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SUMMARY

Potentially harmful stimuli are detected at the skin by nociceptor sensory neurons that drive rapid 

protective withdrawal reflexes and pain. We set out to define at a millisecond timescale the 

relationship between the activity of these sensory neurons and the resultant behavioral output. 

Brief optogenetic activation of cutaneous nociceptors was found to activate only a single action 

potential. This minimal input was used to determine high-speed behavioral responses in freely-

behaving mice. The localised stimulus generated widespread dynamic repositioning and alerting 

sub-second behaviors whose nature and timing depended on the context of the animal, its position, 

activity and alertness. Our findings show that the primary response to injurious stimuli is not 

limited, fixed or localized, but is dynamic, and involves recruitment and gating of multiple circuits 

distributed throughout the central nervous system at a sub-second time scale to effectively both 

alert to the presence of danger and minimize risk of harm.
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INTRODUCTION

Potentially damaging noxious stimuli activate high-threshold primary afferent neurons, the 

nociceptors, which include sensory neurons with thinly myelinated (Aδ) or unmyelinated 

(C) axons (Julius, 2013; Prescott et al., 2014; Woolf, 1983). In a series of seminal studies 

that represented the first analysis of circuits in the central nervous system, Sir Charles 

Sherrington showed that cutaneous nociceptors activate spinal reflex arcs to drive the 

withdrawal of an affected limb from the potential source of harm (Sherrington, 1910). 

Subsequent work by Schouenborg and colleagues found that each motor pool has distinctive 

excitatory and inhibitory cutaneous receptive fields to produce a hindlimb movement 

specific to a precise stimulation site, the “modular” theory of withdrawal reflex organization 

(Schouenborg and Kalliomaki, 1990; Schouenborg and Weng, 1994). Nociceptive 

withdrawal reflexes are considered the basic unit of protective pain-related behavior and are 

presumed to represent amongst the simplest polysynaptic relationship between sensory input 

and motor output (Clarke and Harris, 2004). These protective responses need to be rapid and 

yet coordinated appropriately. However, the relationship between a purely nociceptive 

stimulus and the global resultant behavior has not been studied with high temporal 

resolution.

How do nociceptor inputs initiate rapid behaviors that are most appropriate for dealing with 

a specific harmful threat to a particular anatomical site, and are these responses localized or 

widely distributed? How much input is required to trigger a response and to what extent is 

the behavior maintained by ongoing input from the periphery? Many such questions remain 
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unanswered because behavioral and sensory responses to noxious stimuli are commonly 

applied and measured over a timescale of seconds, even though the nervous system operates 

in the millisecond range.

Optogenetics enables specific activation of genetically defined primary afferents in a 

localized area with high temporal control, but this technology had only been applied with 

low temporal resolution (Daou et al., 2013; Iyer et al., 2014). Recently, Lechner and 

colleagues used single-shot optogenetic stimulation to identify an interaction between low-

threshold mechanoreceptors and A-fiber nociceptors by examining local sub-second 

behavioral responses at 240 frames per second (Arcourt et al., 2017). Here we examine the 

repertoire of behavioral responses on even faster timescales, across the whole animal. We 

mapped the fast, global structure of evoked responses in awake, freely-behaving animals by 

combined single-shot millisecond optogenetic activation of cutaneous nociceptors with 

millisecond (1 kHz) sampling of behavior (Figure 1A). The relative timings for regional and 

general responses to a single time-locked input were used to examine the nature and 

coordination of the behavioral output. We reveal the complexity and diversity with which the 

nervous system coordinates fast protective behavior across the whole animal, identifying 

responses that could only be observed at a millisecond timescale. Such an approach may 

have general utility for studying stimulus evoked behaviors.

RESULTS

Single-pulse optogenetic activation of nociceptors evokes rapid protective behaviors

We expressed the light-activated ion channel ChR2 in two broad-classes of cutaneous 

nociceptor afferent by crossing Cre-dependent ChR2-tdTomato mice (Madisen et al., 2012) 

with either TRPV1-Cre or Tac1-Cre mice (Basbaum et al., 2009; Cavanaugh et al., 2011; 

Harris et al., 2014). In the resultant mice, freely-behaving on a glass floor, a single pulse of 

blue light as short as 3 ms to the glabrous hindpaw surface caused hindlimb withdrawal in 

most trials (Figure 1B to D). Increasing the duration of the light stimulus increased response 

probability (Figure 1D). The blue light was delivered as a small 900 m spot to the hindpaw 

(~1% of the glabrous surface) but withdrawal still occurred with an even smaller stimulation 

area; 0.3% of the glabrous surface. Using a time-locked single 3 ms pulse as a reference, 

subsequent protective behaviors were recorded using a high-speed camera at 1 kHz to 

resolve the responses on a millisecond timescale. The temporal and spatial precision, and 

genetic specificity of this approach allowed us to map the fine-grained temporal structure of 

protective behaviors at the whole animal level.

First we confirmed that ChR2 expression in TRPV1::ChR2 and Tac1::ChR2 mice indeed 

matched the profiles for small-diameter C and Aδ nociceptors whose peripheral terminals 

innervated the epidermis of the skin and their central axons projected into lamina III of the 

spinal cord dorsal horn (Todd, 2010) (Figures 1E, and S1A to D). These ChR2-expressing 

DRG neurons displayed nociceptor-characteristic high-threshold and wide half-width action 

potentials in response to both light and current injection (Figures 1F, and S1E to G) (Fang et 

al., 2005; Petruska et al., 2000). Both mouse lines exhibited normal sensitivity to noxious 

thermal cutaneous stimuli (Figure S2A). Behavioral responses to light were evoked only by 

the specific optogenetic activation of afferent fibers (Figure S2B and C). TRPV1::ChR2 and 
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Tac1::ChR2 mice therefore represent two complementary but independent DRG nociceptor-

driver lines, and in the following experiments, produced essentially identical responses.

Whole-cell patch clamp recordings from cultured DRG neurons from the two mouse lines 

showed that a single 3 ms pulse of light only ever generated a single action potential, which 

was time-locked (Figure 2A). Action potential voltage threshold and half-width were 

identical, whether evoked by optogenetic stimulation or current injection (Figure S1G). 

DRG neurons negative for ChR2-tdTomato did not display any photocurrents (8 cells).

We confirmed a similar pattern of activation in vivo, using loose-patch recordings from 

targeted DRG neurons in anesthetized mice (Figure 2B and C) (Bai et al., 2015). Only single 

action potentials were generated by 3 ms light stimuli to the hindpaw, with very low jitter 

(0.3–10.6% of unit interval, 60 trials), which reached the DRG between 6.7 and 100.7 ms 

after the hindpaw stimulus, indicating activation of both Aδ and C fibers.

In order to resolve the precise timing of motor reactions to the time-locked 3 ms light pulse, 

we recorded evoked behavior at 1 kHz in mice that were “idle” (still and awake; Figure S3) 

with all paws on the ground (Figure 1B, and Movies S1 and S2). The minimal latency for 

first observable movement of the hindlimb was 21 and 20 ms for TRPV1::ChR2 and 

Tac1::ChR2 mice respectively (Figures 3B, 3D and S4A). The response latencies to first paw 

withdrawal were distributed in two distinct millisecond-timescale populations, around 30 ms 

and 140 ms. These two different times likely reflect responses to the activation of Aδ or C-

fibers respectively, as there is a high correspondence between these behavioral latencies and 

the conduction latencies obtained from in vivo loose-patch DRG recordings (Figure 2C). 

Small-diameter DRG neurons have low maximum firing frequencies and long interspike 

intervals (Figure 2D) and even in circumstances where a second action potential was evoked 

by a peripheral stimulus, this would arrive in the CNS too late – after the behavior was 

completed; thus, fast withdrawal behavior is triggered by arrival of the first set of single 

action potentials to the spinal cord. The short and the longer latency responses occurred 

within the same animal on different trials and may reflect either the specific population 

activated by a particular stimulus or the state of the CNS which may facilitate or gate 

different inputs, depending on the context of the stimulus.

These electrophysiological, immunohistological and behavioral experiments indicate that 

TRPV1-Cre and Tac1-Cre selectively target both Aδ and C fibres. Although these 

nociceptive fibers represents a mixture of functionally distinct sensory neuron subtypes, 

their optogenetic activation is much more selective than that produced by a brief electrical 

stimulation and without the inevitable activation of low-threshold Aβ fibres which influence 

nociceptive pathways (Duan et al., 2014; Melzack and Wall, 1965). The optogenetic strategy 

allows us to control a genetically-defined nociceptive input with single action potential 

resolution and examine its relationship with the behavioural output at the millisecond-

timescale.

In wild type mice using the same high speed monitoring of natural stimulus-evoked 

behaviour, we found that thermal stimulation of the hindpaw (100 mW blue light) generated 

a response with a latency of 1.8 ± 0.4 s (five trials), which is much slower than that activated 
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by optogentic activation of TRPV1-lineage nociceptors. The delay must reflect the time 

taken for the skin to heat to a temperature sufficient to activate the nociceptors. Mechanical 

stimulation (pinprick) of the hindpaw gave a much faster response; 74 ± 12 ms (27 trials), 

but here it is not possible to dissociate responses evoked by activation of low threshold from 

high threshold mechanoreceptors and the extent of the delay caused by distribution of 

mechanical forces though the tissue.

Withdrawal is not invariant but timed according to context

Mice that were grooming at the time of the stimulus showed substantially reduced 

withdrawal probabilities (TRPV1::ChR2, 1/15 withdrawals; Tac1::ChR2, 11/42 

withdrawals) suggesting that nociceptive behaviors are actively suppressed in certain 

contexts (Callahan et al., 2008). In sleeping TRPV1::ChR2 mice (non REM sleep, 

determined by EEG recording), flexion was observed in 9/20 stimuli, which reflects a 

reduction in withdrawal probability compared with the awake state which responded to 

33/39 stimuli.

High-speed recordings reveal a diversity of responses to the same stimulus (Figure S5) and 

that the timing of responses was influenced by context. We found that the latency to paw 

withdrawal was influenced by the posture of the animal (Figures 3, and S4A and B); 

hindlimb withdrawal was slower in mice with forepaws raised from the floor (“forepaw-up”) 

compared with mice where all paws were in contact with the floor (“forepaw-down”). 

Cumulative distributions showed that this effect reflects a delay specifically in the slower 

latency putative C-fiber response, which were over two-fold slower in forepaw-up than in 

forepaw-down situations (K-S test p < 0.0082). This finding indicates that the timing of the 

hindlimb flexion withdrawal may be delayed to maintain balance. Consistent with this, in 

the forepaw-up state, the forelimb moved from its flexed position to an extended position 

with a fast latency, usually well before hindlimb withdrawal (Figures 3C and S4B, and 

Movie S1). Fast and slow hindpaw behavioral responses occurred in the forepaw-down state 

at about equal frequency (Figure 3E). The proportion of positive hindpaw responses was 

overall lower in the forepaw-up compared to the forepaw-down situation (Figure 3E). 

Therefore, hindlimb withdrawal can be delayed or even on some occasions prevented from 

occurring, perhaps to minimize the summed risk, falling or withdrawal. These findings show 

that the nociceptive flexion reflex is not hardwired to evoke an invariant withdrawal response 

at a fixed time but rather reflects an integration of diverse influences operating at a sub-

second scale.

Local nociceptor activation recruits responses across the whole animal simultaneously

Single-shot hindpaw optogenetic stimulation did not only result in movements restricted to 

the limbs, but unexpectedly, also in coordinated movements of the whole animal. The 

vibrissae showed clear movements, usually well before the hindlimb withdrawal (Figures 4 

and S4C, and Movies S1 and S2). The minimum latencies for vibrissae movement in 

TRPV1::ChR2 mice (15 ms) and Tac1::ChR2 mice (20 ms) were shorter than hindlimb 

flexion and indicate recruitment by Aδ afferents. No movement of vibrissae, limbs, head, 

body or tail was detected in response to light stimulation in eight control (no ChR2) 

littermate mice (25 recordings, 400 ms sampled). That a brainstem motor output occurs even 
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before the flexion reflex indicates that the vibrissae are part of a global protective system to 

very rapidly identify the spatial source of danger.

High-speed recordings show that global responses also occur with a natural noxious 

mechanical stimulus (pinprick). The latency for global responses in this situation occurred at 

37 ± 9 ms while the stimulated hind paw responded at 104 ± 26 ms (six responses). Both 

low-threshold and high-threshold mechanoreceptors are activated by this stimulus. However, 

using optogenetics we reveal that nociceptors alone are sufficient to drive millisecond-

timescale spinal segmental responses as well as ones initiated in the brain, and that the latter 

generally occur before the former.

Tail flick is another spinal withdrawal reflex enabling escape of this body part from 

potentially injurious stimuli. Single-shot optogenetic activation of the tail flick reflex 

initiated localized tail withdrawal response, which was concurrent with widespread 

movements of the vibrissae, head, body, and limbs (Figure 5 and Movie S3). Absolute 

latencies for tail responses were longer than for stimulation of the hindpaw, with a minimum 

latency of 104 ms (TRPV1, 35 recordings from 8 mice) and 110 ms (Tac1, 54 recordings 

from 8 mice), and means of 247 ± 9 ms and 263 ± 7 ms respectively. This provided an 

extended time window in which to resolve distinct global behavioral latencies. These 

behaviors are likely, given the latency, to be driven mainly by C-fiber input, unlike the 

hindpaw where we observed short and long latency responses – which may reflect different 

sensory innervation in these tissues. While hindlimb stimulation invariably generated short 

latency Aδ evoked general body (whisker) movements, the long latency of the general body 

movements evoked in response to tail stimulation indicate that C fibres also can access 

distributed alerting responses. Although like hindlimb withdrawal, the tail flick was 

considered to represent only a localized spinal reflex (Irwin et al., 1951), our data indicate 

that nociceptor activation in the tail evokes behaviors that are not limited to the spinal cord, 

but extend globally to produce coordinated widespread subsecond protective responses.

Sub-second awakening on minimal nociceptor activation

Cortical electroencephalography recordings during brief 3 ms optogenetic stimulation in 

sleeping mice showed that the stimulation provoked the mice to wake with a latency 

consistent with C-fiber activation (Figure 6). Input from those few nociceptors innervating a 

small area of hindpaw skin has therefore, widespread consequences in the CNS that include 

terminating sleep within a fraction of a second (156 ± 29 ms, n = 9) – an order of magnitude 

faster than with an innocuous acoustic tone (Kaur et al., 2013). This reveals that the sleep to 

wake transition can occur very rapidly in response to danger; cortical activity can be 

changed within a fraction of a second by a single action potential volley initiated at the skin 

in nociceptors.

DISCUSSION

Primary afferent nociceptors are genetically and functionally heterogeneous, allowing for 

discriminative detection of many somatic sensory modalities, intensities and timings, 

including noxious thermal, mechanical, and chemical stimuli. In an experimental setting, the 

controlled application of a thermal, mechanical or chemical stimulus is designed to mimic 
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naturalistic activation of cutaneous afferents in a real-life setting, and has been essential in 

studying the neural underpinnings of sensory processing. In spite of this, fundamental 

principles underlying nociceptor coding remain unclear, for example, the extent to which 

polymodal nociceptors contribute to coding (Prescott et al., 2014). One problem is that any 

naturalistic stimulus however brief will necessarily activate multiple subpopulations of 

nociceptors at different times, and in most cases low-threshold afferents also, making it 

difficult to define the particular consequences of specific inputs from one class of neuron. 

Studying some of the fundamental properties of nociceptors and the behavioral responses 

they evoke in vivo requires greater specificity and temporal control than that afforded by 

such naturalistic stimuli. These stimuli are typically applied at a timescale that is slower than 

the timescale for the nervous system to respond (millisecond). Indeed, high-threshold 

nociceptors do not fire until the stimulus applied to the skin tissue has reached the activation 

threshold of transducers on their peripheral terminals by changing the temperature of the 

skin, transferring force through the skin or the diffusion of chemicals to the receptors.

We used optogenetic stimulation in this study as an alternative strategy to naturalistic stimuli 

to both obtain genetic specificity of the class of afferent activated and to give us high 

temporal single action potential resolution. This approach, by bypassing the delays due to 

sensory transduction mechanisms, allows for direct study in the millisecond range of the 

central consequences of defined inputs. Our data show that optogenetic stimulation provides 

unique advantages for understanding the temporal relationship between a specific nociceptor 

input and its output, that are not possible with naturalistic stimulation. Precise control of 

which afferent is stimulated and when is obviously artificial in its nature, normally such a 

limited input is unlikely to occur, but it does enable important aspects of sensory responses 

to be experimentally measured. Our data showing that pinprick like optogenetic stimuli 

elicits global responses, indicate that the nature of the response evoked by the optogenetic 

stimulation does not differ qualitatively from that produced by naturalistic stimuli.

In the present study we combine high spatiotemporal resolution and minimal genetically-

specific input to examine fast protective stimulus-response relationships across the whole 

animal in freely-behaving mice at a millisecond timescale. Nociceptors innervating skin 

were genetically-targeted and optically stimulated using a single short pulse of light so that 

the timings of behavioral responses could be resolved with a high-speed camera at 1 kHz. 

Combining optogenetics with millisecond timescale sampling of global behavior reveals 

behavioral features that otherwise could not have been observed. This strategy has provided 

insight into the operation of the CNS related to the initiating alerting responses to danger 

and the coordinating of body movement to minimise potential harm (Figure 7), but also 

relates to more general aspects of CNS organization at a sub-second scale.

Rodents can be trained to report on single action potentials in a few hundred neurons in the 

barrel cortex (Huber et al., 2008). Such associative learning can also be achieved with a train 

of action potentials in a single neuron in the motor cortex and somatosensory cortex (Brecht 

et al., 2004; Houweling and Brecht, 2008). In larval zebrafish a single action potential in a 

single trigeminal neuron is sufficient to drive escape behavior (Douglass et al., 2008). We 

find that initiation of a single action potential volley in mammalian primary sensory neurons 

is also sufficient to elicit robust innate protective behaviors in agreement with the recent 
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findings of others (Arcourt et al., 2017). The latter authors measured the resultant local 

segmental responses at 240 frames per second. Here we develop this approach further and 

exploit the time-locked single action potential input to map the precise temporal structure of 

the resultant fast behavior at the millisecond timescale and the whole animal level.

Over a century ago, Sherrington described the nociceptive flexion-reflex of the limb and its 

properties in decerebrate and spinal cat preparations; noxious stimulation of the hindlimb 

simultaneously activates flexor muscles and inhibits extensor muscles, to withdraw the limb 

from the stimulus (Sherrington, 1910; Sherrington, 1906). Forelimb reflex movements 

accessory to this protective reflex were also observed by Sherrington in these preparations. 

Here we show in freely behaving mice that movements in the vibrissae, head, body and 

forelimbs occur simultaneously with movement of the hindlimb. Thus information arriving 

in one highly spatially restricted part of the dorsal horn of the spinal cord by single action 

potentials in a small number of sensory fibers appears to be rapidly distributed across many 

different parts of the CNS to initiate multiple rapid and diverse movements. This response 

includes the initiation of exploratory movements by the vibrissae sensory system, which 

have important roles in sampling the environment (Moore, 2004) and coordinate protection 

of the animal. Activation of vibrissae movement was particularly highly time locked with the 

jitter expected of a polysynaptic circuit. The nociceptor input was also sufficient to terminate 

sleep within a fraction of a second. This rapid transition from sleep to wake states promotes 

transient arousal, potentially to prepare to flee from the stimulus source. This illustrates how 

widespread the circuits are that can be recruited by minimal nociceptive input.

We observe that certain behavioral responses are suppressed or delayed, depending on the 

ongoing state of the animal, as set by body position and activities like grooming. These 

findings suggest that information about body state is distributed to determine the nature and 

timing of any response elicited at a particular time from a particular location. How circuits 

run extended programs from a single action potential input and how and where interactive 

postural and activity gating operates, now need to be established, including where 

nociceptive information is stored in the CNS until movement is permitted by the relief of 

any gating, long after the input is over.

Taken together, our data show that the system operates like a tripwire, such that minimal 

input to the central nervous system triggers widespread but coordinated and interactive 

neural programs, that once activated become independent of any need for further afferent 

input. This set of widely distributed interacting circuits is far more complex than the 

prototypic primary nociceptive protective reflex response; a short polysynaptic chain of 

excitatory interneurons to ipsilateral flexor motor neurons and inhibitory interneurons to 

extensor motor neurons in the same spinal cord segment. The resolution afforded by 

combining optogenetics with global millisecond behavioral response mapping of awake 

behaving animals has revealed an unsuspected complexity of even the simplest of nervous 

system stimulus-response relationships, one that now needs to be reconciled with growing 

insights into the dynamic network states present in neural microcircuitry (Markram et al., 

2015). We reveal that a single input in a very limited skin area drives multiple parallel innate 

programs distributed throughout the spinal cord, brain stem and cortex that alert the animal 

to and protect it from danger in a dynamic manner that reflects its current state, reinforcing 
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the presence in the CNS of selectable, complex and diverse sub-second behavioral responses 

(Wiltschko et al., 2015). The identity of the circuits that guide these dynamic sub-second 

responses and their influence on the experience of pain can now be investigated.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in Supplemental 

Experimental Procedures.

Mice

Targeted expression of ChR2-tdTomato in nociceptive primary afferents was achieved by 

breeding heterozygous Rosa-CAG-LSL-hChR2(H134R)-tdTomato-WPRE (Ai27D) mice 

(Madisen et al., 2012) with mice with Cre recombinase inserted downstream of the TRPV1 
(Cavanaugh et al., 2011) or TAC1 genes (Harris et al., 2014). The background strain was 

C57BL/6j. Resultant mice were heterozygous for both transgenes and were housed with 

control littermates. Mice were given ad libitum access to food and water and were housed in 

at 22 ± 1°C, 50% relative humidity, and a 12-hr light:12-hr dark cycle. Adult (2–6 month 

old) mice were used in experiments. Male and female mice were pooled by genotype to limit 

the number of animals used.

All experiments were carried out at Boston Children’s Hospital and Harvard Medical School 

and were conducted according to institutional animal care and safety guidelines and with 

IACUC approval.

Behavioral studies

Experiments were conducted in a quiet room at 22 ± 1°C with 50% relative humidity. 

Animals were acclimatized to the behavioral testing apparatus during three habituation 

sessions in advance of starting the experiment. The behavioral tester was blinded and 

randomization was achieved through the breeding strategy where mice were separated based 

on their sex during weaning.

In vivo optogenetics

Mice were placed on a borosilicate glass (1.1 mm thick) platform in 7.5 cm × 7.5 cm × 15 

cm chambers and acclimatized for at least one hour. A requirement was that the mice were 

in a calm and awake “idle” state and not grooming or exploring, so that there was minimal 

movement before optogenetic stimulation, increasing the signal-to-noise ratio. “Non-idle” 

states were identified as a body posture that was lowered to the floor, since these were likely 

not awake they were not used (Figure S3). A 473 nm DPSS laser (100 mW, LaserGlow) 

coupled to a multimode FC/PC optical fiber (400 μm core diameter 1 m length, Thorlabs) 

was used in all behavioral experiments. A computer-controlled pulse generator (OPTG-4, 

Doric) was used to supply TTL signals to the laser driver. Average power density was 

estimated by sampling 400 pulses over 20 seconds using a PS19 optical power meter 

(Coherent). The optical fiber tip was positioned below the left hindpaw during optogenetic 

stimulation (3 ms at 47 mW.mm−2). This was consistently applied to the center of the lateral 

plantar glabrous surface to minimise any differences in innervation density. A 3 ms pulse 
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duration was selected to resolve the relatively short response times accurately. Behavior was 

sampled at 1,000 frames per second using an acA2040-180kmNIR cameralink CMOS 

camera (Basler) with an 8 mm lens and set at 500 pixels × 350 pixels under normal ambient 

lighting (800 μs exposure time). Light saturation was reduced by a yellow-orange lens filter. 

Acquisition was carried out using LabVIEW on a computer with excess buffer capacity to 

ensure all frames were successfully retained. An oscilloscope was used to confirm the frame 

rate. An Edgertronic high-speed camera was also used. All experiments used at least two 

independent litters and were duplicated. Hindpaw, forelimb, vibrissae, head and body 

latencies were determined manually frame by frame. Littermate controls without Cre 

recombinase, or without ChR2, never reacted to a 10 ms blue light pulse (3 trials for 15 

mice). TRPV1::ChR2 and Tac1::ChR2 mice did not respond to an equivalent off-spectra 

pulse of light (594 nm, three trials in seven mice each for TRPV1::ChR2 and Tac1::ChR2).

Statistical Methods

Pooled data are given as the mean ± SEM unless specified otherwise. Two-tailed unpaired 

Student’s t-test was used to compare a single measurement between two groups. 

Nonparametric ANOVA was used for multiple comparisons of statistical significance. In all 

tests P < 0.05 was considered significant. The glabrous hindpaw surface was 56 ± 1 mm2 

(both paws in 10 mice). The minimal latency for first observable movement of the hindlimb 

was 21 ms for TRPV1::ChR2 (36 trials, 13 mice) and 20 ms for Tac1::ChR2 mice (63 trials, 

10 mice). The Kolmogorov-Smirnov test was used to compare cumulative distributions that 

were separated into fast and slow populations using a threshold of 60 ms (Figure 3). The 

response latencies to first paw movement were showed means of 29 ± 1 and 143 ± 24 ms 

(from 19 and 10 responses respectively) for TRPV1::ChR2 mice, and 32 ± 2 or 129 ± 17 ms 

(from 20 and 26 responses) for Tac1::ChR2 mice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rapid protective behavior time-resolved using single-pulse optogenetic activation and 
high-speed sampling
(A) Schematic illustrating the strategy used to map the fine-grained evoked behavioral 

responses with millisecond resolution. (B) Behavior elicited by a 3 ms light pulse to the 

hindpaw to monitor the nature, extent, timing and coordination of limb movements 

associated with flexion withdrawal using a camera recording at 1000 frames per second. 

TRPV1::ChR2 is shown. (C) Motion detected by comparing the difference in pixel intensity 

between frames. Each colour represents the position of the animal at a point in time. First 

motion was detected 35 ms from start of the 3 ms optogenetic stimulus. (D) Probability of 

flexion withdrawal depended on pulse duration (4 TRPV1::ChR2 mice; 6–10 trials each). 

Data are represented as mean ± SEM. (E) ChR2 was expressed in nociceptors that innervate 

the skin and spinal cord, as shown here for TRPV1::ChR2. Scale 20 μm. (F) Current-clamp 

recordings of cultured DRG neurons show that a 3 ms pulse of light generates a high-

threshold action potential with a pronounced shoulder, as indicated by asterisk.
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Figure 2. A single action potential volley is sufficient to drive nociceptive behavior
(A) Electrophysiological recordings (top) of a single DRG neuron (TRPV1::ChR2+) shows 

that one light pulse generates a single action potential, unlike activity evoked by capsaicin (1 

μM). Recordings from multiple DRG neurons, plotted as action potential rasters (bottom) 

evoked by light, capsaicin, or current injection. Each row represents a different neuron. (B) 

Optogenetic stimulation in an in vivo cell-attached recording preparation. The plantar 

surface of hindpaw was illuminated with a light stimulus, eliciting an action potential that 

propagated centrally. (C) Rasters showing spiking response of four DRG neurons over 

successive trials. In all cases, the light pulse elicited only single, low jitter action potentials 

(0.3–10.6% of unit interval, 60 trials). Conduction velocities estimated by a distance 

between skin and soma of 40 mm. (D) In vitro whole-cell patch clamp recordings showing 

that small-diameter DRG neurons have low maximum firing frequencies. Current was 

injected in 50 pA increments up to 950 pA to identify the minimum interspike interval. A 

recording from a TRPV1::ChR2+ neuron injected with 950 pA is shown (top). The 

minimum interspike interval was plotted against the capacitance (bottom) for 24 

TRPV1::ChR2+ neurons, 17 Tac1::ChR2+ neurons, and 21 Thy1::ChR2+ neurons. 

Thy1::ChR2+ neurons represent a mixed population of small-and large-diameter neurons. 

Square symbols indicate neurons that also responded to capsaicin (1 μM).
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Figure 3. Rapid nociceptive behaviors are coordinated according to context
(A) Representative recordings showing postural-dependent nociceptive behaviors recorded 

from the same animal on the same day. The difference in pixel intensity between frames 20 

ms apart illustrates the shift in timings. (B) Cumulative distributions of hindpaw withdrawal 

latencies reveal a short response latency in about half the trials and a much slower latency in 

the others, which is further delayed with forepaw-up. TRPV1::ChR2 is shown for simplicity, 

see Fig. S4 for Tac1::ChR2. Means are in gray. (C) Relative timings for nociceptive hindpaw 

withdrawal and forepaw extension in response to light in forepaw-up situation. Most 

responders are below unity indicating hindlimb flexion occurring after forepaw extension in 

forepaw-up state. TRPV1::ChR2 is shown, see Fig. S4 for Tac1::ChR2. (D) Probability 

distributions (10 ms bins) for hindpaw withdrawal latency in response to 3 ms optogenetic 

stimulation in TRPV1::ChR2 and Tac1::ChR2. Cumulative distribution fits (see B and 

Figure S4A) indicate that the hindpaw withdrawal occurs with two populations. These faster 

and slower populations were clearly separated at 60 ms (shown by the dashed line), which 

was used as a cutoff for statistical analysis. (E) Percentage of trials leading to no response 

(none), a fast latency (faster) or slow latency (slower) response showing that in forepaw-up 

state the hindpaw withdrawal was either slowed or less likely to occur.
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Figure 4. Global protective behavioral responses occur simultaneously
(A) Global movements of the whole animal, shown in red, detected by taking average pixel 

intensity of ten frames (at 1 kHz) directly before the stimulus and subtracting pixel intensity 

of ten consecutive frames beginning 40 ms after stimulus. Downward deflection of vibrissae 

is clearly resolved (top right, bottom left). The latencies for vibrissae movement fit a 

Gaussian curve centring on 30 ms (bottom right, 78 recordings). (B) Rasters for relative 

latencies for hindpaw withdrawal, forepaw movement, and vibrissae movement showing no 

change in vibrissae but delayed hindpaw movement in forepaw-up state. (C) Relative 

timings of hindpaw and vibrissae movement in response to light, revealing earlier movement 

of vibrissae in most cases. TRPV1::ChR2 is shown for simplicity, see Fig. S4 for 

Tac1::ChR2.
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Figure 5. Time-resolved tail flick reflex
(A) A 3 ms pulse of light to distal tail tip drove coincident local tail movement and global 

protective behaviors. Difference in pixel intensity at 10 ms intervals illustrate relative 

latencies is shown on the right for a TRPV1::ChR2 mouse, as an example. (B) Rasters 

showing similar latencies for tail flick and global movements (vibrissae, head and body) in 

TRPV1::ChR2 mice. (C) Relative timings of TRPV1::ChR2 tail flick and global movements 

in response optogenetic stimulation (35 recordings). Slope = 0.99, Pearson’s r = 0.85. (D) 

Raster plot showing coincident timings of optogenetically-evoked tail flick and global 

movements (vibrissae, head and body) in Tac1::ChR2 mice. (E) Relative timings of 

Tac1::ChR2 tail flick and global movements in response optogenetic stimulation (n = 54). 

Slope = 0.96, Pearson’s r = 0.89.
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Figure 6. Minimal nociceptor activation causes sub-second awakening
(A) Latency to awakening in response to optogenetic stimulation applied to TRPV1::ChR2 

mice during NREM sleep detected by EEG/EMG analysis. Top, heatmap representation of 

EEG power spectrogram (0–25 Hz). Bottom, corresponding EEG trace. The grey bar 

represents the 3 ms stimulation. Note that the animal woke with a very short latency and 

resumed sleep quickly. (B) Latency to awakening from NREM sleep after stimulation in 10 

trials.
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Figure 7. Model of context-dependent flexion reflex gating
Brief optogenetic activation of hindpaw nociceptors (in blue) generates a single action 

potential volley in Aδ and C-fibers that travel at ~5 m.s−1 and <1.5 m.s−1 respectively to 

reach spinal cord at ~11.5 and >35 ms. In forepaw-down state (A) the afferent input drives 

spinal interneurons (IN) to activate flexor motor neurons (fMN) in the ventral horn leading 

to hindlimb flexion. Normalised probability distributions (black curves) calculated from first 

derivate of fits in Fig. 3B with median latency values. Aδ nociceptors simultaneously 

activate projection neurons to recruit activity in supraspinal motor neurons that control 

vibrissae movement. In forepaw-up state (B) the Aδ response is unchanged in time although 

reduced in frequency but the C-fiber response is delayed or absent; in this postural position, 

hindlimb flexor motor neurons are tonically inhibited. Noc = nociceptor; PN = projection 

neuron; IN = interneuron; PS = propriospinal neuron connecting lumbar and cervical 

circuits; MN = motor neuron, where fMN is flexor and eMN is extensor. Calculations were 

based on 1) distance between the glabrous skin of the hindpaw to DRG ~40 mm; 2) distance 
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between the DRG and spinal cord ~10 mm; 3) synaptic delay ~1.5 ms; 4) MN conduction, 

neuromuscular junction delay and excitation contraction coupling ~ 7 ms.
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