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Abstract

A self-regulated “smart” insulin administration system would be highly desirable for diabetes 

management. Here, a glucose-responsive insulin delivery device, which integrates H2O2-

responsive polymeric vesicles (PVs) with a transcutaneous microneedle-array patch was prepared 

to achieve a fast response, excellent biocompatibility, and painless administration. The PVs are 

self-assembled from block copolymer incorporated with polyethylene glycol (PEG) and 

phenylboronic ester (PBE)-conjugated polyserine (designated mPEG-b-P(Ser-PBE)) and loaded 

with glucose oxidase (GOx) and insulin. The polymeric vesicles function as both moieties of the 

glucose sensing element (GOx) and the insulin release actuator to provide basal insulin release as 

well as promote insulin release in response to hyperglycemic states. In the current study, insulin 

release responds quickly to elevated glucose and its kinetics can be modulated by adjusting the 

concentration of GOx loaded into the microneedles. In vivo testing indicates that a single patch 

can regulate glucose levels effectively with reduced risk of hypoglycemia.
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Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose 

levels.1,2 It has become one of the most challenging global health issues and the number of 

people living with diabetes has increased dramatically.3,4 Traditional care for type 1 and 

advanced type 2 diabetic patients requires frequent or constant monitoring of glycemic 

levels combined with frequent subcutaneous injections of long- and short-acting insulin or 

using continuous and variable insulin infusions toward the goal of maintaining 

normoglycemia.5 Nevertheless, such “open-loop” self-administration of insulin is always 

painful and generally associated with inadequate glucose control.6,7

An alternative to these traditional, open-loop methods of insulin delivery is the use of a 

closed-loop insulin pump integrated with a continuous glucose monitor.8 This closed-loop 

principle has been proven to be efficient in blood glucose control and reducing the risk of 

hypoglycemia.9,10 However, there are still several obstacles to overcome regarding the 

accuracy of the continuous glucose monitor and reliability of insulin infusions.11,12 Further, 

the current systems require tubing and subcutaneous implantation of a cannula which is 

inconvenient and often is associated with biofouling.

Meanwhile, synthetic glucose-responsive materials have been widely explored for achieving 

closed-loop insulin release, offering the potential of insulin delivery without these 

limitations.13 The matrix typically employs glucose-responsive moieties such as glucose 

oxidase (GOx),14–18 phenylboronic acid (PBA),19–23 or glucose binding proteins (GBP)24,25 

to regulate the release rate of the preloaded insulin by polymer degradation, structure switch, 

or glucose binding competition. However, there remains a challenge to demonstrate a 

desirable system, which combines (i) ease of use, (ii) high drug loading capacity, (iii) fast 

responsiveness, and (iv) excellent bio-compatibility. For example, most glucose-responsive 
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formulations that incorporated GOx involve pH-sensitive materials, based on the enzymatic 

oxidation of glucose to gluconic acid.

However, these systems are limited because of the challenge of rapidly switching the 

physiological pH in vivo.2 To this end, we have previously developed a hypoxia-sensitive 

formulation to achieve fast response.26 However, hydrogen peroxide (H2O2) remains in this 

system, which raises the concern of long-term biocompatibility.27

Herein, we describe a glucose-responsive mechanism directly utilizing H2O2-sensitive28–34 

polymeric vesicles (PVs) for smart insulin delivery (Figure 1). PVs, also known as 

polymersomes, are usually self-assembled from amphiphilic block copolymers to form 

hollow structures consisting of an aqueous core and a polymer bilayer membrane.35–39 They 

hold great promise for controlled drug delivery due to their robust structures and large 

loading capacity of hydrophilic molecules.40–43 Here, the PVs are self-assembled from 

block copolymer incorporated with polyethylene glycol (PEG) and phenylboronic ester 

(PBE)-conjugated polyserine (designated mPEG-b-P(Ser-PBE)) and have hollow spherical 

structures with GOx and insulin encapsulated in the interior. The pendant PBE was selected 

for its facile H2O2-mediated degradation at physiological conditions28,44 (Figure 1A and 

1B). For the in vivo application, these vesicles were further integrated with a transcutaneous 

microneedle-array patch. Microneedles, which typically have a needle length shorter than 

one millimeter, have become an attractive transdermal drug delivery technology due to easy 

use and improved patient compliance.45–50 Cross-linked hyaluronic acid (HA) was chosen to 

prepare the microneedles in order to achieve excellent biocompatibility and sufficient 

stiffness.51 When the microneedle patch was applied to diabetic mice, as shown in Figure 

1C, glucose can diffuse across the membrane and interact with GOx in the cavity, which 

leads to the oxidation of glucose to gluconic acid, simultaneously generating H2O2:26

By virtue of the generated H2O2, the copolymer mPEG-b-P(Ser-PBE) loses its PBE side 

chains and becomes water-soluble, leading to disassemble of the PVs and subsequent release 

of the preloaded insulin.28 The final transcutaneous device was expected to provide a 

desirable smart insulin delivery system with high drug loading capacity, fast response, and 

painless administration.

RESULTS AND DISCUSSION

Synthesis and Characterization of Polymer Vesicles (PVs)

The diblock copolymer (mPEG-b-polyserine) was first synthesized via the amine-initiated 

ring-opening polymerization (ROP) of N-carboxy-α-amino acid anhydrides (NCA) of 

serine.52–54 4-(Hydroxymethyl)phenylboronic acid pinacol ester (PBE) was then conjugated 

to the pendant hydroxyl groups of the serine residue via a carbonate linkage (Figure 1A and 

Figure S1). The polymerization degree of the polyserine block was calculated to be 60, after 

which 75% of its hydroxyl groups were conjugated with PBE, determined by using the 1H 

NMR peak area with the methylene peak of mPEG as a standard (Figure S2). The 
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hydrophobic PBE groups have two main functions: (1) to change the solubility of the 

polymer and enable the formation of PVs in the aqueous solution, and (2) to provide facile 

H2O2-mediated dissociation of PVs (Figure 1A), and rapid release of GOx and insulin.

Self-assembly of the obtained diblock copolymer mPEG-b-P(Ser-PBE) was conducted using 

a solvent evaporation method. The morphology was characterized by transmission electron 

microscopy (TEM) and dynamic light scatting (DLS). As shown in Figure 2A, the TEM 

image indicated that spherical PVs with hollow structures were obtained. The average 

diameter of the obtained PVs was determined as 200 nm by DLS (Figure 2B). The stability 

of the obtained PVs was confirmed by DLS and no significant diameter change was 

observed for over 1 week at 4 °C (Figure S3). The PVs were then used to encapsulate insulin 

and GOx enzyme. As shown in the TEM image (Figure 2A), after encapsulating insulin and 

GOx, the cavity of the PVs(E+I) was filled, and the average diameter increased to 220 nm, 

determined by DLS (Figure 2B), which was consistent with the result from TEM (Figure 

2A). The zeta-potentials of PVs and PVs(E+I) were measured to be −14.4 and −14.1 mV, 

respectively. In the fluorescence image of PVs, FITC-labeled insulin was used to be loaded 

into the PVs, and the spiculate cluster shown in Figure 2C represented the PVs, confirming 

the successful encapsulation of insulin. The insulin loading content of PVs was determined 

as 12.5 ± 0.5% (w/w), and the loading efficiency was determined as 82.5 ± 1.0%.

The H2O2-responsive capability of insulin loaded vesicles was tested by incubating the 

vesicles in PBS buffer with different H2O2 concentrations (0, 50, 200 μM). An increased 

insulin release profile was observed with increase of H2O2 concentration as shown in Figure 

S4. Following, the H2O2-responsive disassembly of PVs mediated by glucose was examined 

by incubating the vesicles in PBS buffer at a glucose concentration of 400 mg/dL, a typical 

hyperglycemic level, and observing the corresponding evolution of size changes. As 

demonstrated in Figure 2C, the fluorescence signal showed spiculate cluster signal at first, 

turned to be swelling clusters after 1 h of incubation in glucose solution, and became more 

homogeneous after 2 h of incubation in glucose solution, verifying the disassembly of the 

PVs and subsequent FITC-insulin release. The morphology changes of the PVs were also 

observed in TEM images and DLS (Figure 2D,E). After incubation in glucose solution for 1 

h, the PV structures were dissociated and some PVs were recombined into large and small 

particles. After incubation in glucose solution for 2 h, both vesicle density (population per 

unit area) and size were further reduced and a large amount of cargo leakage was observed 

(Figure 2D).

In Vitro Glucose-Responsive Insulin Release

We next assessed the in vitro insulin release profile of the vesicles in response to different 

glucose levels by incubating the vesicles with PBS containing various concentrations of 

glucose, including a control level (0 mg/dL), a normoglycemic level (100 mg/dL), and a 

typical hyperglycemic level (400 mg/dL). A significantly rapid insulin release rate was 

observed at the hyperglycemic level, while limited insulin release was observed at the 

normoglycemic and control level, as shown in Figure 3A. This release profile was consistent 

with the above-mentioned dissociation response. When the glucose concentration was 

increased in steps (100–200–400 mg/dL, 1 h each, Figure 3B), the release rate of insulin 
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(slope of the lines), increased correspondingly, indicating the responsiveness of insulin 

release to glucose concentration. When the concentration of glucose varied periodically 

between 100 and 400 mg/dL for 10 min each time (Figure 3C), a pulsatile release pattern 

was observed, indicating the rapid response to the change in glucose concentration. 

Furthermore, when the GOx content in the PVs was reduced to a half (PV(1/2E+I) vs PV(E

+I) (Figure 3B), the release rate of insulin decreased correspondingly, implying the 

possibility of adjusting the insulin release rate by varying the GOx amount in PVs. 

Additionally, the released insulin has identical secondary structure to that of the native 

insulin as shown in Figure 3D. Collectively, these results verified that the release of insulin 

from the PVs was in a glucose-responsive manner with fast responsiveness.

Fabrication and Characterization of PVs-Loaded Microneedle (MN) Patch

To achieve convenient and painless administration, insulin-loaded PVs were further 

deposited in the tips of cross-linked hyaluronic acid (HA)-based MN array patch using a 

micromolding approach.26 The resulted MN was arranged in a 20 × 20 array with 600 μm 

tipto-tip spacing in a 100 mm2 patch as shown in Figure 4A and Figure S5(A). The 

fluorescence image in Figure 4A(a) represents MNs integrated with FITC-insulin-loaded 

PVs, indicating PVs were well distributed in the tip region of each needle. The obtained 

MNs were administered on the back of the mice as shown in Figure 1C and could penetrate 

into the mouse skin conveniently, as evidenced by the trypan blue staining (Figure 4A(c)) 

and hematoxylin and eosin stain (H&E) staining (Figure S5(B)). The mechanical strength of 

MN was measured to be 3 N/needle using a tensile compression machine, which was 

sufficient to insert into the skin without tip breaking (Figure S6).51

To evaluate the biocompatibility of the system, the cytotoxicity of PVs toward HeLa cells 

was investigated at different concentrations of PVs ranging from 0.1 to 1.0 mg/mL using 3-

(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetra-zoliumromide (MTT) assay. Insignificant 

toxicity of PVs was observed at any of the concentrations studied (Figure S7). In the in vivo 
assessment of the patch, no significant inflammation was observed in the region 2 d post-

administration compared to the surrounding tissue, indicating good biocompatibility of the 

patch materials (Figure S8). In addition, the microchannels on the skin that were created by 

insertion of the MN recovered within 6 h post-administration (Figure S9).

In Vivo Studies of the MNs for Type 1 Diabetes Treatment

We then administered the MN-array patch on streptozotocin (STZ)-induced type 1 diabetic 

mice to evaluate its in vivo performance for type 1 diabetes treatment. The mice were 

randomly divided into four groups and transcutaneously treated with different MN samples, 

including: 1) the empty MNs containing only cross-linked HA (MN[HA]); 2) MNs loaded 

with insulin (MN[I]); 3) MNs loaded with PVs encapsulating only insulin (MN[PV(I)]); and 

4) MNs loaded with PVs encapsulating GOx enzyme and insulin (MN[PV(E +I)]), with 

equivalent insulin dose of 10 mg/kg for each mouse. Afterward, the plasma glucose levels of 

treated mice in each group were monitored over time.

As shown in Figure 4B, the blood glucose in mice treated with MN[I] and MN[PV(E+I)] 

rapidly decreased to around 90 mg/dL within 1 h. The MN[I] group quickly lost control over 
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the subsequent hour. The MN[PV(E+I)] group remained in the normoglycemic range (<200 

mg/dL) for ~5 h with a subsequent gradual increase in blood glucose levels. The control and 

MN[PV(I)] group animals showed insignificant decreases in glucose, indicating the 

requirement for GOx in the PVs in vivo for adequate PV disassembly and insulin release. An 

enzyme-linked immunosorbent assay (ELISA) was used to quantify insulin in the plasma of 

treated mice. As shown in Figure 4C, mice treated with MN[PV(E+I)] kept a consistently 

higher plasma insulin level than those administered with MN[PV(I)] for at least 24 h, 

indicating again the role of loaded GOx in the PVs dissociation and insulin release, in 

support to the in vitro result in Figure 3B.

Following, a glucose tolerance test was conducted via intraperitoneally (i.p.) injecting 

glucose solutions of 1.5 g/kg in diabetic mice 1 h after administration of MN[PV(E+I)] and 

MN[I]. Healthy mice were injected with glucose solution without administration of 

microneedle patches. As shown in Figure 4D, 1 h after administration of MNs, the two 

groups of diabetic mice had similar starting glucose levels as the untreated healthy mice. 

After an i.p. injection of glucose, blood glucose levels of the three groups increased steadily 

and reached their peaks (268, 330, and 470 mg/dL) at 20, 30, and 50 min, respectively. Then 

glucose levels declined gradually. After about 120 min, the MN[PV(E+I)] animals were 

back to normogly-cemic range (<200 mg/dL), while in the MN[I] group glucose levels 

remained around 400 mg/dL. To quantify the glucose response to i.p. glucose injection, the 

area under the blood glucose level curve between 0 and 150 min was calculated for each 

group. As shown in Figure 4E, the MN[PV(E+I)] treated mice showed significantly 

improved resistance to the glucose challenge compared to those treated with MN[I]. Finally, 

to evaluate the hypoglycemic potential of the patches, MN[PV(E+I)], MN[PV(I)], and 

MN[I] were applied to healthy mice. As shown in Figure 4F, a remarkable decrease in 

glucose was observed in mice treated with MN[I], while there was little change in mice 

treated with MN[PV(E+I)] or MN[PV(I)], indicating negligible insulin leakage from 

MN[PV(E+I)] and MN[PV(I)] and reduced risk of hypoglycemia compared with MN[I]. To 

quantify these differences and evaluate the risk of hypoglycemia, the hypoglycemia index 

was calculated (Figure 4G),22,26 PV-loaded MNs demonstrated a lower hypoglycemic index 

compared to insulin-loaded MN.

CONCLUSIONS

In summary, we report a closed-loop, glucose-responsive insulin delivery platform by 

integrating H2O2-responsive polymeric vesicles with a painless transcutaneous MN array 

patch. Utilizing polymeric vesicles, water-soluble insulin was encapsulated into the inner 

cavity with a high capacity. This formulation demonstrated both in vitro and in vivo glucose-

mediated disassembly, releasing the encapsulated insulin under the hyperglycemic condition 

with rapid responsiveness. Importantly, when the glucose levels reached the normoglyce-mic 

state, the release rate of insulin declined, which could avoid the risk of hypoglycemia. As 

such, the prepared insulin patch provides a clinical opportunity for closed-loop insulin 

delivery with its special trigger mechanism to mimic the function of pancreatic beta-cells to 

release insulin in a glucose-responsive fashion. Furthermore, this H2O2-responsive artificial 

vesicle can be applied as a useful platform for delivering various therapeutics to treat other 

diseases.55
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METHODS

Synthesis of Boronic Esters Functionalized Block Copolymer

4-(Imidazoyl carbamate)phenylboronic acid pinacol ester (1) was prepared according to the 

literature.28 Briefly, 4-(Hydroxymethyl)-phenylboronic acid pinacol ester (PAPE) (4g, 17.1 

mmol) was dissolved in dry dichloromethane (CH2Cl2) (20 mL) in a dried 200 mL flask. 

Carbonyldiimidazole (5.54 g, 34.2 mmol) was then added to the solution and stirred for 1 h. 

The mixture was concentrated under vacuum, redissolved in ethyl acetate (200 mL) and 

washed with H2O (3 × 10 mL). The organics were dried with MgSO4, and concentrated 

using a rotary evaporator to give a pure white solid 1 (3.90 g, yield: 70.0%). 1: 1HNMR (400 

MHz, CDCl3) δ1.33 (s, 12 H), 5.42 (s, 2 H), 7.05 (s, 1H), 7.43 (m, 3H), 7.85 (d, 2H), 8.14 

(s, 1H).

mPEG44-b-polyserine60 (1.0 g, 7.5 mmol OH) was first synthesized according to the 

literature52 and then dissolved in anhydrous CH2Cl2 (20 mL) in a 50 mL of flask. 4-

(Imidazoyl carbamate)phenylboronic acid pinacol ester (2.5 g, 7.5 mmol) was added 

followed by DMAP (0.9 g, 7.5 mmol) addition, and the mixture solution was stirred 

overnight at room temperature. The product mPEG-b-P(Ser-PBE) was obtained by 

precipitation in cold diethyl ether and dried in vacuo.

Preparation of Polymeric Vesicles

Polymeric vesicles (PVs) were prepared by the solvent evaporation method. Briefly, 40 mg 

of mPEG-b-P(Ser-PBE) was dissolved in 5 mL of THF, followed by injection of 10 mL of 

DI water with or without 7.5 mg of human insulin and 0.75 mg of GOx dissolved in it. The 

mixture was stirred at room temperature for 30 min, and then THF was removed by bubbling 

with N2. The unloaded insulin was removed by centrifugation at 4000g for 10 min with a 

centrifugal filter (25 000 Da molecular mass cutoff, Millipore) and washed with PBS buffer 

for several times. The obtained PVs suspension was stored at 4 °C for further studies. The 

loading content and loading efficiency of insulin was tested using a Coomassie Plus protein 

assay. The absorbance was detected at 595 nm on the Infinite 200 PRO multimode plate 

reader (Tecan Group Ltd., Switzerland) and the concentration was interpolated from an 

insulin standard curve. The size distribution and zeta-potential of the PVs were measured 

using the Zeta sizer (Nano ZS; Malvern). The TEM images were acquired using a JEOL 

2000FX TEM.

In Vitro Insulin Release Studies

An 8 mg sample of polymeric vesicles was added to PBS (1 mL) with different glucose 

concentrations, including 0, 100, or 400 mg/dL, and incubated at 37 °C on an orbital shaker 

to study the in vitro release behavior of insulin. At predetermined time points, 50 μL of the 

sample was taken out for analysis and 50 μL of fresh media was refilled into the tube. 

Insulin content in the withdrawn sample was determined by absorbance measurement at 595 

nm and by virtue of the insulin standard curve. To access the responsiveness of PVs to 

changes in glucose levels, PVs were incubated in glucose concentrations varied between 100 

and 400 mg/dL periodically for 10 min each. The cycle was repeated several times, and the 

released amount of insulin was measured.
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In Vivo Studies Using STZ-Induced Diabetic Mice

The in vivo performance of the prepared MN-array patches was assessed on STZ-induced 

adult diabetic mice (male C57B6, 20–25 g, Jackson Lab) for diabetes management. The 

animal study protocol was approved by the Institutional Animal Care and Use Committee at 

North Carolina State University and University of North Carolina at Chapel Hill. The mice 

were divided into four groups randomly with five mice for each group and transcutaneously 

treated with empty MN containing only m-HA, MN loaded with insulin MN[I], MN loaded 

with PVs encapsulating insulin and enzyme MN[PV(E+I)], or MN loaded with PVs 

encapsulating only insulin MN[PV(I)], respectively. The insulin dose was 10 mg/kg for each 

mouse. The plasma glucose levels of the mice in each group were monitored over time (at 

10, 20, 40, and 60 min, and once per hour afterward) by collecting blood samples (~3 μL) 

from the tail vein and determined using the Clarity GL2Plus glucose meter (Clarity 

Diagnostics, Boca Raton, Florida) until a return to stable hyperglycemia. To measure the 

plasma insulin concentration in vivo, blood samples (25 μL) were collected from the tail 

vein. The serum was isolated and stored at −20 °C for plasma insulin assay using Human 

Insulin ELISA kit according to the manufacturer’s protocol (Calbiotech, U.S.A.). A 

intraperitoneal glucose tolerance test (IPGTT) was conducted to verify the in vivo glucose 

responsiveness of MNs 1 h post-administration of MNs. Briefly, mice were administrated 

with MN[PV(E+I)] and MN[I] (the insulin dose is 10 mg/kg for each mouse), and then a 

glucose solution in PBS buffer was intra-peritoneally injected with glucose dose of 1.5 g/kg 

for each mouse and the blood glucose levels were monitored over time. The side effects of 

MNs were evaluated on healthy mice by administration with MN[PV(E+I)], MN[PV(I)], and 

MN[I].

Statistics

All data presented are Mean ± s.d. Statistical analysis was performed using Student’s t test. 

The differences between experimental groups and control groups were considered 

statistically significant for P value <0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the H2O2-responsive vesicles for glucose-mediated insulin delivery: (A) 

chemical structure of mPEG-b-P(Ser-PBE) and its degradation products; (B) self-assembly 

of block copolymer mPEG-b-P(Ser-PBE) into vesicles loaded with insulin and GOx. The 

vesicles are dissociated to release insulin in the presence of a hyperglycemic state; (C) PVs 

were further integrated into the hyaluronic acid (HA)-based microneedle-array patches for 

smart insulin delivery in a mouse model of type 1 diabetes.
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Figure 2. 
Characterization of glucose-responsive polymer vesicles (PVs). (A) TEM images of (left) 

blank polymeric vesicles (PVs) and (right) vesicles encapsulated with GOx enzyme and 

insulin (PVs(E+I)), scale bar is 200 nm; (B) size distribution of PV and PV(E+I). (C) (Top) 

2.5D fluorescence images of PV(E+I) solution pre- and postincubation in 400 mg/dL 

glucose solution for 1 and 2 h at 37 °C, respectively. (Bottom) Distribution of the 

fluorescence intensity along the indicated white dash line in arbitrary unit (a.u.); (D, E) TEM 

images (D) and size distribution (E) of PV(E+I) postincubation in 400 mg/dL glucose 

solution for 1(D, left) and 2 (D, right) h at 37 °C, respectively. Scale bar is 200 nm.
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Figure 3. 
In vitro glucose-responsive release of insulin from PVs. (A) In vitro released insulin 

concentration from PVs(E+I) at several glucose concentrations at 37 °C; (B) The release rate 

(line slope) of insulin as a function of glucose concentration in the release media for PV(E

+I) and [PV(1/2E+I) (containing one-half amount of GOx compared to PV(E+I)]; (C) 

Pulsatile release profile of insulin from PV(E+I) when the glucose concentration changed 

between 100 and 400 mg/dL alternatively for 10 min each; (D) CD spectra of native insulin 

solution and insulin released from the PVs incubated with 400 mg/mL glucose. Error bars 

indicate SD (n = 3).
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Figure 4. 
Characterization and in vivo studies the MN-array patch for type 1 diabetes treatment. (A)(a) 

Fluorescence microscopy image of MN loaded with PVs containing FITC-labeled insulin. 

(Inset is zoomed-in image of MN). Scale bar is 200 μm. (b) SEM image of an MN patch. 

Scale bar is 200 μm. (c) Trypan blue staining of mouse skin transcutaneously treated with an 

MN-array patch for 1 h. (B) Blood glucose levels in STZ-induced diabetic mice after 

treatment with MN[HA], MN[I], MN[PV(E+I)], and MN[PV(I)]. *P < 0.05 for 

administration with MN[PV(E+I)] compared with MN[I]. (C) Plasma human insulin 

concentrations in STZ-induced diabetic mice after treatment with MN[PV(E+I)] and 

MN[PV(I)]. *P < 0.05 for administration with MN[PV(E+I)] compared with MN[PV(I)]. 

(D) In vivo glucose tolerance test toward diabetic mice 1 h post-administration of MN[PV(E

+I)] or MN[I] in comparison to the healthy mice. *P < 0.05 for administration with 

MN[PV(E+I)] compared with MN[I]. (E) Responsiveness was calculated based on the area 

under the curve (AUV) in 150 min, with the baseline set at the 0 min blood glucose reading. 

*P < 0.05 for administration with MN[I] compared with healthy mice. (F) Blood glucose 

changes of healthy mice treated with MN patch over time. *P < 0.05 for administration with 
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MN[PV(E+I)] compared with MN[I]. (G) Quantification of the hypoglycemia index, which 

was calculated as the difference between the initial and nadir blood glucose readings divided 

by the time at which the nadir was reached. *P < 0.05 for administration with MN[PV(E+I)] 

compared with MN[PV(I)]. Error bars indicate SD (n = 5).
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