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Abstract

Background and purpose

Brain tumors in the corticospinal tract (CST) region are more likely to cause motor dysfunc-

tion. The aim of this study is to evaluate the effect of gliomas located in the CST region on

motor function with diffusion tensor imaging (DTI) preoperatively.

Materials and methods

Forty-five patients with histopathologically confirmed gliomas were included in this pilot

study, in all cases (low-grade n = 13, high-grade n = 32) CST but not the motor cortex were

involved by the tumor. DTI image were acquired and the posterior limb of the internal cap-

sule fractional anisotropy (FA) and relative FA (rFA = affected FA/contralateral FA) were

measured. Injury of the CST from tumor was divided into three grades (grade 1: displace-

ment, grade 2: displacement and infiltration, grade 3: displacement and disruption). The

fiber density index (FDi) and relative FDi (rFDi = affected FDi/contralateral FDi) of the injured

and contralateral CST were measured. The correlations between muscle strength and the

CST injury grade and the rFA, affected FDi, rFDi values were calculated using Spearman

rank correlation analysis. rFA and rFDi values of muscle strength groups (MMT2-5) were

compared with one-way analysis of variance (ANOVA). The difference of muscle strength

between low- and high-grade glioma groups were analysed with the Mann-Whitney U-test.

Results

Muscle strength was negatively correlated with the injury grade of the CST (r = -0.840,

P<0.001). Muscle strength was positively correlated with rFA, FDi and rFDi (correlation
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coefficients (r) were 0.615, 0.643 and 0.567 for rFA, FDi and rFDi, respectively). The rFA

values between grades (2&3, 2&4, 2&5, 3&5, 4&5) of muscle strength were significantly dif-

ferent (P<0.05), the rFDi values between grades (2&4, 2&5, 3&4, 3&5) of muscle strength

were significantly different (P<0.05), while the rFA and rFDi values in the remaining groups

of muscle strength grades showed no significant differences(P>0.05).

Conclusions

Preoperative DTI and diffusion tensor tractography may quantify the injury degrees of CST

and the extent of motor dysfunction in patients with brain glioma.

Introduction

Gliomas are the most common malignant tumors of the central nervous system. Brain tumors

occurring in the motor cortex may cause reorganization of the motor function area[1]. Volun-

tary movement is mainly controlled by the primary motor cortex, premotor cortex, and sup-

plementary motor area. Therefore, tumors in these regions may not necessarily cause severe

limb dysfunction. The corticospinal tract (CST) passes through the spinal interneuron (Rexed

gray matter lamina IV layer), then to the proximal anterior horn motoneuron (control of

trunk and limb muscles), or terminate in the spinal cord anterior horn motor cell to dominate

free movement of skeletal muscle (control of fine movements of hand, foot and small muscles).

Brain tumors located in the CST region are more likely to cause motor system dysfunction.

Limb muscle strength is an important index to predict clinical prognosis and to evaluate qual-

ity of life in such patients[2].

Compared to conventional MRI, diffusion tensor imaging (DTI) can infer the extent of gli-

oma invasion by evaluating changes of water molecule diffusion in white matter fiber tracts[3–

5]. The surgical treatment of intracranial tumors near the CST remains a challenge because of

the uncertainty in predicting postoperative limb function assessment is usually more difficult.

Using DTI for the quantitative analysis the infiltration degree of the CST has been proven to

be critical in the evaluation of motor dysfunction and surgical guidance[6,7].

In this pilot study, we utilize preoperative DTI to study the effect of gliomas located in the

region of the CST region on motor function.

Materials and methods

Study population

The study was approved by the institutional review board (IRB) of Hubei Enshi Central Hospi-

tal, China. All patients provided written informed consent. For minors, this study was carried

out following the written informed consent of the parents or guardian.

Fifty-two patients with suspected primary supratentorial gliomas at Hubei Enshi Central

Hospital were enrolled in this study from February 2013 to April 2016. Tumors were diag-

nosed with pre-operative conventional and contrast-enhanced MRI and were classified by two

neuroradiologists with more than five years interpretation experience, according to World

Health Organization 2007 criteria[8] as confirmed by surgery and biopsy. All histopathological

data were provided and reviewed by department of pathology of Hubei Enshi Central Hospital

and Guizhou Medical University.
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The inclusion criteria were the followings: 1) histopathologically confirmed glioma; 2) MR

imaging examination prior to surgery; 3) no radiation or chemo-therapy before the MR imag-

ing examination; 4) tumors located in the cerebral hemispheres in the region of the ipsilateral

CST; 5) contralateral CST demonstrating normal appearance or only mild displacement on FA

color-coded map. The exclusion criteria were the followings: 1) evidence of tumor located in

the primary motor cortex or centered in this region demonstrated on contrast-enhanced MR

images or abnormal T2-hyperintensity; 2) CST regions affected by other diseases such as leu-

kodystrophy, vascular diseases, etc; 3) lesions in the motor cortex may lead to limb motor

dysfunction such as cerebral infarction, infection,etc; 4) obvious motion artifacts; 5) muscle

motor dysfunction caused by other diseases such as limb disuse, arthrogenous, osteoporotic or

joint soft tissue injury.

Contralateral knee muscle strength of all patients was measured by manual muscle testing

(MMT). The knee muscle strength was divided into 0–5 grade (0: no evidence of muscle con-

traction, 1: contraction but no movement, 2: movement with without gravity, 3: movement

against gravity but not against resistance, 4: movement against resistance but less than normal,

and 5: normal strength). The test was repeated three times and the muscle strength grade was

determined by a neurologist with more than five-year experience and who are blinded to imag-

ing results.

MR imaging

MRI scans were performed on a Philips Achieva X-Series 3.0T system with a 16-channel

SENSE head coil. All patients underwent conventional contrast-enhanced brain MRI and DTI

scans. Routine MRI scanning protocols include axial T1-weighted imaging (T1WI), axial and

sagittal T2-weighted imaging (T2WI), and axial T2-weighted fluid-attenuated inversion recov-

ery (FLAIR). T1WI: inversion time, 800 ms; repetition time/echo time, 2278/20 ms; section

thickness, 6 mm; matrix size, 288×190; field of view, 196×196 mm. Axial and sagittal T2WI:

repetition time/echo time, 2500/90 ms; section thickness, 6 mm; matrix size, 420×306; field of

view, 230×230 mm. Axial FLAIR: repetition time/echo time, 8000/120 ms; section thickness, 6

mm; matrix size, 304×216; field of view, 230×230 mm. Axial contrast-enhanced SE T1WI scan:

repetition time /echo time 400/8.6 ms; section thickness, 6 mm; matrix size, 288×192; field of

view, 230×230 mm. For contrast-enhanced T1WI, 0.1mmol/kg dose of gadolinium-DTPA

contrast agent (Bayer Schering Pharma, Magnevist) was administered intravenously. Spoiled

gradient echo (FFE) T1WI: repetition time/echo time, 200/2 ms; section thickness, 1 mm;

interval 1 mm; flip angle 75˚; matrix 256×256; field of view, 230×230 mm. For DTI, diffusion-

weighted respiratory-triggered single-shot echo-planar imaging (SS-EPI) was used with the

following parameters: repetition time /echo time, 7103.62/60 ms; matrix size, 92×92; field of

view, 222×222 mm; 60 sections, 2 mm slices no gap; NEX 2. Diffusion-gradient encoding in 15

directions with b value of 800 sec/mm2 and an additional measurement without diffusion-gra-

dient encoding (b = 0 sec/mm2) were performed. The total scanning time was about 50 min-

utes for each patient.

ROI measurements

The MR Workspace (Extended V2.6.3.4, Philips Medical System) software package was used

for post-processing of DTI and DTT. Data acquisition noise was eliminated with Gaussian

smoothing filter. A region of interest (ROI) area measuring about 50 mm2 was placed in the

posterior three quarters of the posterior limb of the internal capsule of the affected side by two

experienced neuroradiologists who had at least five years of work experience and were familiar

with the utility of the post-processing methods. FA values were measured by the same two
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independent readers on the axial FA color-coded map of the healthy and injured side. ROI

measurement of the healthy and the injured side were repeated three times and an average

value was recorded. This value was used to calculate relative FA values (rFA = injured FA/con-

tralateral FA).

Seed regions were selected using the axial color encoding direction map for CST fiber track-

ing. The CST originates in the motor cortex (Broadman 4 and Broadman 6), and then extends

into the corona radiata, posterior limb of internal capsule, cerebral peduncle, and pyramids of

medulla oblongata. Therefore, the ROIs of the CST were placed in the following three areas:

pyramids of medulla oblongata, cerebral peduncle, subcortical white matter of precentral

gyrus and premotor cortex.

A line propagation technique was used to track fibers and the logic algorithm "AND" was

used to include the three ROIs through the fiber tracts, as well as "NOT" to exclude fiber tracts

deviating from normal anatomy, using the contralateral corresponding region as a reference.

The FA threshold was set to 0.2, the angle of fiber tracing was 27 degrees, and step size was 0.2.

FDi is the number of white matter fibers per unit volume that is calculated after the fiber trac-

ing is completed (rFDi = injured FDi/contralateral FDi). Ipsilateral and contralateral CST FDi

and rFDi were obtained.

Witwer et al.[9] and Field et al.’s[10] classification method was employed to quantify the

status of the CST relative to tumors. Because nearly all patients in this study had displacement

of the CST to a certain extent, infiltration and disruption were defined as follows: 1) grade 1:

displacement—white matter tracts display normal signal normal on the FA map or FA color-

coded map; 2) grade 2: displacement and infiltration—displacement and abnormal signal on

the FA map or FA color-coded map with decreased FA values; white matter fiber tracts sur-

rounded by tissue edema but remained intact without significant disruption (Fig 1); 3) grade

3: displacement and disruption—coexistence of white matter fiber tract displacement and dis-

ruption; the direction of white matter tracts cannot be identified on the FA map or FA color-

coded map, and interruption of white matter tracts can be found on DTT (Fig 2).

Statistical analysis

All statistical analysis was performed using SPSS 13.0 (SPSS, Inc., Chicago, IL, USA). The rela-

tionship between the injury degrees of the CST, rFA, FDi, rFDi values and muscle strength

were analyzed with Spearman rank correlation analysis. The rFA and rFDi values of each mus-

cle strength group were tested for normality as well as equality of variances. If the data met the

assumption of normal distribution and homogeneity of variance, an independent sample-t test

was applied. If the data followed a normal distribution and heterogeneity of variance, the

approximated independent sample-t test was used for analysis. The differences between the

mean rFA and rFDi values of different muscle strength groups were analyzed with analysis of

variance (ANOVA). The difference of muscle strength between low- and high- grade gliomas

groups were analysed with the Mann-Whitney U-test. Statistical significance was designated as

P< 0.05.

Results

Of our 52 patients, 4 cases with partial infiltration of the primary motor cortex and 3 cases

with very large tumors that precluded fiber tracking were excluded. Therefore, we ultimately

enrolled 45 cases that satisfied our inclusion criteria. The average age was 45 (range 6–78)

years. Twenty-six were male and 19 were female. Thirty-eight cases demonstrated motor

dysfunction. Seven cases exhibited headache, dizziness, convulsions and slight movement

dysfunction.
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Patient demographics and the results of CST injury grade are listed in S1 Table. CST injury

grade: Twenty-one cases demonstrated grade 1, 6 cases showed grade 2, 18 cases had grade 3.

Muscle strength: Six cases had grade 2, 12 cases demonstrated grade 3, 21 cases showed grade

4, and 6 cases had grade 5.A negative correlation was found between muscle strength and CST

injury grade (r = -0.840, P< 0.05) while a positive correlation was found between muscle

strength and rFA value of the posterior limb of internal capsule between the injured and con-

tralateral side (r = 0.615, P< 0.05). Positive correlations were also noted between muscle

strength and rFDi (r = 0.567, P< 0.05) and FDi of the injured side (r = 0.643, P< 0.05). There

were 13 cases with low-grade gliomas and 32 cases with high-grade gliomas, a statistically

significant difference in muscle strength was found between these 2 groups of tumors (Z =

-4.324, P<0.05).

The values of rFA and rFDi between different muscle strength groups were compared. The

rFA values between grade (2 & 3, 2 & 4, 2 & 5, 3 & 5, 4 & 5) groups of muscle strength were sig-

nificant difference (P<0.05), the rFDi values between grade (2& 4, 2 & 5, 3 & 4, 3 & 5)groups

of muscle strength were significantly difference (P<0.05), the rFA and rFDi values in the

remaining groups of muscle strength grades had no significant difference(P>0.05) in S2 Table.

Discussion

Tumors in the motor cortex may not result in serious limb dysfunction because of motor func-

tion remodeling[11,12]. The purpose of this study was to quantitatively analyze the degree of

Fig 1. A 40-year-old female with right frontotemporal astrocytoma (WHO grade II) and left lower limb

muscle strength was MMT 5. ADC map (A) show the solid part of tumor was slightly lower signal, FA map

(B) and color encoding pattern map (C) and DTT map (D, E) on the right side of the corticospinal tract showed

mild displacement, DTT-FLAIR show around of the CST without edema.

https://doi.org/10.1371/journal.pone.0182795.g001
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damage to the conductive fibers and resulting muscle strength. Therefore, we exclude lesions

in the motor cortex and lower limb lesions. The statistical results showed that muscle strength

was negatively correlated with the degree of CST injury, while a positive correlation was seen

with rFA, FDi and rFDi values. Tumor cell proliferation and invasion would result in disrup-

tion of CST myelin and axonal membranes, the degree of which may reflect its biological

behavior[13,14]. DTI characterizes the movement of water molecules, which can be used to

evaluate the proliferation and invasion, as well as Na+-K+ pump damage of the cell membrane

[15]. Nerve fiber tract damage results in the inability of nerve impulses to spread sequentially,

thus resulting in reduce of limb resistive exercise. Damage to nerve fiber tracts can lead to a

reduction of anisotropic diffusion of water molecules and an increase in isotropic diffusion,

with resulting decrease of FA and rFA values[5]. Fiber disruption and tumor infiltration may

lead to decreasing units within the fiber voxel with consequent reduction of FDi and rFDi[4].

Consequently tumor infiltrating the CST can lead to CST damage and subsequent motor

dysfunction.

DTI parameters may potentially quantify the degree of CST injury, assess the damage to

motor conduction fibers preoperatively, and predict therapeutic effect and outcome[16,17,18].

Our statistical results showed that the values of rFA between different muscle strength groups

have significant differences. Beppu et al.[19] measured FA values in glioblastoma and normal

brain tissue and found that FA may reflect glioma cell density and proliferative activity. Some

studies have suggested that FA value is closely related to the integrity of white matter fiber

Fig 2. A 48-year-old female with left thalamic glioblastoma multiforme (WHO grade IV), the right knee

muscle strength was MMT 3. ADC map (A), FA map (B),T1WI(C), contrast-enhanced T1WI (D) show the

tumor infiltrated normal tissues. DTT map (E, F) show the left corticospinal tract was displaced and infiltrated,

and the number of left corticospinal fibers decreased.

https://doi.org/10.1371/journal.pone.0182795.g002

DTI evaluation of motor dysfunction from gliomas in CST

PLOS ONE | https://doi.org/10.1371/journal.pone.0182795 August 22, 2017 6 / 11

http://www.baidu.com/link?url=u6mwu9_7sx7q7PmqbI0ZVUDwhNA7AVfs2E_ouw5G7vfHoUhemMLoJq2rB578dYfikkfym064Nl20FgvF2z-gnxIT_13zmxq-T02viKeImsi
https://doi.org/10.1371/journal.pone.0182795.g002
https://doi.org/10.1371/journal.pone.0182795


tracts[20,21]. Stadlbauer et al.[22] studied 10 glioma patients with preoperative DTI positron

emission tomography (PET) and found that the pyramidal tract rFA value in the sensorimotor

deficits group was significantly reduced while 18F-FDG uptake was significantly increased, the

increase of 18F-FDG uptake may be associated with tumor cell proliferation and infiltration.

Therefore, changes of muscle strength due to CST injury may be the result of tumor cell prolif-

eration and infiltration degree.

The comparison between different grades of gliomas showed that muscle strength was sig-

nificantly different between high- and low-grade groups. FA values may reflect the degree of

tumor infiltration[3]. Prior studies have found that FA values were reduced in the CST which

may be associated with decrease muscle strength in the contralateral limb[23–26]. Different

degrees of glioma infiltration may have resulted in inconsistencies in the nerve fiber axon gap

and the number of axons in each voxel. The fiber density and anisotropy had no significant

changes or just mild changes in our low-grade glioma patients (S1 Table), possibly because the

myelin membrane has no obvious or only mild injury in low-grade gliomas. High-grade

glioma grow aggressively and so the necrotic microcapsules within the tumor may lead to

damage of the surrounding glial cells and neurons with reduction of fiber density[27]. The

decrease of the fibers density may then lead to a reduction of brain nerve impulse conduction

from the motor cortex resulting in involuntary limb movements. Stadlbauer et al.[18] found

that the FDi value of the affected side was significantly lower than that of contralateral side and

also that there was a difference of FDi values between high-grade and low-grade groups. They

found that both the N-acetyl-aspartate (NAA) peak from MR spectroscopy (MRS) and FDi

decrease in high-grade glioma indicated the damage to the integrity of the nerve structure and

fibers. Their results suggest that the FDi value can reflect the degree of tumor infiltration better

than the FA. FDi was significantly linearly correlated with the number of tumor cells[28]. Mus-

cle dysfunction and the degree of CST injury from glioma were linearly correlated with fiber

density suggesting that DTI can reflect different degrees of injury from glioma in CST area.

The action potential conduction in the motor area is influenced by the myelin sheath integ-

rity and diameter of fibers [29]. Theoretically, the closer a brain tumor is to the CST, the

greater the potential for decreases of muscle strength. Furthermore, larger tumors may result

in higher degree of injury on CST. This may result in smaller axonal diameter and thinner

myelin which may cause decreased transmission of nerve impulses[29]. Although prior studies

have shown that the size of benign brain tumors was not significantly different between hemi-

plegia versus non-hemiplegic groups[30], these results may be due to tumor location, duration

of diseases, pathological type and sample size among other factors.

Several limitations of our work should be considered. Linear extension technology tracing

of fiber tracts is defined based on the diffusion property of water molecules in each voxel, not

true fiber tracts[31]. Although a large number of studies have shown a high degree of consis-

tency using fiber tracing techniques with classical anatomy, our results were not confirmed by

histopathology. Therefore, our finding of abnormal white matter fibers need to be further

confirmed in subsequent studies using histopathological confirmation. Although ROI-based

measurement is the most common DTI analysis method, our use of this technique did not ade-

quately consider tumor heterogeneity[32]. With the growth of tumor, microvascular necrosis

within the tumor may lead to damage to the surrounding glial cells and neurons; therefore, the

pathological concept of "tumor invasion margin" should be introduced into a future study[33].

Placement of the borders of the ROI along the edge of the tumor outline is the most commonly

used technique[34]. It has been noted that the junction of tumor and normal tissue are rich in

cancer stem cells, which might represent tumor invasion, within the range of three to five lay-

ers of cells[33]. Our study also found that tumor infiltrating margin was associated with the

CST injure grades. Based on the above, we chose the corticospinal tract ROI area to avoid the
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outline of tumor edge. Our study used only DTI for preoperative assessment of the degree of

CST injury. Changes in the dispersion of the fibers caused by tumor infiltration or edema can

also potentially be identified by MRS analysis[35]. Blood oxygen level-dependent (BOLD)

functional MRI (fMRI) can also localize brain functional areas and display its activation level

[36]. Combining MRS, fMRI with DTI may provide more information on the assessment

brain tumors and motor function changes[37]. Furthermore, our study provided only preoper-

ative muscle strength grading for patients. Intraoperative cortical or subcortical stimulation

were not combined to obtain EEG and postoperative motor function and life quality were not

evaluated either. Only the pre-operative motor function of patients was assessed in this study.

In addition, language dysfunction was also not assessed here. In our study, only contralateral

knee muscle strength was tested. Tumor involving any portion of the CST may lead to lower

limb muscles and trunk muscles weakness and so it may be more meaningful to incorporate

these muscle strength changes into study in the future. The change of muscle strength is not

likely to be the result of one single factor, actually which is affected by primary motor cortex,

degree of CST injury and joint muscle disease. Therefore, the clinical evaluation of muscle

strength must take these factors into consideration.

Conclusions

In summary, our study suggests that pre-operative DTI quantitative parameters can assess the

degree of CST injury by glioma and show abnormal brain tumor infiltration area. The degree

of muscle strength dysfunction is correlated well with the injury degree of the CST. DTI may

provide critical information for the greatest degree of tumor resection and protection of con-

ductive fibers.
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