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Abstract

TDP-43 can form pathological proteinaceous aggregates linked to ALS and FTLD. Within the 

putative aggregation domain, engineered repeats of residues 341–366 can recruit endogenous 

TDP-43 into aggregates inside cells; however, the nature of these aggregates is a debatable issue. 

Recently, we showed that a coil to β-hairpin transition in a short peptide corresponding to TDP-43 

residues 341–357 enables oligomerization. Here we provide definitive structural evidence for 

amyloid formation upon extensive characterization of TDP-43(341–357) via chromophore and 

antibody binding, electron microscopy (EM), solid-state NMR, and X-ray diffraction. On the basis 

of these findings, structural models for TDP-43(341–357) oligomers were constructed, refined, 

verified, and analyzed using docking, molecular dynamics, and semiempirical quantum mechanics 

methods. Interestingly, TDP-43(341–357) β-hairpins assemble into a novel parallel β-turn 
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configuration showing cross-β spine, cooperative H-bonding, and tight side-chain packing. These 

results expand the amyloid foldome and could guide the development of future therapeutics to 

prevent this structural conversion.

Graphical Abstract

TDP-43 (transactive response DNA binding protein 43 kDa) is a protein implicated in RNA 

regulation.1 Its binding to nucleic acids takes place through two RNA recognition motifs 

(RRM) located at the N-terminus, where sequences for nuclear localization and export are 

also present. TDP-43 is also associated with neurodegenerative diseases, as aggregates of 

this protein have been found in patients with amyotrophic lateral sclerosis (ALS) and 

frontotemporal lobar degeneration2 (FTLD). TDP-43 may also play role(s) in the 

neurotoxicity of Aβ oligomers.3–5 The nature of the TDP-43 aggregates and their 

pathological role(s) is still unclear. Although most TDP-43 aggregates do not resemble 

amyloid,2,6 some do under certain conditions.7,8 For certain, short peptides corresponding to 

segments from other regions of TDP-43 can form amyloid-like fibrils in vitro9–13 (Table S1 

in the Supporting Information, SI). Moreover, the toxicity of the full-length protein has 

recently been attributed to the formation of noxious oligomers.14 On the contrary, 

sequestering of all endogenous TDP-43 molecules into aggregates has also been suggested 

to cause a harmful loss of the native protein’s function in its control of RNA metabolism.15 

From a pathway point of view, aggregate formation could be driven by several factors that 

range from simple overexpression of this protein or the elimination of neighboring “self 

chaperoning” elements, as has been observed in RNase A.16 For a review on the subject, 

interested readers are referred to Buratti and Baralle.1

In summary, TDP-43 aggregates might: (i) be due to the elimination of neighboring “self 

chaperoning” elements, as has been observed in RNase A,16 (ii) play physiological roles in 

RNA and stress granules but eventually act as “TDP-43 sinks” to induce loss-of-function 

damage,15 or (iii) be neurotoxic through a gain-of-function mechanism. Most importantly, 

these scenarios do not necessarily exclude each other and may all be pathologically relevant. 
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Therefore, understanding the dynamics of TDP-43 aggregation may represent a key step in 

the search and design of natural, synthetic, or semisynthetic compounds able to correct this 

process in patients’ cells.

The localization of several pathological point mutations to the 341–366 segment suggests 

that it is relevant for disease processes.10 The finding that a TDP-43 construct expressing 

multiple repeats of the C-terminal Q/N rich region spanning residues 341–366 is able to 

reproduce most of the pathological effects of the full-length protein aggregates in cells17,15 

constitutes strong evidence that this segment is relevant for formation of these aggregates. 

Recently, on the basis of experimental results from circular dichroism (CD) and nuclear 

magnetic resonance (NMR), we have characterized the structural transformation of a peptide 

corresponding to this segment in TDP-43, from a disordered monomer to an aggregating 

conformer rich in β-structure.18 Using molecular dynamics (MD) simulations to test the 

stability of different plausible structural models, we showed that residues 341–357 formed a 

β-hairpin and residues 358–367 adopted a turn, followed by a well-defined yet noncanonical 

structure; however, how these monomers assemble and how the resulting oligomer’s 

structure is formed remains unknown. Regarding this issue, the preliminary observation that 

a short peptide corresponding to residues 341–357 aggregates more rapidly than 341–366 

suggests that these residues are the most crucial for self-association.

The main objective of this work is to characterize the structure of the oligomer formed by a 

peptide corresponding to residues 341–357 in TDP-43 using a variety of biophysical, 

biochemical, and computational methods. We also aim to rigorously test whether or not this 

aggregate has amyloid-like properties.

The short segment 341–357 of TDP-43 has been recently proposed to adopt a β-hairpin 

conformation.18 Its sequence, ASQQNQSGPSGNNQNQG, consists of two Gln/Asn rich 

regions (bold) separated by a turn (underlined). Because the peptide corresponding to this 

segment of TDP-43 protein aggregates quickly at concentrations appropriate for solution 

NMR, we studied a diluted sample by CD spectroscopy. The CD spectra indicated that the 

β-structure content increases over time (Figure 1A and Table S2 in the SI).

To gain additional structural information on the conformation of this peptide after 

aggregation, we used solid-state NMR. The 1D 13C ssNMR spectrum of aggregated forms of 

TDP-43(341–357) shows significant resonance overlap, but a peak at 66.17 ppm can be 

unambiguously assigned to a Ser 13Cβ (Figure 1B). The low-field shifted value of this 

nucleus is consistent with the presence of β-sheet structure. To determine whether these β-

rich aggregates are amyloid-like, we first performed Thioflavin T (ThT) and Congo Red 

(CR) binding assays, as amyloid-like fibers are well-known to bind these two dyes. ThT 

fluorescence is strongly enhanced upon binding to amyloid fibrils, whereas CR increases its 

absorbance of visible light and experiences a red shift. As shown in Figure 1C,D, residues 

341–357 of TDP-43 induce these spectral changes, which suggests that the aggregate 

behaves as an amyloid-like protein.

On the basis of these findings, we decided to determine the morphology of these aggregates 

with transmission electron microscopy (TEM). The fibrils were several hundred nanometers 
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long and approximately 15–25 nm wide (Figure 1E). We observed flat, wide fibrils with a 

marked tendency to associate laterally. It is interesting that the morphology of these fibrils is 

very similar to that formed by expanded PolyQ (Q62) segments19 (Figure 1E) and distinct 

from the thinner (9 nm wide) nonbranching fibrils formed by the Aβ peptide.20

The amyloid-like nature of these aggregates was further probed with two different 

conformational antibodies A11 and OC, which recognize amyloid-like oligomers and fibrils, 

respectively (Figure 1F). The A11 assay was positive, which strongly suggests the presence 

of TDP-43(341–357) oligomers similar to the small, diffusible multimeric species formed by 

several neurotoxic peptides,21 including polyQ22 and Aβ.23 In contrast, the binding of 

TDP-43(341–357) to the OC antibody was negligible, in agreement with Wang et al.,24 who 

showed that the C-terminal motif of TDP-43 aggregates is not recognized by the OC 

antibody. This result is intriguing because the TEM images showed strong similarity with 

PolyQ fibers, which are recognized by the OC antibody25 and thus may suggest a subtle 

structural difference between these fibrils.

Considering our previous observations, therefore, these novel analyses have confirmed that 

the TDP-43(341–357) peptide evolves structurally, gaining β-structure over time and 

assembling into A11-reactive oligomers. Moreover, to test possible contributions from 

neighboring segments, we studied the conformation of TDP-43(322–366) using NMR and 

found evidence of a random coil ensemble that aggregates more slowly that TDP-43(341–

357) (Figure S1 in the SI); these results strongly suggest that flanking segments are not key 

for amyloid formation by TDP-43(341–357).

To gain further insight into this conversion and make an atomistic model of the process, we 

carried out computational studies. Two TDP-43(341–357) monomers were placed in a 

simulation box and studied using three independent 100 ns MD runs. The three simulations 

started with different initial velocities on each atom. During all three runs, β-sheet formation 

occurs through the lateral association of the β-hairpins. Two different types of interactions 

were found, which we denoted as in-register (observed in two out of three runs) and out-of-

register interactions (observed in one of three runs). The in-register β-strands permit each 

residue to interact with its counterpart in the strands above and below it, which we consider 

to be an optimal arrangement (Figure 2A). The out-of-register disposition involves an 

asymmetric packing of the residues within the strands and did not seem to be a plausible 

intermediate toward the formation of a mature fibril due to these less optimal interactions. 

Nevertheless, to corroborate the plausibility of both binding modes, we utilized replica 

exchange molecular dynamics (REMD) to improve sampling around these configurations. 

The results obtained provide additional evidence in favor of the in-register mode of β-hairpin 

association (Figure S2 in the SI).

The in-register binding mode involves an extraordinary inter-residue complementarity 

because one strand of each β-hairpin is paired with the same residue above and below, which 

allows for optimal van der Waals interactions and the formation of an extensive network of 

hydrogen bonds throughout the Asn and Gln side chains. The stability of the interactions 

between these monomers is such that even upon heating in silico the system remained stable 

at temperatures up to 350 K. Interestingly, interactions of the strands within the β-hairpins 
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were the first to dissociate, while the interstrand interactions between different TDP-43(341–

357) units were maintained. That is, the intermolecular interactions seem to be stronger than 

the intramolecular ones. Heating at 400 K corroborated this, where prior to dissociation the 

H-bonds were observed to break in the same order (Figure S6 in the SI).

The quality of this structure was analyzed with PROCHECK, 26 which showed that 91.7% 

of the residues are in the most favored regions, whereas the remaining 8.3% were in 

additional allowed regions of the Ramachandran map (Figure S7 in the SI). This ensures the 

stereochemical quality of the system. On the basis of these results, we decided to dock 

additional monomers onto this pair of β-hairpins. Up to five monomers laterally associated 

were built this way, and their structural stability was checked by MD simulations. After each 

100 ns run, all three systems (trimer, tetramer, and pentamer) were found to be twisted and 

showed a remarkable stability (Figure 2B), as gauged by low dRMSD values. 

Supplementary Figure S8 in the SI provides further evidence of the structural stability of 

these systems, where the structures corresponding at times 0, 50, and 100 ns are 

superimposed to highlight the persistence of both twisting and the H-bond networks.

Amyloid-like oligomers typically display a remarkable resistance to chemical denaturants27 

and mechanical unfolding. 28 This exceptional conformational stability has been attributed 

to hyperpolarization of amide groups forming the H-bond network.29,30 The elevated 

stability of the TDP-43(341–357) observed in the simulation runs previously mentioned 

prompted us to test whether these structures are also able to exhibit the typical H-bonding 

cooperativity (HBC) present in amyloid-like fibrils. Semiempirical quantum mechanics 

methods have been proposed as an appropriate choice to study such interactions as they 

provide a good balance between computational cost and accuracy.31 We utilized the AM1 

method to compute the energetics upon oligomerization through lateral association because 

this is the most rigorous function applicable to a system of this size. Because this method is 

intended to reproduce heats of formation, we analyzed the HBC effect in terms of average 

formation energies. The results of these calculations show that it is indeed more favorable to 

form systems of increasing size, which means that as more and more β-hairpins dock onto 

the growing aggregate, their H-bonds become stronger and stronger (Figure S9 and Table S3 

in the SI).

These results are able to reproduce both the H-bonding cooperativity and twisting that are 

characteristic of amyloid-like fibrils. Moreover, these findings are consistent with an 

aggregation pathway wherein the oligomer grows through lateral association of monomers. 

Considering the spectroscopy-based evidence for β-conformation derived from CD and 

ssNMR experiments and given the positive results of the ThT and CR binding assays, the 

A11 immunoreactivity, and the morphology of the aggregates as revealed by TEM, which 

are in-line with amyloid-like aggregates, we tested whether these oligomeric β-sheets can 

pack to form a dry interface. To this end, we used HADDOCK32 to perform fully flexible, 

solvated docking on two of TDP-43(341–357) pentamers. We obtained a cross-β spine 

structure, where the two β-sheets form a dry interface through precise side-chain 

intermeshing with a high shape complementarity value33 of 0.84. This value approaches that 

found (0.86) for the GNNQQNY heptapeptide of Sup3534 and is significantly higher than 

typical Sc values for protease/protease inhibitors (0.71 to 0.76), subunit interfaces (0.70 to 
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0.74), or antibody/antigen contacts (0.64 to 0.68).33 A 100 ns MD simulation showed not 

only that this structure is stable but also that the twist is preserved (Figure 3A).

Finally, the fiber diffraction of the peptide confirmed the cross-β association of the 

TDP-43(341–357) monomers, which shows intra-β-sheet and inter-β-sheet reflections at 4.6 

and 8.6 Å, respectively (Figure 3B). The latter value is smaller than the same reflection 

observed in most amyloid fibrils formed by other polypeptides, except for polyQ aggregates. 

(See Table S4 in the SI.) These data establish the amyloid-like nature of the TDP-43(341–

357) fibrils. X-ray powder diffraction of the fibers that were used for the ssNMR 

experiments showed the same two major reflections (Figure S10 in the SI), with d-spacing 

corresponding to the above distances, which makes this motif unique with respect to 

previously reported amyloid structures. This result can reconcile all of our experimental 

findings with the predicted aggregative pathway based on β-hairpin formation and lateral 

association.

Furthermore, inspecting the dry interface (Figure 3C) of this aggregative motif clarifies why 

the pathological substitutions Q343R and N345 K do not aggregate in vitro.18 In both cases, 

the length of the mutated side chains will not allow for the proper side-chain intermeshing, 

as can be inferred from Figure 3D,E because they are too long for maintain the two mating 

β-sheets at the distance of 8.6 Å observed here and in polyQ fibrils35 or even the longer 

distance of 10 Å seen in most amyloid fibrils (Table S4 in the SI).

On the basis of all of the experimental and computational results, we conclude that 

TDP-43(341–357) forms an amyloid-like fibril with a novel β-turn topology in which each 

β-hairpin associates in parallel to contribute two β-strands to the same β-sheet. It is 

interesting that in this structural model TDP-43(341–357) shows a “β-turn” configuration, 

which has been recently reported for polyQs36 and in contrast with the “β-arc” topology 

observed for Aβ, in which β-hairpins contribute one β-strand to two different β-sheets. This 

β-arc fold is not likely to occur in TDP-43(341–357), as it would imply breakage of the 

interstrand H-bonds favored by the Gly-Pro turn. In fact, it was not observed in our REMD 

and MD simulations. (See Figure S11 in the SI). Nonetheless, TDP-43 and polyQ aggregates 

share a similar morphology, as seen by EM and β-turn topology; however, the configuration 

of consecutive hairpins is parallel in the case of TDP-43(341–357) and antiparallel for 

polyQ aggregates.

In conclusion, we have shown that the TDP-43(341–357) peptide can form oligomeric 

aggregates that are recognized by the conformation-specific A11 antibody and fibrils with 

amyloid-like dye-binding characteristics. In contrast with most amyloid-like fibrils, but akin 

to those formed by polyglutamine, TDP-43(341–357) fibrils show a rather unusual flat 

morphology, as seen by EM, and short inter β-sheet separation, as measured by X-ray 

diffraction. Finally, we advance a mechanism for oligomerization and an atomic resolution 

structural model for the TDP-43(341–357) amyloid-like fibril in which β-hairpins combine 

in a novel parallel β-turn configuration. These results advance our understanding of 

aggregates in TDP-43 pathologies and could aid the development of therapeutics specifically 

aimed at slowing down or inhibiting this process.
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EXPERIMENTAL AND COMPUTATIONAL METHODS

A peptide whose sequence ASQQNQSGPSGNNQNQG corresponds to TDP-43(341–357) 

was purchased from Genescript (Piscataway Township, NJ). Its purity was over 95% as 

assessed by HPLC. NMR spectroscopy and mass spectrometry confirmed the peptide’s 

composition. The peptide’s concentration in solution was determined by weight and by far-

UV absorbance, using ε205nm = 48 080 cm−1·M−1 at 205 nm calculated using the sequence 

and the parameters of Anthis and Clore.37

PolyQ-containing protein was cloned by PCR using a plasmid containing 62 Qs as template, 

kindly provided by Dr. Yoshitaka Nagai.38 The PCR insert was cloned into the pET28a 

vector (Novagen) using the NheI and XhoI restriction sites. With this cloning strategy, the 

MGSSHHHHHHSSGLVPRGSHMAS amino acid sequence remained at the N-terminus of 

the protein. Expression and purification of the protein is fully described elsewhere.28

Circular Dichroism Spectroscopy

Far UV-CD spectra were recorded using a JASCO J-710 spectropolarimeter. The instrument 

bandwidth was 1.2 nm and the scan speed was 20 nm·min−1. Spectra were recorded over the 

wavelength range of 190–260 nm at 25.0 °C using a 0.1 cm path length, with a peptide 

concentration of 105 μM in 3 mM KH2PO4/K2HPO4 buffer (pH 6.8) on freshly dissolved 

and aged samples. Eight scans were recorded and averaged for each spectrum, and the buffer 

reference spectrum was subtracted. For a detailed description of the CD spectral analysis, we 

refer the reader to the SI Methods.

Solid-State NMR Spectroscopy

The TDP-43(341–357) peptide (25 mg) was dissolved in 10 mM KH2PO4/K2HPO4 (pH 6.3) 

and allowed to form fibrils during 7 days. Following solvent removal, the fibrils were packed 

in a 4 mm Varian rotor and measured on a Chemagnetics Infinity 300 MHz instrument in 

H/C double resonance mode with an APEX double-resonance magic-angle spinning (MAS) 

probe. Cross-polarization (CP) experiments were performed with a Hahn-Echo to suppress 

broad background signals. TPPM decoupling (80 kHz) was applied during acquisition.

Thioflavin T Fluorescence

Following the procedure of LeVine,39 a 1.0 mM stock solution of ThT (Sigma, St. Louis, 

MO) was prepared in 3 mM KH2PO4/K2HPO4 buffer, pH 6.8. Fluorescence samples 

contained 5 μL of ThT stock solution, whose final concentration was 50 μM, with 25 μM of 

TDP-43 peptides. Amyloid Aβ1–40 (rPeptide) and ribonuclease A (Sigma type XII-A) were 

used as positive and negative controls, respectively. Spectra were recorded at 25 °C on a 

Jobin-Yvon Fluoromax-4 instrument using 3 nm excitation and emission slit widths. The 

excitation wavelength was 440 nm and emission was recorded over 460–500 nm at a scan 

speed of 2 nm·s−1.

Congo Red Binding

Congo Red spectroscopic assays were performed as described by Klunk et al.;40 5 μM of CR 

stock solution (Sigma) was prepared in 5 mM KH2PO4 and 150 mM NaCl and used to test 

Mompeán et al. Page 7

J Phys Chem Lett. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding to TDP-43(341–357) at concentrations ranging from 1 to 5 μM. Amyloid Aβ1–40 

(rPeptide) was used as a positive control, whereas ribonuclease A (Sigma type XII-A) and 

KIAβ, a nonaggregating β-hairpin peptide,41 were used as negative controls. Congo Red 

absorption spectra were recorded from 440 to 600 nm in a dual beam Cary 210 UV–vis 

spectrometer at room temperature at a 1/2 nm·s−1 scan speed. The samples were aged for 6 

days to ensure aggregate formation and study their possible amyloid-like nature.

Transmission Electron Microscopy

TDP-43 peptide samples were incubated for ~14 days at 37 °C at a concentration of 50 μM 

in PBS [pH 7.0] in the presence of 5% DMSO and with no stirring. PolyQ samples were 

incubated for 20–30 days at 37 °C at a concentration of 10–40 μM in PBS [pH 7.4] in the 

presence of 0.02% NaN3 and with no stirring. For fibrillo-genesis assay, samples diluted to 

concentrations of 5–50 μM (10 μL) were adsorbed onto carbon-coated 300-mesh copper 

grids (Ted Pella) and negatively stained for 60 s using 1 to 2% uranyl acetate. Immediately 

before use, the carbon-coated grids were glow-discharged to enhance their hydrophilicity 

using an Emitech K100X apparatus (Quorum Technologies). The formation of amyloid 

fibrils was analyzed on a JEOL 1200EX II (Jeol Limited) electron microscope equipped 

with a CCD Megaview III camera (Olympus Soft Imaging). The images were acquired at a 

magnification of 120.000× and a voltage of 80 kV.

Dot Blot Analysis

TDP-43 samples were incubated for approximately 2 weeks at 37 °C at a concentration of 50 

μM in PBS with 5% DMSO, pH 7.0 and without stirring. For Dot Blot analysis, 2 μL of each 

TDP-43 peptide sample were spotted onto a nitrocellulose membrane. After blocking for 1 h 

at RT with 10% nonfat milk in Tris-buffered saline (TBS) containing 0.01% Tween 20 

(TBS-T), the membrane was incubated with the polyclonal specific antioligomer A11 

antibody specific for toxic oligomers21 (Life Technologies) or the monoclonal antibody OC 

(Millipore), which recognizes mature amyloid-like fibrils,25 diluted 1:1000 in 3% BSA 

TBS-T, at RT for 1 h. The membranes were washed three times for 5 min each with TBS-T 

before incubating with antirabbit HRP conjugated antirabbit IgG (GE Healthcare) diluted 

1:5000 in 3% BSA/TBS-T at room temperature for 1 h. After washing the membranes thrice 

in TBS-T buffer, the blots were developed with ECL Plus chemiluminescence kit from 

Amersham-Pharmacia (GE Healthcare). Prefibrillar oligomers and fibrillar species of 

Aβ1–42, served as positive controls for A11 and OC reactivity, respectively.

X-ray Fiber Diffraction

In an Eppendorf tube, 2 mg of peptide powder were dissolved in 0.8 mL of water. The 

solution was vortexed at room temperature. The resulting cloudy solution was allowed to 

settle for 7 days to form fibers, after which the tube was spun down and the aqueous solvent 

was decanted. Residual water was further removed slowly in a dehydration chamber. After 

48 h, the dehydrated fibers were cryo-protected in 30% glycerol and flash-frozen in liquid 

nitrogen. The fiber X-ray diffraction pattern was collected using an in-house sealed tube 

microfocus X-ray generator (Micro-Max-003, Rigaku Corporation) with Saturn944 CCD 

and Cu Kα (1.54 Å) radiation at 100 K. This result is shown in Figure 3B. In another 

experiment, TDP-43(341–357) fibers were prepared as previously described, except that 
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they were left in the dehydration chamber for 24 h. The resulting fibers were analyzed with 

an X-ray powder diffractometer (PANalytical X’Pert 3) on a spinning sample holder. The 

data were collected over a 2θ range from 1 to 50°. This is result is shown in Figure S10 in 

the SI.

MD and REMD Simulations

All simulations were performed using amber99sb-ildn force-field parameters42 as 

implemented in the GROMACS package,43 version 4.5.5. The systems were placed in 

TIP3P water44 cubic boxes and simulated under NpT conditions. All individual runs ranged 

from 100 to 110 ns. The peptide model included N-terminal acetyl and C-terminal amide 

groups to avoid artificially favoring β-hairpin formation through attractive electrostatic 

interactions. For specific details we refer the reader to the SI Methods.

Additionally, implicit-solvent REMD45 simulations were carried out to enhance sampling. 

Temperatures were exponentially separated ranging from 280 to 450 K, using six replicas 

(50 ns each replica for a total of 300 ns), and with exchange probabilities ranging from 0.3 

to 0.5. The REMD simulation was initiated using 2 TDP-43(341–357) in the β-hairpin 

conformation placed at random starting positions. Molecular dynamics (with 50 ns per 

replica) from NVT pre-equilibrated systems was performed, and all of the interactions were 

calculated by setting a cutoff distance of 0, which for GROMACS is equivalent to 

computing all interactions using an infinite cutoff. Additional computational details and a 

figure (Figure S12) illustrating the starting peptide configuration are given in the SI.

Protein–Protein Docking

Docking of two ten-stranded systems was performed with the HADDOCK32 program, using 

data from solvent-accessible surface (SAS) calculations. The HADDOCK program was used 

to generate the 20-stranded oligomer with side-chain intermeshing (dry interface), made up 

by a pair of TDP-43 pentamers (each sheet contains 5 β-hairpins and thus 10 β-strands). For 

specific details we refer the reader to the SI Methods.

Semiempirical QM Calculations

To study the energetics of oligomer formation, we performed AM146 calculations in gas 

phase using the Gaussian 0947 suite package (revision D.01). The choice of a semiempirical 

method was based on the differences in size from the smallest to the biggest system, which 

span up to 10-stranded β sheets (corresponding to five TDP-43(341–357) β-hairpins). Figure 

S9 and Table S4 in the SI contain a complete description of the procedures used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) CD spectra of a TDP-43(341–357), contrasting freshly dissolved samples (black line) 

with samples aged for 6 days (red line); an enrichment of β-secondary structure content 

occurs. (B) 13C ssNMR spectrum; a peak arising from a Ser 13Cβ atom in a β-conformation 

is indicated. (C) ThT fluorescence assay of three different samples (blue, red, and green 

curves) with a blank (black line) magnified, indicating the presence of amyloid structures. 

(D) Congo Red absorbance at 535 nm (solid symbols, solid lines, left y axis) and absorbance 

maxima (open symbols, dotted lines, right y axis) in the presence of TDP-43(341–357) 

(black circles), RNase A (blue squares), KIAβW (purple triangles), and Aβ1–40 (red 

diamonds). (E) Representative TEM micrograph shows lateral association of TDP-43(341–

357) aggregates (top) that resemble those formed by expanded PolyQ (Q62) segments 

(bottom). The bar scale in both cases is 0.2 μm. (F) Antibody A11 recognizes TDP-43(341–

357), which is consistent with the formation of smaller amyloid-like oligomers; in contrast, 

the OC antibody (specific for amyloid-like fibrils) shows weak/negligible binding. 

Prefibrillar oligomers and fibrillar species of Aβ1–42 were used as positive controls for A11 

and OC reactivity, respectively.
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Figure 2. 
(A) RMSD corresponding to three independent MD simulations where lateral association 

occurs (left). Note that the term lateral refers to the side by side packing of peptide 

backbones. Snapshots from the last frame of each of the structures are shown together with 

graphical representations of the in-register and out-of-register binding modes (right). The 

distance root-mean-square deviation (dRMSD) shows the same trend (Figures S3–S5 in the 

SI). (B) dRMSD of the trimer (black), tetramer (red) and pentamer (green) fitted to their 

respective time-averaged structures over all of the frames. Snapshots at t = 100 ns are 

represented for each system. All RMSD calculations were performed with respect to the 

corresponding time-zero structures.
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Figure 3. 
(A) RMSD of two TDP-43(341–357) pentamers packed forming a cross β-spine from a 100 

ns MD simulation. Each pentamer is a ten-stranded β-sheet formed by five antiparallel β-

hairpins, whose stability is evidenced by low RMSD values during MD simulations, 

calculated with respect to the time-zero structure. (B) X-ray diffraction pattern collected 

from fibers confirming the presence of a cross β-spine. The reflection at 4.6 Å corresponds 

to the interstrand distance, whereas that at 8.6 Å is the intersheet distance. (C) Gln and Asn 

side chains contact and form a dry interface between the two β-sheets, with a high shape 

complementarity value of 0.84. Q343R (D) and N345 K (E) substitutions are incompatible 

with this supramolecular organization, and, in consequence, peptides carrying these 

substitutions do not oligomerize.18
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