.024 [PubMed: 23266744] 

Buzsaki, G. Rhythms of the Brain. Oxford University Press; 2006. 

Calhoun VD, Adali T. Multisubject independent component analysis of fMRI: a decade of intrinsic 
networks, default mode, and neurodiagnostic discovery. Biomed Eng IEEE Rev. 2012; 5:60–73.

Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional 
MRI data using independent component analysis. Hum Brain Mapp. 2001; 14:140–51. [PubMed: 
11559959] 

Calhoun VD, Miller R, Pearlson G, Adalı T. The chronnectome: time-varying connectivity networks as 
the next frontier in fMRI data discovery. Neuron. 2014; 84:262–274. [PubMed: 25374354] 

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, 
Knight RT. High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex. Sci. 
2006; 313:1626–1628. DOI: 10.1126/science.1128115

Chang C, Glover GH. Time-frequency dynamics of resting-state brain connectivity measured with 
fMRI. Neuroimage. 2010; 50:81–98. DOI: 10.1016/j.neuroimage.2009.12.011 [PubMed: 
20006716] 

Chang C, Leopold DA, Schölvinck ML, Mandelkow H, Picchioni D, Liu X, Frank QY, Turchi JN, 
Duyn JH. Tracking brain arousal fluctuations with fMRI. Proc Natl Acad Sci. 2016 201520613. 

Chang C, Liu Z, Chen MC, Liu X, Duyn JH. EEG correlates of time-varying BOLD functional 
connectivity. Neuroimage. 2013; 72C:227–236. DOI: 10.1016/j.neuroimage.2013.01.049

Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand 
ME. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” 
data. Am J Neuroradiol. 2001; 22:1326–1333. [PubMed: 11498421] 

Czisch M, Wehrle R, Harsay HA, Wetter TC, Holsboer F, Sämann PG, Drummond SPA. On the Need 
of Objective Vigilance Monitoring: Effects of Sleep Loss on Target Detection and Task-Negative 
Activity Using Combined EEG/fMRI. Front Neurol. 2012; 3:67.doi: 10.3389/fneur.2012.00067 
[PubMed: 22557992] 

Allen et al. Page 15

Brain Topogr. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, 
Potkin SG, Preda A. Dynamic functional connectivity analysis reveals transient states of 
dysconnectivity in schizophrenia. NeuroImage Clin. 2014; 5:298–308. [PubMed: 25161896] 

Damaraju, E., Allen, EA., Calhoun, VD. Impact of head motion on ICA-derived functional 
connectivity measures. Fourth Biennial Conference on Resting State; Boston. 2014. 

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics 
including independent component analysis. J Neurosci Methods. 2004; 134:9–21. [PubMed: 
15102499] 

Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject 
ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011; 32:2075–2095. DOI: 10.1002/
hbm.21170 [PubMed: 21162045] 

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting 
state brain networks. J Neurophysiol. 2009; 101:3270–3283. [PubMed: 19339462] 

Gonzalez-Castillo J, Handwerker DA, Robinson ME, Hoy CW, Buchanan LC, Saad ZS, Bandettini PA. 
The spatial structure of resting state connectivity stability on the scale of minutes. Front Neurosci. 
2014; 8:138.doi: 10.3389/fnins.2014.00138 [PubMed: 24999315] 

Gonzalez-Castillo J, Hoy CW, Handwerker DA, Robinson ME, Buchanan LC, Saad ZS, Bandettini PA. 
Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity 
patterns. Proc Natl Acad Sci. 2015; 112:8762–8767. DOI: 10.1073/pnas.1501242112 [PubMed: 
26124112] 

Handwerker DA, Roopchansingh V, Gonzalez-Castillo J, Bandettini PA. Periodic changes in fMRI 
connectivity. Neuroimage. 2012

Himberg J, Hyvärinen A, Esposito F. Validating the independent components of neuroimaging time 
series via clustering and visualization. Neuroimage. 2004; 22:1214–1222. [PubMed: 15219593] 

Hüfner K, Stephan T, Flanagin VL, Deutschländer A, Stein A, Kalla R, Dera T, Fesl G, Jahn K, Strupp 
M. Differential effects of eyes open or closed in darkness on brain activation patterns in blind 
subjects. Neurosci Lett. 2009; 466:30–34. [PubMed: 19766168] 

Hüfner K, Stephan T, Glasauer S, Kalla R, Riedel E, Deutschländer A, Dera T, Wiesmann M, Strupp 
M, Brandt T. Differences in saccade-evoked brain activation patterns with eyes open or eyes closed 
in complete darkness. Exp brain Res. 2008; 186:419–430. [PubMed: 18183378] 

Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological 
implications. Neurosci. 2005; 11:357–372.

Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an 
introductory review. J Neurosci. 2012; 32:6053–6060. [PubMed: 22553012] 

Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. Resting‐state networks show dynamic 
functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. 2012

Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among 
spatially independent resting-state components in schizophrenia. Neuroimage. 2008; 39:1666. 
[PubMed: 18082428] 

Jao T, Vértes PE, Alexander-Bloch AF, Tang IN, Yu YC, Chen JH, Bullmore ET. Volitional eyes 
opening perturbs brain dynamics and functional connectivity regardless of light input. 
Neuroimage. 2013; 69:21–34. [PubMed: 23266698] 

Keilholz SD, Magnuson ME, Pan WJ, Willis M, Thompson GJ. Dynamic properties of functional 
connectivity in the rodent. Brain Connect. 2013; 3:31–40. [PubMed: 23106103] 

Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A. Recent advances in recording 
electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage. 2008; 
40:515–528. [PubMed: 18201910] 

Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A. Where the BOLD signal 
goes when alpha EEG leaves. Neuroimage. 2006; 31:1408–1418. doi:http://dx.doi.org/10.1016/
j.neuroimage.2006.02.002. [PubMed: 16537111] 

Laumann TO, Snyder AZ, Mitra A, Gordon EM, Gratton C, Adeyemo B, Gilmore AW, Nelson SM, 
Berg JJ, Greene DJ, McCarthy JE, Tagliazucchi E, Laufs H, Schlaggar BL, Dosenbach NUF, 
Petersen SE. On the Stability of BOLD fMRI Correlations. Cereb Cortex. 2016; doi: 10.1093/
cercor/bhw265

Allen et al. Page 16

Brain Topogr. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.neuroimage.2006.02.002
http://dx.doi.org/10.1016/j.neuroimage.2006.02.002


Lindquist MA, Xu Y, Nebel MB, Caffo BS. Evaluating dynamic bivariate correlations in resting-state 
fMRI: a comparison study and a new approach. Neuroimage. 2014; 101:531–46. DOI: 10.1016/
j.neuroimage.2014.06.052 [PubMed: 24993894] 

Lloyd SP. Least squares quantization in PCM. Inf Theory IEEE Trans. 1982; 28:129–137.

Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008; 453:869–878. 
[PubMed: 18548064] 

Makeig S, Inlow M. Lapse in alertness: coherence of fluctuations in performance and EEG spectrum. 
Electroencephalogr Clin Neurophysiol. 1993; 86:23–35. [PubMed: 7678388] 

Makeig S, Jung TP. Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. 
Cogn Brain Res. 1996; 4:15–25.

Makeig S, Jung TP. Changes in alertness are a principal component of variance in the EEG spectrum. 
Neuroreport. 1995; 7:213–216. [PubMed: 8742454] 

McCormick DA, von Krosigk M. Corticothalamic activation modulates thalamic firing through 
glutamate “metabotropic” receptors. Proc Natl Acad Sci U S A. 1992; 89:2774–2778. DOI: 
10.1073/pnas.89.7.2774 [PubMed: 1313567] 

Meyer CD. Matrix analysis and applied linear algebra. Siam. 2000

Miller RL, Yaesoubi M, Turner JA, Mathalon DH, Preda A, Pearlson GD, Adali T, Calhoun VD. 
Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism 
in Schizophrenia Patients. PLoS One. 2016

Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S. Phase-of-firing coding of 
natural visual stimuli in primary visual cortex. Curr Biol. 2008; 18:375–80. DOI: 10.1016/j.cub.
2008.02.023 [PubMed: 18328702] 

Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R. Coupling between neuronal firing, 
field potentials, and FMRI in human auditory cortex. Science (80−.). 2005; 309:951–954.

Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts 
from EEG data using optimal basis sets. Neuroimage. 2005; 28:720–737. DOI: 10.1016/
j.neuroimage.2005.06.067 [PubMed: 16150610] 

Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with 
examples. Hum Brain Mapp. 2002; 15:1–25. [PubMed: 11747097] 

Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U. EEG-vigilance and BOLD 
effect during simultaneous EEG/fMRI measurement. Neuroimage. 2009; 45:319–32. DOI: 
10.1016/j.neuroimage.2008.11.014 [PubMed: 19110062] 

Power JD, Schlaggar BL, Petersen SE. Recent progress and outstanding issues in motion correction in 
resting state fMRI. Neuroimage. 2015; 105:536–551. [PubMed: 25462692] 

Preti MG, Haller S, Giannakopoulos P, Van De Ville D. Decomposing dynamic functional connectivity 
onto phase-dependent eigenconnectivities using the Hilbert transform. Biomedical Imaging (ISBI), 
2015 IEEE 12th International Symposium on. 2015; :38–41. DOI: 10.1109/ISBI.2015.7163811

Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. 
Neuroimage. 2011; 56:2068–2079. [PubMed: 21459148] 

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. 
Neuroimage. 2010; 52:1059–1069. [PubMed: 19819337] 

Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW. Trouble at rest: how correlation 
patterns and group differences become distorted after global signal regression. Brain Connect. 
2012; 2:25–32. [PubMed: 22432927] 

Sakoğlu Ü, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A method for evaluating 
dynamic functional network connectivity and task-modulation: application to schizophrenia. Magn 
Reson Mater Physics, Biol Med. 2010; 23:351–366.

Santamaria J, Chiappa KH. The EEG of drowsiness in normal adults. J Clin Neurophysiol. 1987; 
4:327–382. [PubMed: 3316272] 

Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MCM. EEG alpha power 
modulation of FMRI resting-state connectivity. Brain Connect. 2012; 2:254–264. [PubMed: 
22938826] 

Allen et al. Page 17

Brain Topogr. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shine JM, Oluwasanmi K, Bell PT, Gorgolewski KJ, Gilat M, Poldrack RA. Estimation of dynamic 
functional connectivity using Multiplicative Analytical Coupling. Neuroimage. 2015; 122:399–
407. DOI: 10.1016/j.neuroimage.2015.07.064 [PubMed: 26231247] 

Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven cognitive states 
with whole-brain connectivity patterns. Cereb cortex. 2012; 22:158–165. [PubMed: 21616982] 

Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, 
Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K. Temporally-
independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A. 2012; 
109:3131–6. DOI: 10.1073/pnas.1121329109 [PubMed: 22323591] 

Spoormaker VI, Czisch M, Maquet P, Jäncke L. Large-scale functional brain networks in human non-
rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic 
resonance imaging studies. Philos Trans R Soc London A Math Phys Eng Sci. 2011; 369:3708–
3729.

Spoormaker VI, Schröter MS, Gleiser PM, Andrade KC, Dresler M, Wehrle R, Sämann PG, Czisch M. 
Development of a Large-Scale Functional Brain Network during Human Non-Rapid Eye 
Movement Sleep. J Neurosci. 2010; 30:11379–11387. [PubMed: 20739559] 

Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals 
reliable drifts between wakefulness and sleep. Neuron. 2014; 82:695–708. DOI: 10.1016/j.neuron.
2014.03.020 [PubMed: 24811386] 

Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Borisov S, Jahnke K, Laufs H. Large-
scale brain functional modularity is reflected in slow electroencephalographic rhythms across the 
human non-rapid eye movement sleep cycle. Neuroimage. 2013a; 70:327–39. DOI: 10.1016/
j.neuroimage.2012.12.073 [PubMed: 23313420] 

Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Jahnke K, Laufs H. Breakdown of long-
range temporal dependence in default mode and attention networks during deep sleep. Proc Natl 
Acad Sci. 2013b; 110:15419–15424. [PubMed: 24003146] 

Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Laufs H. Dynamic BOLD functional 
connectivity in humans and its electrophysiological correlates. Front Hum Neurosci. 2012; 
6:339.doi: 10.3389/fnhum.2012.00339 [PubMed: 23293596] 

Turner BM, Rodriguez CA, Norcia TM, McClure SM, Steyvers M. Why more is better: Simultaneous 
modeling of EEG, fMRI, and behavioral data. Neuroimage. 2015

Ullsperger, M., Debener, S. Simultaneous EEG and fMRI: recording, analysis, and application. Oxford 
University Press; 2010. 

Wong CW, DeYoung PN, Liu TT. Differences in the resting-state fMRI global signal amplitude 
between the eyes open and eyes closed states are related to changes in EEG vigilance. 
Neuroimage. 2016; 124:24–31. [PubMed: 26327245] 

Wong CW, Olafsson V, Tal O, Liu TT. The amplitude of the resting-state fMRI global signal is related 
to EEG vigilance measures. Neuroimage. 2013; 83:983–990. doi:http://dx.doi.org/10.1016/
j.neuroimage.2013.07.057. [PubMed: 23899724] 

Wong CW, Olafsson V, Tal O, Liu TT. Anti-correlated networks, global signal regression, and the 
effects of caffeine in resting-state functional MRI. Neuroimage. 2012; 63:356–64. DOI: 10.1016/
j.neuroimage.2012.06.035 [PubMed: 22743194] 

Wu L, Eichele T, Calhoun VD. Reactivity of hemodynamic responses and functional connectivity to 
different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage. 2010; 52:1252–
1260. [PubMed: 20510374] 

Xu P, Huang R, Wang J, Van Dam NT, Xie T, Dong Z, Chen C, Gu R, Zang YF, He Y. Different 
topological organization of human brain functional networks with eyes open versus eyes closed. 
Neuroimage. 2014; 90:246–255. [PubMed: 24434242] 

Yaesoubi M, Allen EA, Miller RL, Calhoun VD. Dynamic coherence analysis of resting fMRI data to 
jointly capture state-based phase, frequency, and time-domain information. Neuroimage. 2015a; 
120:133–142. [PubMed: 26162552] 

Yaesoubi M, Miller RL, Calhoun VD. Mutually temporally independent connectivity patterns: A new 
framework to study the dynamics of brain connectivity at rest with application to explain group 
difference based on gender. Neuroimage. 2015b; 107:85–94. [PubMed: 25485713] 

Allen et al. Page 18

Brain Topogr. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.neuroimage.2013.07.057
http://dx.doi.org/10.1016/j.neuroimage.2013.07.057


Zou Q, Long X, Zuo X, Yan C, Zhu C, Yang Y, Liu D, He Y, Zang Y. Functional Connectivity 
Between the Thalamus and Visual Cortex Under Eyes Closed and Eyes Open Conditions: A 
Resting-State fMRI Study. Hum Brain Mapp. 2009; 30:3066–3078. DOI: 10.1002/hbm.
20728.Functional [PubMed: 19172624] 

Allen et al. Page 19

Brain Topogr. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
ICN spatial maps (A) and the static FNC between them (B), averaged across 23 subjects in 

the EO condition. ICNs are divided into groups and arranged based on their anatomical and 

functional properties. Within each group, the color of the component in (A) corresponds to 

the colored flag shown along the axes of (B). ICN labels in (B) denote the brain region(s) 

with peak amplitude and refer to bilateral homologues unless specified as left (L) or right 

(R). See Table 1 for peak coordinates in each component. STG = superior temporal gyrus; 

PoCG = postcentral gyrus; ParaCL = paracentral lobule; PreCG = precentral gyrs; SPL = 

superior parietal lobule; MOG = middle occipital gyrus; FFG = fusiform gyrus; SOG = 

superior occipital gyrus; SMA = supplementary motor area; IPL = inferior parietal lobule; 

MFG = middle frontal gyrus; IFG = inferior frontal gyrus; SFG = superior frontal gyrus; 

SMeG = superior medial gyrus; MTG = middle temporal gyrus; PHG = parahippocampal 

gyrus; PCC = posterior cingulate cortex; MeFG = medial frontal gyrus; ACC = anterior 

cingulate cortex; AG = angular gyrus; CB = cerebellum
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Figure 2. 
Clustering result for k = 5. Each cluster (State 1 to State 5) is summarized by its centroid 

(A), and occurrences as a function of time (B). The total percentage of occurrences (over EO 

and EC conditions) and the number of subjects that entered each state (n) is provided above 

each centroid. Bar plots in (B) compare the average occurrence in EO (light gray) and EC 

(dark gray) conditions. Error bars denote the standard error over subjects. Asterisks indicate 

a significant difference in state occurrence between EO and EC (P < 0.05, nonparametric 

permutation test, Bonferroni corrected for multiple comparisons). Dashed lines in (B) show 

the best linear fit to the occurrence trends.
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Figure 3. 
Characterization of FNC states (A) and transitions between them (B). (A) Estimates of 

modularity (left) and global efficiency (right) of each connectivity state. (B) The state 

transition matrix (TM) averaged over subjects (left), and the stationary probability vector (π, 

principal eigenvector of the TM, right) which shows steady-state, or “long-run” behavior. 

Note that transition probability is color-mapped on a log-scale. In all plots, error bars 

indicate the non-parametric 95% confidence intervals (CIs) of each quantity, obtained by 

resampling subjects and recalculating the quantity on bootstrapped sample (500 repetitions).
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Figure 4. 
EEG spectra, segregated by FNC state. (A) A schematic illustrating EEG segregation for a 

single subject. Spectra are computed for each 2 s epoch of EEG data and are divided into 

groups based on the FNC state vector from the concurrent fMRI data. (B) EEG spectra 

averaged over all epochs and subjects, segregated by FNC state. For comparison, EEG 

spectra segregated by eye condition are shown in panel (C). (D) Determination of the 

statistical significance of EEG spectral segregation. In the left panel, an example of the 

observed total Euclidean distance between EEG spectra (red dot) is compared to the null 

distribution of distances (gray) obtained via Monte Carlo permutation testing (see Methods). 

To facilitate visual comparisons in topographic displays, difference measures were converted 

to z-scores based on the mean and standard deviation of the null distributions at each 

channel. Filled white electrodes in the topoplots signify P <0.01, FDR corrected for multiple 

comparisons over channels.
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Figure 5. 
Examples of EEG spectra and FNC dynamics for subject 7 (A), subject 10 (B), and subject 

17 (C). For each subject, the upper panels display EEG spectrograms for EO and EC 

conditions at central (Cz) and occipital (O1 + O2) electrodes. Lower panels display dynamic 

FNC matrices, averaged over contiguous windows that are clustered into the same state. 

FNC state assignments are denoted with different colors beneath the spectrograms. The 

upper left panel displays average EEG power at Cz, segregated by FNC state, in the same 

format as Figure 3B.
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Table 1

Peak coordinates of ICNs

Intrinsic Connectivity Network BA Max (Z)

Peak (mm)

x y z

Sub-cortical networks (4) – – – – –

Putamen (28)

 L putamen 9.8 −27 −4 7

 R putamen 9.0 27 −1 4

Putamen (16)

 R putamen 47 9.2 21 11 −8

 L putamen 34 9.8 −24 8 −5

Caudate (44)

 Bi caudate nucleus 11.8 −9 −1 13

Thalamus (36)

 L thalamus 9.7 −12 −16 7

 R thalamus 8.7 15 −16 7

Auditory networks (1) – – – – –

STG (37)

 R superior temporal gyrus 22 7.4 54 −13 4

 L superior temporal gyrus 41 7.5 −57 −22 10

Somatomotor networks (6) – – – – –

PoCG (35)

 R postcentral gyrus 3 9.3 60 −22 37

 L postcentral gyrus 1 6.6 −60 −28 40

ParaCL (4)

 Bi paracentral lobule 6 9.8 0 −28 61

PreCG (2)

 L precentral gyrus 6 10.6 −51 −13 34

 R precentral gyrus 4 10.2 60 −4 25

L PreCG (6)

 L precentral gyrus 4 10.6 −39 −25 61

R PreCG (5)

 R precentral gyrus 4 9.6 39 −19 52

SPL (33)

 L superior parietal lobule 7 7.7 −24 −58 61

 R superior parietal lobule 7 6.4 24 −55 61

Visual networks (7) – – – – –

MOG (9)

 R middle occipital gyrus 19 10.1 51 −70 4

 L middle occipital gyrus 19 7.8 −48 −79 1

CalcarineG (3)

 Bi calcarine gyrus 17 9.1 −15 −64 4
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Intrinsic Connectivity Network BA Max (Z)

Peak (mm)

x y z

Cuneus (15)

 Bi cuneus 18 8.8 9 −97 25

FFG (76)

 R fusiform gyrus 19 7.5 30 −49 −11

 R superior occipital gyrus 19 7.0 33 −88 19

 L fusiform gyrus 19 5.9 −27 −55 −11

CalcarineG (1)

 Bi calcarine gyrus 17 9.3 3 −91 −2

MOG (18)

 R middle occipital gyrus 18 9.8 27 −100 −2

 L middle occipital gyrus 18 7.6 −27 −100 −5

L MOG (54)

 L middle occipital gyrus 18 8.7 −33 −91 1

Cognitive control networks (14) – – – –

SOG (73)

 L superior occipital gyrus 19 7.6 −27 −85 28

 R superior occipital gyrus 19 6.2 36 −82 28

SMA (43)

 Bi supplementary motor area 6 7.9 0 11 49

Precuneus (24)

 Bi Precuneus 7 8.4 3 −61 55

SPL (17)

 R superior parietal lobule 7 8.4 3 −61 55

 L superior parietal lobule 7 5.5 −30 −67 55

L IPL (41)

 L Inferior parietal lobule 40 8.6 −51 −40 43

IPL (63)

 R inferior parietal lobule 40 9.8 63 −40 34

 L inferior parietal lobule 40 6.3 −57 −52 37

MFG (46)

 L middle frontal gyrus 10 7.7 −33 47 28

 R middle frontal gyrus 10 5.0 30 47 22

IFG (14)

 R inferior frontal gyrus 45 8.9 45 23 25

 L inferior frontal gyrus 9 5.5 −45 14 34

R IFG (67)

 R inferior frontal gyrus 47 7.3 48 47 −5

 L middle orbital gyrus 10 6.4 −45 47 −5

L IFG (32)

 L inferior frontal gyrus 45 8.4 −51 23 22

Bi SFG (25)
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Intrinsic Connectivity Network BA Max (Z)

Peak (mm)

x y z

 Bi superior frontal gyrus 6 6.7 15 20 61

MFG (30)

 L middle frontal gyrus 10 9.5 −30 62 7

 R middle frontal gyrus 10 5.7 27 53 4

SMeG (65)

 superior medial gyrus 9 6.9 0 41 40

IFG (38)

 L inferior frontal gyrus 47 7.9 −42 23 −11

 R inferior frontal gyrus 47 6.8 45 26 −8

Default-mode networks (10) – – – – –

L MTG (50)

 L middle temporal gyrus 21 8.2 −60 −31 −2

R MTG (21)

 R middle temporal gyrus 22 9.1 57 −43 10

PHG (34)

 R parahippocampal gyrus 34 9.4 15 −1 −20

 L parahippocampal gyrus 34 9.2 −12 −10 −20

Precuneus (19)

 Bi precuneus 7 10.1 0 −76 34

PCC (70)

 R posterior cingulate cortex 23 7.7 12 −58 16

 R middle temporal gyrus 39 6.6 45 −70 22

 L middle temporal gyrus 39 4.8 −39 −73 22

MeFG (29)

 Bi medial frontal gyrus 11 7.7 0 32 −11

SMeG (53)

 Bi superior medial gyrus 9 8.3 0 59 28

 Bi precuneus 7 6.5 0 −61 34

ACC (26)

 Bi anterior cingulate cortex 32 9.7 0 38 22

R AG (22)

 R angular gyrus 40 8.2 51 −61 46

L AG (20)

 L angular gyrus 40 9.1 −48 −64 43

Cerebellar networks (1) – – – – –

CB (8)

 Bi cerebellar vermis 9.2 0 −70 −14
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