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Abstract

Human exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed through monitoring 

of urinary mono-hydroxylated PAHs (OH-PAHs). Gas chromatography (GC) has been widely used 

to separate OH-PAHs before quantification by mass spectrometry in biomonitoring studies. 

However, because GC requires derivatization, it can be time consuming. We developed an on-line 

solid phase extraction coupled to isotope dilution-high performance liquid chromatography-

tandem mass spectrometry (on-line-SPE-HPLC-MS/MS) method for the quantification in urine of 

1-OH-naphthalene, 2-OH-naphthalene, 2-OH-fluorene, 3-OH-fluorene, 1-OH-phenanthrene, the 

sum of 2-OH and 3-OH-phenanthrene, 4-OH-phenanthrene, and 1-OH-pyrene. The method, which 

employed a 96-well plate platform and on-line SPE, showed good sensitivity (i.e., limits of 

detection ranged from 0.007 to 0.09 ng/mL) and used only 100 μL of urine. Accuracy, calculated 

from the recovery percentage at three spiking levels, varied from 94% to 113%, depending on the 

analyte. The inter- and intra-day precision, calculated from 20 repeated measurements of two 

quality control materials, varied from 5.2% to 16.7%. Adequate method performance was also 

confirmed by acceptable recovery (83–102%) of two NIST standard reference materials (3672 and 

3673). This high-throughput online-SPE-HPLC-MS/MS method can be applied in large scale 

epidemiological studies.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants linked to 

a variety of adverse health effects (1–3). Humans may be exposed to PAHs through 

occupation, such as in work involving diesel fuels and coal tars (4, 5), as well as through diet 

and other lifestyle activities (e.g., smoking) (6–8). The urinary concentrations of PAH 

metabolites, specifically mono-hydroxylated PAHs (OH-PAHs), have been used as 

biomarkers of human exposure to PAHs (7, 9, 10).

The pioneering quantification of OH-PAHs in urine was conducted by high performance 

liquid chromatography (HPLC) coupled with fluorescence detection (4). Thanks in part to 

technology advances of the last few decades, isotope dilution gas chromatography-mass 

spectrometry (GC-MS) became widely used for the determination of urinary OH-PAHs (11–

16). GC-MS showed improved accuracy, sensitivity, and precision, mainly because of the 

high specificity of mass spectrometry detection. However, sample preparation involved 

derivatization and solvent evaporation steps, and was, therefore, labor intensive and time 

consuming. More recently, HPLC-tandem MS (HPLC-MS/MS), introduced to measure OH-

PAHs (17–26), eliminated the derivatization step and yet maintained the high specificity of 

mass spectrometry. Still, a relatively large volume of urine, e.g., 2–5 mL, was required in 

HPLC-MS/MS methods, and automated sample preparation was not fully applied (20, 21). 

These conditions have limited HPLC-MS from application in large scale biomonitoring 

studies when matrix volume is often limited.

For the present study, we developed a fully automatic on-line solid phase extraction coupled 

with isotope dilution-high performance liquid chromatography-tandem mass spectrometry 

(on-line SPE HPLC-MS/MS) method for the accurate and reliable measurement of nine OH-

PAHs in human urine.

EXPERIMENTAL SECTION

Materials and Methods

All solvents were HPLC grade, and chemicals were reagent grade. We purchased 

acetonitrile, ethanol, 0.1% formic acid in water, methanol, water, and ammonium fluoride 

from Thermo Fisher Scientific (Waltham, MA, USA); ascorbic acid, sodium acetate, and 

Helix pomatia β-glucuronidase type H-1 (β-glucuronidase ≥300,000 units/g, sulfatase 

≥10,000 units/g) from Sigma-Aldrich (St. Louis, MO, USA). We obtained 1-

hydroxynaphthalene (1-OH-NAP), 2-hydroxynaphthalene (2-OH-NAP), 2-hydroxyfluorene 

(2-OH-FLU), 3-hydroxyfluorene (3-OH-FLU), 1-hydroxyphenanthrene (1-OH-PHE), 2-

hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene (4-OH-PHE), 1-

hydroxypyrene (1-OH-PYR), and their corresponding 13C-labeled internal standards (IS, 

listed in Table 1) from Cambridge Isotope Laboratories (Andover, MA, USA).

We purchased smokers’ urine samples from BioreclamationIVT (Westbury, NY, USA). We 

also collected urine anonymously in 2015 from non-smoker adult volunteers with no 

documented occupational exposure to PAHs in Atlanta, GA. We obtained two Standard 

Reference Materials® (SRMs), SRM 3672 (smoker urine) and SRM 3673 (non-smoker 
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urine), from the US National Institute of Standards and Technology (NIST) (Gaithersburg, 

MD, USA). All urine specimens were stored upon collection or arrival at −70 °C until use.

Appropriate safety control measures (including engineering, administrative, and personal 

protective equipment) were used for all procedures based on a site-specific risk assessment 

that identified physical, health, and procedural hazards.

Preparation of standard stock solutions and quality control materials—We 

prepared the stock solutions of individual analytical standard in ethanol. Standards with all 

nine OH-PAHs were generated by serial dilution of the individual stock in 40% ethanol/60% 

water. The final concentrations of the mixed stock standards ranged from 0.08 – 200 ng/mL 

(1-OH-NAP and 2-OH-NAP) and 0.005 – 50 ng/mL (all other analytes). The standard 

solutions were aliquoted into 2 mL silanized amber glass vials and stored at 4 °C until use. 

The internal standard solution with 13C-labeled analytes was prepared in water with 0.2% 

acetonitrile so that a 50 μL spike would result in approximate concentrations of 32 ng/mL 

(13C-1-OH-NAP and 13C-2-OH-NAP) or 8 ng/mL (other 13C-labeled analytes). Internal 

standards were aliquoted into 15 mL amber glass vials and stored at −70 °C.

Two levels of quality control (QC) materials, QC low (QCL) and QC high (QCH), were 

prepared by pooling urines from smokers and non-smokers. The QC concentrations were 

fortified, as needed, with native target compounds to encompass the ranges described for the 

U.S. general population (27). All QC materials were stored in 4 mL amber glass vials at 

−70 °C until used. The stability of spiked material stored at −70 °C has been previously 

evaluated for up to one year (data not shown), and no obvious degradation of OH-PAHs was 

observed. The QC materials stored at −70 °C for more than one year will be re-evaluated for 

their stability.

Sample Preparation—Urine samples were thawed and mixed at room temperature. QC 

samples, reagent blanks, and standards were processed the same way as urine samples, 

going through all of the sample preparation steps. Sample preparation was automatically 

conducted on a Perkin-Elmer Staccato® System (controlled by the Perkin Elmer iLink and 

Maestro software) (Waltham, MA, USA). The robotic system included six main 

components: Sciclone G3/G3T, Fluidx CESD-24PRO decapper, Hettich Rotanta 460 

centrifuge, ThermoScienfic ALPS 3000 sealer, IVD Inheco Incubator shaker DWP, and 

Mitsubishi robotic arm. We programmed this system to aliquot urine samples, standards, 

QCs and reagent blanks (100 μL) into a 96-well plate (Corning, NY, USA), and 

subsequently add ascorbic acid solution (20 μL, ~12.5 mg/mL), internal standards solution 

(50 μL), and sodium acetate buffer (50 μL, ~1 mol/L, pH 5.5) containing ~10 mg/mL β-

glucuronidase/arylsulfatase. The accuracy and precision of automatic aliquating by Sciclone 

robotic system was previously evaluated, and good aliquoting accuracy (recovery rate from 

95% to 105%) and precision (CV<3 %) were achieved from current procedures. Details 

regarding enzymatic de-conjugation were previously described (16). The robotic system then 

sealed and transferred the plate for overnight incubation at 37±2 °C. After enzymatic 

hydrolysis, the robotic system automatically added methanol (175 μL) to all sample wells, 

mixed the solution, resealed the plate, and centrifuged for ~15 minutes at 5000 rpm (5900 

rcf). Finally, the robotic system transferred 200 μL of the supernatant in each well to a new 

Wang et al. Page 3

Anal Bioanal Chem. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



96-well plate, and added 350 μL of water to each well before on-line SPE-HPLC-MS/MS 

analysis. Non-spiked and spiked synthetic urine (28) used for determining the limit of 

detection (LOD) was prepared as study samples.

Online SPE-HPLC-MS/MS—The on-line SPE-HPLC-MS/MS system consisted of a 

Sciex 5500 or 6500 triple quadrupole mass spectrometer (Foster City, CA, USA) equipped 

with an electrospray ion source and controlled by AB Sciex AnalystTM software, and one 

Agilent 1260 pump and one degasser (Santa Clara, CA, USA), and an on-line SPE Spark 

Holland system (Glassboro, NJ, USA) controlled by the Sparklink® software (iChrom 

Symbiosis system).

After injection (300 μL), the sample was loaded onto an Oasis WAX on-line SPE cartridge 

with 0.1% formic acid in water (1.5 mL), and the cartridge was washed with acetonitrile/

methanol/water (~0.4 mL, 1/1/2, v/v/v). The target analytes were eluted with methanol (350 

μL), and focused on a Chromolith HighResolution RP-18 endcapped guard column (5×4.6 

mm, Merck KGaA, Darmstadt, Germany) with the initial HPLC gradient.

We separated the target analytes on a pair of Chromolith HighResolution RP-18 endcapped 

HPLC columns (100×4.6 mm, Merck KGaA) by a programmed HPLC gradient (Table 2). 

The mobile phases were water with 0.1 mM ammonium fluoride (A) and methanol with 0.1 

mM ammonium fluoride (B).

The ionspray voltage and source temperature were −3.0 kV and 500 °C, respectively. 

Curtain gas, ion source gas 1, ion source gas 2, and collision gas were 35 psi, 50 psi, 70 psi, 

and 9 psi, respectively. The representative decluster, entrance and exit potentials were −120 

V, −3 V and −12 V, respectively. We quantified OH-PAHs by selected reaction monitoring in 

the negative ion mode by the ion transitions listed in Table 1, and optimized the collision 

energies for all ion transitions (Table 1).

Data Analysis—We used Analyst (version 1.6.2, Sciex, Foster City, CA, USA) and 

MultiQuant (version 3.0, Sciex, Foster City, CA, USA) for data processing. We defined 

quality control limits, and evaluated analytical runs using SAS (version 9.3, SAS Institute 

Inc.; Cary, NC, USA) with a multi-rule quality control approach (29).

Results and discussion

OH-PAHs were enriched and extracted from the urine matrix by on-line SPE. We separated 

the target analytes on a pair of monolithic RP-18 column by using a gradient of water and 

methanol, including ammonium fluoride (0.1 mM) in both mobile phases. We used 

ammonium fluoride to improve method sensitivity in the negative ion mode (30). An 

example of LC-MS/MS selected ion chromatogram is shown in Figure 1. Within 27 mins, 

we were able to separate several pair of isomers: 2-OH-NAP, 1-OH-NAP, 3-OH-FLU, 2-OH-

FLU, 1-OH-PHE, 4-OH-PHE, and 1-OH-PYR, but 2-OH-PHE and 3-OH-PHE were eluted 

together so we had to measure these two analytes as a sum (Σ2,3-OH-PHE). 9-

hydroxyphenanthrene and 3-hydroxyfluoranthene could also be separated from the other 

target metabolites (data not shown).
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Method accuracy was assessed by repeated analyses (n=7) of synthetic urine spiked with the 

target analytes at three spiking concentrations. Accuracy, expressed as a percentage of 

recovery, was 105–113% (level 1), 94–100% (level 2), and 98–102% (level 3), depending on 

the analyte (Table 3). Furthermore, accuracy was evaluated by analyzing two NIST SRMs, 

SRM 3672 and SRM 3673. The calculated OH-PAHs concentrations were in good 

agreement with the certified concentrations (31), and accuracy ranged from 83 to 102%, 

depending on the analyte (Table 3).

We determined the method precision from repeated measurements of low and high QC pools 

by following the CLSI protocol EP5-A2 (32) on 51 different days (two results from each of 

two daily runs) over a period of 8 months that involved multiple analysts. The relative 

standard deviations (RSDs), which reflect the within- and between-run variability, ranged 

from 3.2% to 12.1% (within-run) and 4.8% to 13.0% (within and between runs) for all 

analytes (Table 4).

The LOD was determined according to procedures previously described (33) from 60 

repeated measurements of non-spiked and spiked synthetic urine analyzed by multiple 

operators and using four different mass spectrometers (Sciex 5500 or 6500). The LODs 

ranged from 0.007 ng/mL to 0.09 ng/mL for all analytes (Table 4), indicating the good 

sensitivity of the method, especially considering the relatively low volume of urine used 

(100 μL). The method also provided wide dynamic ranges, with upper linearity of the 

method at 200 ng/mL (2-OH-NAP, 1-OH-NAP); 25 ng/mL (2-OH-FLU); 20 ng/mL (Σ2,3-

OH-PHE); and 10 ng/mL (3-OH-FLU, 1-OH-PHE, 4-OH-PHE, 1-OH-PYR).

SPE recovery was calculated as previously described (34). The mean recoveries of three 

repeated measurements were 67±4% (2-OH-NAP), 67±5% (1-OH-NAP), 81±4% (3-OH-

FLU), 64±2% (2-OH-FLU), 63±2% (Σ2,3-OH-PHE), 72±5% (1-OH-PHE), 55±2% (4-OH-

PHE), and 49±6% (1-OH-PYR). These recoveries, which are comparable with those 

reported before using a GC-MS method (16), are adequate for quantitative measurement of 

OH-PAHs in urine from both smokers and non-smokers. We also evaluated matrix effects 

using a matrix factor, defined as the ratio of IS peak area in the presence of urine matrix to 

the IS peak area in the absence of urine matrix (34). The matrix factor, calculated from 2 

different QC concentrations of three repeated measurements varied from 63% to 101%, 

depending on the analyte.

To validate the method, we measured OH-PAHs in 36 non-smokers and 36 self-identified 

smokers’ urine samples (Table 5). Among non-smokers, detection frequencies were 56% for 

1-OH-PYR, 14% for 4-OH-PHE, 94% for 3-OH-FLU, and 100% for the other analytes. For 

smokers, detection frequencies were 97% for 1-OH-PYR, 53% for 4-OH-PHE, and 100% 

for the rest of analytes. The geometric mean concentrations of OH-PAHs were 2.5–12.4 

(average 6.6) times higher in smokers than non-smokers (Table 5). 2- and 3-OH-FLU and 1- 

and 2-OH-NAP showed the largest concentration differences between smokers and non-

smokers.

Compared with our previous GC-MS method (13, 16), the current approach eliminated the 

derivatization and solvent evaporation steps, simplified the sample processing procedure, 
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and greatly improved throughput, while using 10 times less urine volume (0.1 vs 1.0 mL). 

This robust, sensitive, and highly automated on-line SPE-HPLC-MS/MS method is suitable 

for the quick analysis of human samples in national surveys and other large epidemiological 

studies to evaluate human exposure to PAHs.
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Novel aspect

We developed a fully automated and high throughput on-line SPE-HPLC-MS/MS method 

for concurrent quantification of nine urinary OH-PAH metabolites.
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Figure 1. Example Chromatogram
2-OH-NAP and 1-OH-NAP at 10 ng/mL, Σ2,3-OH-PHE at 5 ng/mL, and other analytes at 

2.5 ng/mL.
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Table 2

Optimized LC gradient.

Flow Rate (μL/min) A% B% Time (min)

500 99 1 0.0

500 99 1 3.5

500 40 60 3.9

500 40 60 4.3

800 38 62 5.0

800 32 68 18.0

800 30 70 19.5

1000 15 85 20.0

1000 14 86 21.0

1000 10 90 22.0

1000 5 95 24.0

1000 5 95 24.5

1000 99 1 24.6

1000 99 1 27.0

*
A: HPLC grade water with 0.1 mM ammonium fluoride, B: HPLC grade methanol with 0.1 mM ammonium fluoride.
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