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Abstract

Computational models are used in a variety of fields to improve our understanding of complex 

physical phenomena. Recently, the realism of model predictions has been greatly enhanced by 

transitioning from deterministic to stochastic frameworks, where the effects of the intrinsic 

variability in parameters, loads, constitutive properties, model geometry and other quantities can 

be more naturally included. A general stochastic system may be characterized by a large number 

of arbitrarily distributed and correlated random inputs, and a limited support response with sharp 

gradients or event discontinuities. This motivates continued research into novel adaptive 

algorithms for uncertainty propagation, particularly those handling high dimensional, arbitrarily 

distributed random inputs and non-smooth stochastic responses.

In this work, we generalize a previously proposed multi-resolution approach to uncertainty 

propagation to develop a method that improves computational efficiency, can handle arbitrarily 

distributed random inputs and non-smooth stochastic responses, and naturally facilitates adaptivity, 

i.e., the expansion coefficients encode information on solution refinement. Our approach relies on 

partitioning the stochastic space into elements that are subdivided along a single dimension, or, in 

other words, progressive refinements exhibiting a binary tree representation. We also show how 

these binary refinements are particularly effective in avoiding the exponential increase in the 

multi-resolution basis cardinality and significantly reduce the regression complexity for moderate 

to high dimensional random inputs. The performance of the approach is demonstrated through 

previously proposed uncertainty propagation benchmarks and stochastic multi-scale finite element 

simulations in cardiovascular flow.
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1. Introduction

Computational models have become indispensable tools to improve our understanding of 

complex physical phenomena. Recent developments of these tools enable simulation of 

complex multi-physics systems at a cost that is, in many cases, negligible compared to 

setting up a physical experiment. Recent trends have led to a transition from deterministic to 

stochastic simulation approaches that better account for the intrinsic variability in 

parameters, material constant, geometry, and other input quantities. This improved approach 

boosts the predictive capability of models, allowing one to statistically characterize the 

outputs and therefore to quantify the confidence associated with the predictions.

While promising examples of this transition can be found in a variety of application fields, 

in this study we focus on the hemodynamic analysis of rigid or compliant vessels in the 

cardiovascular system. This is a rich application field where a stochastic solution requires 

multiple conceptual steps, from model reduction to data assimilation, and from design of 

effective parameterizations (e.g., for geometry, material properties, etc.) to efficient 

uncertainty propagation. In this study we focus on the propagation step, where the 

development of a general approach raises several challenges. First, our methods must handle 

arbitrary random inputs, from independent inputs with non-identical distribution, to 

correlated samples assimilated using Markov chain Monte Carlo (MCMC) from 

observations of the output quantities of interest. Second, there is a need for effective adaptive 

algorithms that are also easy to implement. Third, it is preferable to have the ability to reuse 

an existing library of model solutions. And finally, there is a need for an effective approach 

to reconstruct a stochastic response of interest requiring a minimal number of model 

evaluations.

Numerous approaches for uncertainty propagation have been proposed in the literature, 

many of which have been designed with specific applications in mind. As a comprehensive 

review of these approaches is outside the scope of this paper, here we mainly focus on 

methodologies supporting adaptivity, efficient reconstruction of sparse stochastic responses, 

and use of multi-resolution representations relevant to cardiovascular simulation.

The foundations for uncertainty propagation were laid in the first half of the last century 

[1,2] and re-proposed in [3] in the context of intrusive stochastic finite elements. An 

extension of Wiener chaos expansion to non-Gaussianly distributed random inputs, was 

introduced in [4] associating families of orthogonal polynomials in the Askey schemes with 

commonly used probability measures. An analysis of the convergence properties of this 

scheme is also proposed in [5]. Non intrusive stochastic collocation on tensor quadrature 

grids was formalized in [6] for random elliptic differential equations and extended in [7,8] to 

isotropic and anisotropic sparse tensor quadrature rules, respectively.

Adaptivity was introduced in [9] for non-intrusive uncertainty propagation schemes using a 

multi-element approach, while adaptive hierarchical sparse grids were proposed in [10]. An 

adaptive approach based on stochastic simplex collocation was proposed in [11] with the 

ability of supporting random input samples characterized by non regular domains. Use of 

sparsity-promoting approaches to identify the polynomial chaos coefficients was proposed in 
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[12] using standard ℓ1 minimization, while a re-weighted ℓ1 minimization strategy was 

proposed in [13]. Relevance vector machine regression in the context of adaptive uncertainty 

propagation was proposed in [14]. Use of multi-resolution expansion was first introduced in 

[15] for intrusive uncertainty propagation, and in [16] for the non-intrusive case. Finally, 

applications of stochastic collocation to cardiovascular simulation were proposed in [17] and 

in [18] in the context of robust optimization. Application to a human arterial tree with 37 

parameters is also discussed in [19] using a sparse grid stochastic collocation method based 

on generalized polynomial chaos. Combination of data assimilation and uncertainty 

propagation was proposed in [20] in the context of virtual simulation of single ventricle 

palliation surgery.

In this paper we propose a generalized multi-resolution approach to uncertainty propagation, 

as an extension of the approach presented in [16]. In this multi-resolution approach, the 

range of the random inputs is partitioned into multiple elements where independent 

approximations of the local stochastic response are computed. These follow an expansion in 

an orthonormal multi-wavelet basis constructed with respect to the probability measure 

defined on each single element and generalize the approach in [21] which is limited to a 

uniform underlying measure. Expansion coefficients are computed using a Bayesian 

approach that has a number of advantages over previously proposed greedy heuristics for 

sparse regression. Based on the computed coefficients, element refinement is performed 

along one single dimension, leading to a significant reduction in the cardinality of multi-

wavelet basis. The relevance of the proposed approach lies in its generality, ability to cope 

with steep gradients in the stochastic response, arbitrarily distributed random inputs and 

unstructured, e.g., random, solution samples.

The formulation of the uncertainty propagation problem for sPDEs is given in Section 2 and 

includes both cases of independent inputs and inputs sampled from the stationary joint 

posterior distribution through Markov chain Monte Carlo. A multi-resolution expansion is 

presented in Section 3, where a modification of the procedure in [21] is proposed to create a 

set of one-dimensional bases that are orthonormal with respect to an arbitrary distribution 

function, followed by the construction of a tensor product basis. Relevance vector machine 

regression is discussed in Section 4, while Section 5 presents the features of the proposed 

uncertainty propagation approach. Application to several benchmarks problems is 

considered in Section 6 while Section 7 presents applications to patient-specific multi-scale 

cardiovascular computation. Finally, conclusions are presented in Section 8.

2. Problem formulation

Let (Ω, ℱ, ) denote a complete probability space in which Ω is the sample space, ℱ is the 

Borel σ-algebra of possible events, and  is a probability measure on ℱ. We consider a 

vector of random inputs y = (y1, … ,yd), d > 0 ∈ ℕ, yi : Ω → Σyi ⊂ ℝ, characterized by a 

joint probability density function (PDF) ρ(y). Let Г ⊂ ℝD, D > 0 ∈ ℕ, be the spatial domain 

with boundary ∂Г and t ∈ [0, T] represents the temporal variable. We consider 

approximating the solution u(x, t, y) : Г × [0, T] × Σy → ℝh, h > 0 ∈ ℕ, to the problem
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(1)

which holds -a.s. in Ω for well posed (in -a.s. sense) forcing, boundary, and initial data f, 
ub and u0. We focus on approximating u(x, t, y) at a fixed location x = x* ∈ Г and time 

instant t = t* ∈ [0, T] from M random realizations {u(x*, t*, y(i)) : i = 1, … , M}. In what 

follows, we drop the space–time dependence of u and focus on estimating the p-statistical 

moment for the single-component response vector u(y) : ℝd → ℝ, i.e.,

(2)

where order p > 0 moments and centered moments are denoted by ν̃
p and ν̃

p, respectively.

Consider a truncated expansion of u(y) in terms of a family , i = (i1, i2, 

… , id) ∈ ℐ, of multi-variate polynomials (or multi-wavelets, see Section 3), such that:

(3)

where the cardinality of the basis is P = |ℐ|, i.e., the size of the set ℐ. Also, the family ψi(y) 

is orthonormal to the product of the marginals . In the next sections, we discuss 

how to compute the statistics of u(y) both for independent and dependent inputs y.

2.1. Uncertainty Propagation Of Independent Inputs

If we assume the random inputs y to be independent and characterized by a joint probability 

distribution , the orthonormality of ψi(y) assures a simple expression for 

the first two moments of u(y) in terms of the coefficients that can be computed from the 

regression of u(y), i.e.,

(4)
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2.2. Input samples from arbitrary joint distributions

In practical applications, random inputs are often not independent. Specifically, we consider 

the case where M samples y(k), k = 1, … , M, are generated from the joint distribution ρ(y) 

of y, for example, through an MCMC-based solution of an inverse problem. In this case, 

constructing an orthonormal set {ψi (y), i ∈ ℐ} from tensor products of univariate basis 

functions is significantly more difficult. This is dealt with, in this study, by a change of 

measure in the expectations ν̃
p or νp to obtain simple formulas similar to (4) (for further 

reference see, e.g., [22,6]).

When the input vector y has dependent components, we can multiply and divide the 

integrand of ν̃
p by the product of the marginals  to obtain (see, e.g., [22]):

(5)

This means that the coefficients {αi, i ∈ ℐ} that determine the stochastic expansion of g(y) 

according to the basis ψi(y), will encode the statistics of u(y). Note also that regression of 

f(y) from {u(y(i)) : i = 1, … , M} requires the computation of , 

k = 1, … , M}. For random input samples generated through MCMC, the stationary 
posterior ρ̃(y(k)) is known up to the integration constant c = 1/∫Σy ρ̃(y) dy, or, in other 

words, c ρ̃(y) = ρ(y). Here we consider a family ψi(y) of multi-variate functions orthonormal 

with respect to ρ(y) = 1 and expand the stationary posterior as:

(6)

where |Σy | denotes the size of Σy. Using the expansion in (6), the generic marginal can be 

computed as:

(7)

Schiavazzi et al. Page 5

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the set  (yi) contains the elements that include the yi coordinate and ρ̃k (y) is the 

restriction of the MCMC joint posterior distribution to the kth element. Due to the 

orthonormal property of the selected basis, it is easy to see that the above expression is not 

zero only when the multi-index j = (j1, … , jd) belongs to the set ℐi containing zeros in all 

components except i. This leads to

(8)

and therefore the coefficient β(l), l = 1, … , M can be obtained as

(9)

In Section 6.1, we test the convergence of this approach for a variably correlated multi-

variate Gaussian in two dimensions. Finally, we remark that the marginals could also be 

obtained from multi-wavelet regression of frequency plots from the MCMC parameter 

traces, possibly combined with smoothing through convolutions with the Gaussian density.

3. Multi-resolution stochastic expansion

In this section, we propose a generalized construction of Alpert multi-wavelets using 

arbitrary probability measures defined on a hypercube partition [21,16]. We start with the 

construction of a one-dimensional basis in the next section and discuss the multi-

dimensional case in Section 3.2.

3.1. Alpert's multi-wavelet in one dimension with arbitrary measure

Consider a random input y : Ω → (0, 1), with distribution ρ(y). The measure ρ(y) is assumed 

known at nq quadrature locations {ρ (y(i)), i = 1, … , nq}. We propose a modification of the 

approach introduced in [21] to construct multi-wavelet basis with orthogonality with respect 

to the measure ρ(y), instead of the originally assumed uniform measure. To do so, we first 

construct the multi-scaling functions {ϕi(y), i = 0, … , m − 1} as the set of continuous 

polynomials on (0, 1), orthogonal with respect to ρ(y). Specifically, the orthogonality is 

defined as

(10)
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Legendre multi-scaling polynomials are obtained for an underlying uniform distribution ρ(y) 

= 1 and the self-similarity of this measure over partitions of (0, 1) ensures that the same 

basis is generated across different elements, unlike the general case with non-uniform ρ(y) 

defined below.

The basis {ϕi, i = 0, …, m − 1} satisfies the three term recurrence for orthogonal 

polynomials. If we define

(11)

the generic multi-scaling function ϕi+1 obeys the relationship

(12)

with coefficients αi and βi obtained through (see, e.g., [23])

(13)

respectively. In (13), the inner products are evaluated using a numerical quadrature rule as 

follows:

(14)

where wj denotes the weights for the selected quadrature rule. Here we employ a double 
Clenshaw–Curtis quadrature rule [24] of order 30, using two Clenshaw–Curtis quadrature 

rules on (0, 1/2) and (1/2, 1), respectively. Since one-dimensional multi-wavelets are 

piecewise polynomials defined over (0, 1/2) and (1/2, 1), this choice leads to a greater 

accuracy than using a grid spanning the whole (0,1) interval.

The basis {ϕi, i = 0, … , m − 1} spans the space  of continuous polynomials in  (0, 1) 

with order less than m. The subscript 0 here refers to the fact that these functions are defined 

over the full unit interval. Bases for  are obtained, at this point, in a similar manner as 

discussed in [21] such that  and  with  defined as the space 

of polynomials with order less than m, and continuous on (0, 1/2) and (1/2, 1), respectively. 

The construction of bases for  starts by selecting 2m functions spanning the space of 

polynomials of degree less than m on the interval (−1, 0) and on (0, 1), then orthogonalizing 
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m of them, first to the functions 1, y, y2, … , ym−1, then to the functions ym, ym+1, … , 

y2m−1 Finally, we enforce mutual orthogonality, followed by rescaling on (0, 1) and 

normalization. These steps are described in more detail in the next sections, where the 

symbols ϕ, ψ and f are used to denote multi-scaling, multi-wavelet and auxiliary functions 

generated at intermediate construction steps, respectively.

3.1.1. Orthogonalization to monomials—As a first step, m functions 

are defined as

(15)

which together with the monomials {1, y, … , ym−1} span the space of polynomials of 

degree less than m on (0, 1) and (−1, 0). We aim at creating a new family of functions 

, each with m vanishing moments, i.e.:

(16)

To do so, we write

(17)

and enforce the condition (16) by computing the coefficients ak,j as the solution of a linear 

system whose ith equation is expressed as:

(18)

where all products  in (18) are evaluated using numerical quadrature. As suggested in 

[21], this orthogonality is preserved by the following steps, which only produce linear 

combinations of the . The coefficients ak, j in (18) are stored in A ∈ ℝm× m, such that (A)k,j 

= ak,j. Consider a generic vector  containing realizations of 

the function  at a number nq of locations, stored in the vector y(j) ∈ ℝnq. Also consider the 

matrix F0 with columns , and Y containing columns (y(j))i , i = 0, … , m 
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− 1, j = 1 … ,nq. Using (17), the set of functions  at y(j) are evaluated using the following 

expression:

(19)

where the matrix F1 has columns .

3.1.2. Additional orthogonalizations to higher order monomials—The next 

sequence of steps involves constructing m − 1 functions orthogonal to ym, of which m − 2 

functions are orthogonal to ym+1, and so forth, down to 1 function which is orthogonal to 

y2m−1 [21]. To this aim, we first reorder  such that the first function is not orthogonal to 

ym, i.e., . We then define  where  is chosen so that 

, j = 1, … , m − 1, achieving the desired orthogonality. The m 

− 1 coefficients  are thus obtained as the solution of the equation:

(20)

Similarly, we write  and determine the  using the condition 

, leading to

(21)

The procedure is repeated with orthogonalizations with respect to ym+2, … , y2m −1, to 

obtain the set  satisfying the conditions 

, ∀ i ≤ j + m − 1.

For a more compact notation, we consider the matrix B ∈ ℝ(m−1)×(m−1) with components
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(22)

where reordering assures that the denominator  does not vanish. We then 

recursively apply

(23)

3.1.3. Mutual orthogonality, normalization and rescaling—Orthogonalization of 

the functions , i = 0, … , m − 1, is accomplished, at this point, by using the Gram–

Schmidt procedure. The first function is assigned as , while the successive ones are 

computed through

(24)

where the coefficients hi,j are determined from the condition , resulting in the 

system

(25)

The solution of (25) is stored in the matrix (H)i, j = hi,j and used every time φi(y(i)) needs to 

be evaluated. We finally normalize and rescale from (−1, 1) to (0, 1) to obtain the functions 

{φi, i = 0, … , m − 1} that satisfy , and δi,j is the Kronecker delta.

Remark 1 (Re-evaluating Multi-wavelet Basis). In order to reduce the computational burden 

of evaluating multi-wavelet functions, the systems (18) and (25) are solved only once and 

the matrices A, B and H stored. Every successive evaluation of the bases uses (17), (23) and 

(24).

3.1.4. Properties of the basis—From the construction carried out in the previous 

sections, it is readily seen that the functions {φi(y) : (0, 1) → ℝ, i=0, … , m}, have the 

following properties [21]:
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1. The restriction of φi to the interval (1/2, 1) is a polynomial of degree m − 1. This 

property is extremely important when constructing multi-wavelet basis in 

multiple dimensions as it prevents sparse tensorizations from being used as 

discussed in more detail in Section 3.2.

2. The function φi is extended to the interval (0, 1/2) as an even or odd function 

according to the parity of i+m − 1 (see Fig. 1).

3. The family {φi, i = 0, … , m − 1} satisfies, by construction, the orthogonality 

conditions

(26)

1. The function φj has the following vanishing moments

(27)

As discussed in [21], properties 1 and 2 imply that there are (m − 1)2 polynomial 

coefficients that determine the functions {φ0, φ1, … , φm−1}, while properties 3 and 4 

provide (m − 1)2 constraints. Therefore, the multi-wavelet basis functions are unique (up to 

sign). Examples of the proposed multi-resolution basis for an underlying uniform and 

truncated Gaussian measure are shown in Fig. 1.

Remark 2 (Basis at Finer Resolutions). After constructing the multi-scaling and multi-

wavelet bases spanning  and , respectively, the construction of a basis for 

through scaling and shifting operations is not at all trivial if ρ(y) is not constant. Specifically, 

it appears that the self-similarity of the underlying measure on the hypercube partitions is a 

key property to build a basis for higher resolution in the arbitrary measure case. In this work, 

we focus only on building a basis for  and use the multi-wavelet coefficients to guide the 

refinement of current elements. Once refined, a new set of bases for  and  is re-

computed independently of the basis used on the parent element.

3.2. Multi-dimensional multi-wavelets for binary refinements

For d > 1, we consider the vector m = (m1, … , md) ∈ ℕd and introduce 

 as the product space spanned by the tensorizations of univariate 

multi-scaling functions. In this setting, the multi-index i ∈ ℐ = {(i1, … ,id) : 0 ≤ il < ml, l = 

1, … , d}, is used to define the d-dimensional tensor product multi-scaling basis

To unify the notation, we define
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where q is a multi-index set in Q = {(q1, … , qd) : ql ∈ {0, 1}, l = 1, … , d}. In other words, 

q defines the products of univariate multi-scaling and multi-wavelet functions ϕi and φi in 

, where q = (0, … , 0) identifies the set of multi-scaling basis.

We now focus on multi-indices q that are compatible with binary refinements of an element, 

i.e., subdivisions along a single dimension. As the presence of a multi-wavelet basis along 

multiple dimensions would imply a corresponding ability to perform subdivisions, only a 
single multi-wavelet function per dimension is needed in this case. This also reduces the 

number of possible multi-indices q from 2d to d, and therefore the complexity of forming a 

multi-resolution basis under increasing dimensionality. Under these conditions, a stochastic 

response  can be expanded as

(28)

The cardinality P of the proposed multi-variate representation is also significantly reduced 

compared to the approach proposed in [16], due to the freedom in selecting the multi-index 

i. It should be noted, in this regard, that multi-wavelet functions are polynomials of degree m 
− 1 on (0, 1/2) and (1/2, 1), respectively. Hence, partial ten-sorization of multi-wavelets in 

different dimensions leads to an incomplete representation and a full tensor product must be 

employed. For binary refinements instead, a maximum of one component in each multi-

index is associated to a multi-wavelet function. This enables one to employ sparse multi-

variate tensorizations of one-dimensional multi-wavelets, for example, with multi-indices of 

total order less than m, or less expensive alternatives (see, e.g., hyperbolic cross multi-

indices [25]). Finally, we simplify the notation by rewriting (28) in the form

(29)

Examples of times and storage requirements to build the multi-wavelet matrix (Ψ) with 

components (Ψ)i,j = ψj (y(i)) (note that here we assumed j to be the jth multi-index in ℐ) are 

reported in Table 1.

4. Relevance vector machine (RVM) regression

After generating a basis with the desired properties, the expansion coefficients αi, i ∈ ℐ, in 

(29) need to be evaluated. In this study, we use Relevance Vector Machines (RVM), a 

sparsity promoting Bayesian regression framework introduced in [26,27]. Note that, in this 

study, we consider a Gaussian hyperprior on the coefficients αi, while a Gamma hyperprior 
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was employed in [26]. Consider, in this context, a generic d-dimensional random vector y ∈ 
ℝd and denote a set of M realizations as y(i), i = 1, … , M. Also assume the stochastic 

response samples u = [u(y(1) ), u(y(2)), … , u(y(M))] to be related with realizations of y 
through an expression of the form:

(30)

where Ψ ∈ ℝM×P contains the realizations of our multi-resolution basis in matrix form, α ∈ 
ℝP is the expansion coefficient vector and ∊ ∈ ℝM is a Gaussian error vector with zero-mean 

components and diagonal covariance σ2 IM. Before proceeding, we stress that, in most 

applications, the coefficients are expected to be sparse, i.e., ║α║0 = {#αi : αi ≠ 0, i ∈ ℐ} 

≪ P, due to the increasing smoothness of the stochastic response for progressive element 

refinements. This means that only a few ψi (y) are expected to be characterized by a non-

zero expansion coefficient αi in (29) or, as will be alternatively referred to, are included in 

the model ε = {i: αi ≠ 0}, i.e., the set of multi-indices associated to non-zero expansion 

coefficients. This motivates the adoption of a framework for sparse regression. The 

likelihood induced by (30) is thus expressed as:

(31)

Prior knowledge on α is also introduced using independent zero-mean Gaussian hyperpriors 

with parameters βi, i = 0, … , P − 1. Note that βi are precisions, i.e., the inverse variances of 

the coefficients αi, and that a zero mean Gaussian hyperprior provides a natural mechanism 

to promote sparse representations. We express these hyperpriors as

(32)

where the diagonal matrix B is such that (B)i,i = βi. Due to the adoption of a conjugate prior, 

the posterior density of the coefficients α is also Gaussian, with mean and covariance, 

respectively, equal to (see [26]):

(33)

The estimates (33) are iteratively updated by computing the hyperparameters β from the 

maximization of the marginal log-likelihood:
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(34)

where α̃ denotes an iterate of the expansion coefficients. The increment Δℳ(βr) produced by 

assigning a non zero αr to the rth basis function can be explicitly computed as

(35)

where qr and sr are the quality and sparsity factors, respectively (the interested reader is 

referred to [26,27] for a derivation of the intermediate steps). The quality factor qr provides a 

measure of the correlation between the basis vector Ψr and the residual r̃ = u — Ψ α̃. The 

sparsity factor instead quantifies how a given basis vector is similar to another basis already 

in ε. Due to the importance of these two factors, the sign of  determines if a basis 

function needs to be added or removed from ε, or if the associated coefficient needs to be re-
estimated.

In a previous study [16], greedy heuristics for sparse regression – e.g., Orthogonal Matching 

Pursuit (OMP) and Tree-based Orthogonal Matching Pursuit (TOMP) – were proposed in 

conjunction with a monolithic multi-resolution expansion approach, i.e., an approach where 

a single multi-resolution basis was adopted to approximate the stochastic response u(y). We 

found that RVM offered improvements over OMP and TOMP in three different areas.

The first is flexibility in adding and removing basis functions from the model ε. During the 

OMP iterations, an arbitrary basis function Ψi can only be added to ε, based on its 

correlation with the residual vector at the current iteration. In RVM, the increment in the 

marginal likelihood (35) suggests adding a basis function to ε, removing it, but also to re-

estimating the associated coefficient αi, if it already belongs to ε. Second, both OMP/TOMP 

consider a fixed noise variance. Estimation of the noise level producing the minimum 

regression residual can be performed at a significant increase in the computational cost, for 

example through cross validation techniques. RMVs naturally deal with this problem by 

alternating estimations of the coefficient vector α and its covariance Σ with re-estimation of 

the noise intensity. Finally, RMV has the ability of directly estimating the full covariance 

matrix Σ for the coefficient vector α, unlike OMP/TOMP. This is useful to assess the 

confidence in the estimate of α.

Before discussing the application of RVM regression in the context of uncertainty 

propagation, we note that this approach promotes a sparse representation and is effective in 

approximating the stochastic response in progressively small parameter space elements. 

Unlike greedy heuristics for sparse regression, where the non zero coefficients are computed 

for the basis mostly correlated with the regression residual, or in basis pursuit where a 

relaxed ℓ1 convex regularizer is employed, here sparsity in the resulting representation is 

promoted by specifying a zero-mean hyperprior for every expansion coefficient, consistent 
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with the Bayesian character of the approach [26,27]. Specifically, it can be seen from (33), 

that a larger value of the ith precision hyperparameter βi will cause the associated expansion 

coefficient αi to be concentrated at zero thus switching off its contribution to the model [26]. 

It is also evident how approximations on progressively smaller partitions are characterized 

by an increasing smoothness in the local stochastic response. This means that elements not 

containing stochastic discontinuities will likely be accurately represented using only a small 

number of expansion coefficients.

5. Adaptive multi-resolution uncertainty propagation

This section presents the main features of an uncertainty propagation approach that includes 

the multi-resolution stochastic expansion and sparse regression methods discussed in 

Sections 3 and 4. In particular, we describe the features that differentiate it from previous 

studies in multi-resolution uncertainty propagation (see, e.g., [16]).

We believe the generality of the proposed approach to be well suited for applications in 

cardiovascular blood flow simulation. This includes situations where some of the parameters 

(e.g., patient specific boundary conditions) are estimated from model output observations 

through the solution of an inverse problem, whereas other, independent, parameters may be 

added to study the sensitivity to changes in the anatomical model geometry, material 

properties or other model parameters. In such a case, both the ability to support random 

sampling from arbitrary underlying measures and the built-in adaptivity allowing for 

approximations of stochastic responses possibly characterized by steep gradients are key to 

an efficient uncertainty propagation method.

5.1. Multi-element approach

Regression of a stochastic response on (0, 1)d using a single multi-wavelet expansion 

(monolithic approach) has several drawbacks. First, the cardinality of the basis dictionary 

will exponentially increase, and the regression problem rapidly becomes intractable even for 

a moderate number of random inputs. Second, there is no easy way to distribute the 

computations across processors when running on parallel architectures, as the regression 

needs to be computed on the whole domain even if large parts of this domain are 

characterized by a zero multi-wavelet coefficient for a number of successive resolutions.

These difficulties can be overcome by computing multiple regressions on the separate 

elements. Likely, this will lead to the stochastic response to be progressively smoother on 

elements of decreasing size, providing a stronger justification for the use of sparse 

regression. Moreover, this needs to be performed only on elements where the approximation 

has not yet converged, thus better allocating the available computational resources.

5.2. Built-in adaptivity via analysis of variance

This section shows how the information encoded in the multi-resolution coefficients α can 

be leveraged to assess whether the current element needs to be subdivided. Consider a Sobol' 

decomposition [28] of the stochastic response u(y) with independent inputs y, in terms of 

zero mean contributions of increasing dimensionality
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(36)

Under these assumptions, u0 represents the mean ν̃
1 of u, while its variance becomes

(37)

as products of terms in (36) are all zero, and where

(38)

This leads to a decomposition of the total variance of u in single parameter effects, 

combined effects of two parameters, three parameters and so on. The combined global effect 

of the parameter set {yj1, … , yjl} can therefore be quantified using the following direct 
sensitivity index

(39)

At this point, we note that the orthonormal multi-resolution expansion in (29) represents a 

Sobol' decomposition of u. In this context, the following relationship between multi-

resolution expansion coefficients and contributions to the total variance can be expressed as

(40)

It is therefore possible to separate the contributions to the total variance associated with the 

multi-scaling and multi-wavelet family as follows

(41)
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(42)

(43)

where the sets ℐMS, (ℐMW contain basis function multi-indices associated with members of 

the multi-scaling and multi-wavelet families, respectively. It is easy to see that SMW 

quantifies how much of the total variance of the stochastic response u(y) in the current 

partition is explained by differences between levels of refinements (contribution of multi-

wavelet basis). In the examples presented in Section 6, we use γ as a refinement metric, 
subdividing an element if γ > γt, where γt is a selected threshold in the range [10–8, 10–6].

Moreover, as previously discussed, elements are subdivided only along a single dimension. 

Thus, the algorithm needs to compute the refinement direction when γ > γt. This can be 

achieved by looking at the multi-index i = (i1, i2, … , id) associated with αi, where each 

index ij, j = 1, … , d, denotes the order of a univariate multi-scaling or multi-wavelet basis 

along the jth dimension. Consider the set ℐj containing multi-indices that are non zero only 

along dimension j. We define the following variances

(44)

where jref denotes the dimension along which the refinement is performed.

For the sake of clarity, we remark that, in this section, an analysis of the variance of u(y) was 

leveraged to decide whether an element should be further subdivided. In particular, we 

showed how the total multi-wavelet variance can be obtained from the multi-resolution 

expansion coefficients and also how to identify which dimension needs refinement. Similar 

refinement metrics are discussed in [9,15].

5.3. Binary tree refinement

The iterative partitions of the unitary hypercube are stored using a binary tree data structure. 

The leaves of this representation (i.e., elements in the current partition) are visited at every 

iteration, and a multi-resolution approximation of the stochastic response in these elements 

is computed if none of the convergence criteria has been met.

After processing all elements in the partition, single element statistics need to be assembled 

into statistics of the overall stochastic response. If we define  as the 
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volume of the kth element, the overall stochastic response average ν̃
1 is assembled from the 

single element averages , as follows

(45)

while the overall centered variance ν2 is evaluated using the expression

(46)

5.4. Multi-resolution regression and random sampling

For a smooth stochastic response, collocation on quadrature grids of increasing order will 

likely lead to an exact computation of the expansion coefficients, thus enhancing the 

effectiveness of the adaptivity indicators encoded in the multi-wavelet basis. Conversely, for 

randomly distributed parameter realizations y(i), i = 1, … , M, regression errors in {αi, i ∈ 
ℐ} may negatively affect the estimated adaptivity metrics. This is especially true when the 

number of samples contained in a single element is progressively reduced as a result of 

refinement. This may happen, for example, when a fixed number of solution realizations are 

available and no more can be generated.

Quantification of how well smooth (e.g., constant or linear) responses can be captured from 

their random samples is therefore useful to quantify the amount of oversampling in more 

general scenarios. Specifically, we look at the ability of the proposed multi-resolution 

approach to approximate two multi-variate functions u1 and u2 of the form

(47)

These functions can be represented exactly only in terms of multi-scaling basis coefficients, 

and therefore with identically zero multi-wavelet variance. Note that the minimum number 

of samples needed to uniquely identify u1 and u2 is 1 and d + 1, respectively. The decay of 

the multi-wavelet variance shown in Fig. 2 is informative on the amount of oversampling 

required by the proposed approach under a variable number of dimensions d.

As shown in Fig. 2, a constant function is always correctly represented with very few 

samples. This means that sub-domains containing only one sample will be correctly 

approximated with a constant function by MW regression and the variance of both the multi-

scaling and multi-wavelet components will be exactly zero, indicating no further refinement 

to be needed, as expected.
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A more challenging situation results from approximating the linear function u2, where the 

number of samples leading to a zero multi-wavelet variance is greater than d + 1 and 

increases with the dimensionality.

6. Numerical benchmarks

The performance of the proposed approach is assessed using various benchmarks. We begin 

by showing how the integration constant of a variably correlated multi-variate Gaussian can 

be determined. Identity maps are then used to verify the advantages of constructing 

representations that are orthogonal to the marginal PDFs of the random inputs over other 

approaches, e.g., transformation through projection on the cumulative distribution function. 

The accuracy of approximating two analytic functions with aligned discontinuity and not 

aligned slope discontinuity is assessed in Sections 6.3 and 6.4, respectively. Next we 

consider the one-, two- and three-dimensional Kraichnan–Orszag problem, a challenging 

benchmark often used to assess the convergence of adaptive uncertainty propagation 

algorithms. Finally, we consider an application in multi-scale cardiovascular simulation 

where 13 random inputs are first sampled using MCMC and then propagated forward with 

the proposed approach.

Several criteria are used to assess convergence at the element level in the above benchmarks, 

related to geometry, number of samples and total multi-wavelet variance. Geometrical 

criteria include minimum element size and aspect ratio, while various thresholds on the 

minimum number of samples are applied, based on the discussion in Section 5.4. A 

converged multi-wavelet variance is also obtained by comparing γ with γt, as discussed in 

5.2. Special cases are also addressed, for example, a zero RVM approximation residual or 

overall element variance. The algorithm requires other free parameters and thresholds listed 

in Table 2.

In the benchmarks reported in the following sections, the errors in the estimated statistical 

moments are evaluated as

(48)

where  and  represent the estimates computed through the proposed multi-resolution 

approach, while ν̃
1 and ν2 the corresponding exact value. The latter has been computed 

exactly for stochastic responses with known analytical expression (Sections 6.2–6.4) and 

through Monte Carlo Simulation (MCS) using 2 × 106 samples (Sections 6.6–6.8). In cases 

where the denominator in (48) is zero, only the numerator is considered.

In the convergence plots shown in the following sections, we consider full tensor grid orders 

2, 5 and 8 as well as random sampling with a minimum of 2, 10 and 20 samples in each 

element. These are denoted “O2”, “O5”, “O8” and “O2”, “O10” and “O20”, respectively. 

Errors in the Monte Carlo statistics are also reported as “MCS”. Also, a common feature 
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observed in all convergence plots in the upcoming sections, is that random sampling is 

typically more oscillatory than collocation on regular grids. This is expected and depends on 

two facts. First, for random sampling, element refinement and adaptive sampling are 

performed at two successive iterations, and therefore element refinement at a fixed number 

of samples may lead to a drop in accuracy for the statistics of interest. This relates to the 

implementation details of the algorithm. In other words, a multi-wavelet approximation is 

re-computed after element refinement, without generating additional samples. Second, 

samples drawn uniformly on bigger elements, may not be sufficiently well spaced on 

successive refinements, thus reducing the accuracy of the multi-wavelet approximant.

To count the number of samples for collocation grid arrangements, new grids were 

constructed at each element refinement, and samples from all the parent elements were 

accounted for when computing the total number of samples.

6.1. Regression of variably correlated multi-variate Gaussians

The ability of a multi-resolution approximation with an underlying uniform measure to 

determine the integration constant of a variably correlated Gaussian is illustrated in this 

section. Two random variables (y1, y2) ∼ (μ, Στ) are selected where

and the parameter τ denotes the correlation coefficient of y1 and y2. While in this simple 

example we can use a standard transformation of y1 and y2 to two independent Gaussians, 

we use the approach of Section 2.2 for illustration of the idea.

We mimicked a set of MCMC samples by randomly generating realizations from (μ, Στ) 

and by scaling the associated PDF by a known factor. We then tried to recover this factor 

using multi-resolution regression. Fig. 3 shows that a few regression iterations are sufficient 

to determine the integration constant up to an error of a few percent, and that the algorithm 

is robust for variably correlated y1 and y2. Due to the effect of the correlation and the 

mapping between an arbitrary support and (0, 1)d, it is likely for large areas of the regression 

domain to be characterized by a small number of samples (as apparent in Fig. 3(a)). To force 

the regressor to progressively vanish for rare realizations, we enforced zero PDF samples at 

±5 marginal standard deviations from the mean.

Remark 3 (Decorrelation of MCMC Samples). In regard to the use of regression as in (6) to 

determine the integration constant from arbitrary correlated samples, it should be noted that, 

as suggested in [22], it is possible to apply a decorrelation transformation (e.g., through a 

finite dimensional Karhunen-Loéve expansion, see, e.g., [29]) thus improving the regularity 

of the distribution to approximate. However, we observe how a transformation could prevent 

the ability to recover sensitivity indices in terms of the original variables. In other words, the 

sensitivities computed using the transformed variables may not have a straightforward 

interpretation.
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6.2. Simple identity maps of arbitrary distributed random variables

In this benchmark, the first and second order moments of the identity u(y) = y are computed 

for a random input y ∼ (0, 1). Moments are computed using two different methods, i.e., 

by using the proposed approach and by retaining an underlying uniform measure and using 

projections on the Gaussian cumulative distribution. As shown in Figs. 4 and 5, the proposed 

approach converges significantly faster. We note that distributions with infinite support need 

to be truncated to fit the unitary hypercube where the proposed multi-resolution basis is 

constructed. The results in this section have been computed by truncating the distribution at 

±5 standard deviations from the mean.

6.3. Discontinuous function in two dimensions

We consider the discontinuous function proposed in [30]:

(49)

where the random variables y1, y2 are independent and uniformly distributed on (0, 1)2. This 

function has two line discontinuities along y1 = 1/2 and y2 = 1/2, respectively, and thus 

methods based on global polynomial regression are likely to result in poor approximation. 

Convergence plots for the mean and standard deviation are shown in Fig. 7. The 2nd-order 

sparse grid is unable to provide an accurate approximation of ν2. While areas where u(y1, 
y2) = 0 are correctly approximated, computation of expansion coefficients involving the 

product of a quadratic basis with a sinusoidal response is not accurate.

6.4. Non aligned slope discontinuity in two dimensions

Convergence of the proposed formulation is demonstrated, in this section, for an analytical 

function with slope discontinuity not aligned with the Cartesian axis. This example is 

proposed in [10] to show the convergence properties of an adaptive hierarchical sparse grid 

collocation algorithm. Consider the function on (0, 1)2 defined as:

(50)

where δ = 10−1. Convergence plots are shown in Fig. 8. The advantages of random sampling 

(with a minimum number of 10 and 20 samples per element) start to appear both in the 

computation of the average value and standard deviation. For responses with features not 

aligned with the adopted Cartesian integration grid, improved approximation results from a 

combination of random sampling and RVM regression.

For this and the previous case (a visualization of their stochastic response and parameter 

space refinement is shown in Fig. 6), we look at both the convergence in terms of the first 

and second order statistical moments, and the ℓ1, ℓ2 and ℓ∞ error norms evaluated at nMC = 
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103 random points uniformly distributed on Σy = (0, 1)2. Specifically, the following 

expressions are used:

(51)

where u(i),* represents the approximation computed through the proposed multi-resolution 

regression at the ith check point and the associated exact solution u(i). Monotonic 

convergence is observed for both quadrature grids and random samples (see Fig. 9), where 

the former require significant additional samples. This plot further highlights the benefits of 

the proposed approach with respect to grid collocation.

6.5. The Kraichnan–Orszag problem

The Kraichnan–Orszag (KO) problem has become a standard benchmarks for adaptive 

uncertainty propagation algorithms (see, e.g., [10,9]). It consists of a system of three coupled 

non-linear ODEs derived from the simplified inviscid Navier–Stokes equations [31]. When 

uncertainty is injected in the initial conditions of the three state variables, the stochastic 

response is characterized by sharp gradients that rapidly evolve with time. In this section, we 

adopt a formulation of the KO problem discussed in [9], expressed through the following 

system:

(52)

Note that when the set of initial conditions is selected such that the planes u1 = 0 and u2 = 0 

are consistently crossed, the accuracy of the global polynomial approximations (at the 

stochastic level) deteriorates rapidly in time [9].

6.6. One dimensional Kraichnan–Orszag problem

We assume initial conditions for (52) to be random and specified as

(53)

where y is uniformly distributed on (0, 1). Fig. 12(a) illustrates the adaptive reconstruction 

of u1(y) for an increasing number of elements with samples generated from a double 

Clenshaw–Curtis integration rule, while Fig. 10 shows the convergence of the first two 

estimated statistical moments of u1(y). Convergence plots are shown in Fig. 10. While lower 

grid orders or number of samples provide inaccurate estimates of the standard deviation, 
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significant improvements over Monte Carlo Sampling are obtained by adding more samples. 

We note that the stochastic response is characterized by sharp local features (Fig. 12(a)). 

Under these conditions, the efficiency of collocation grids is maximized, resulting in similar 

sample requirements as random sampling.

6.7. Two dimensional Kraichnan–Orszag problem

The initial conditions of the Kraichnan–Orszag problem are assumed to be uncertain and 

functions of two random variables

(54)

where y1 and y2 are independent and uniformly distributed on (0, 1). A two dimensional 

multi-wavelet approximation of u1 at t = 10 s is generated with m = 2. Fig. 11(a) shows the 

convergence of average value and standard deviation of u1 using MCS, and a multi-wavelet 

approximation evaluated on sparse grid and random adaptive sampling. Finally, Fig. 12(b) 

and (c) show the obtained partition of (0, 1)2 using tensor grids at refinement iteration 17. 

Convergence plots are shown in Fig. 11. The proposed approach with random sampling 

outperforms both grid collocation and MCS.

6.8. Three dimensional Kraichnan–Orszag problem

The initial conditions of the three-dimensional Kraichnan–Orszag problem are

(55)

where we assume that y1, y2 and y3 are independent and uniformly distributed on (0, 1). The 

multi-wavelet approximation at t = 10 s is constructed for u1 using m = 2. The convergence 

plots for the standard deviation are shown in Fig. 13. Unlike the prior results, random 

sampling outperforms quadrature grids but shows a convergence similar to Monte Carlo 

Sampling, due to the complex features of the stochastic response [10]. While we do not 

expect, in practice, stochastic responses with features as complicated as this benchmark 

problem, this case illustrates that the algorithm can compute converging statistics in such 

cases.

7. Application: Forward propagation of local hemodynamic statistics

7.1. Motivation

We discuss the application of the proposed framework to a problem in uncertainty 

propagation for cardiovascular blood flow simulation. Specifically, we are interested in 

determining both mean values and variability of local hemodynamic quantities in the 

coronary arteries, in patients following coronary artery bypass graft (CABG) surgery.
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To do so, we employ a multi-scale modeling strategy that includes a three-dimensional 

model of the patient's aorta, aortic branches and coronary arteries, receiving pressure/

velocity boundary conditions from a lumped parameter description of the peripheral 

circulation. This lumped parameter or zero-dimensional (0D) boundary model is analogous 

to an electrical circuit and parameterized through a set of resistances (viscous resistance of 

the blood), capacitances (vessels compliance), inductances (blood inertia) and other 

parameters regulating the heart function. An three-dimensional anatomical model was 

constructed using the Simvascular software package [32], starting from a set of patient-

specific CT images. A schematic representation of a typical multi-scale model for coronary 

artery disease is depicted in Fig. 14.

It is evident how a multiplicity of pressure/velocity boundary conditions (or alternatively of 

0D model parameters) are able to generate multi-scale model outputs compatible with non-

invasively acquired clinical data, especially if these data are affected by uncertainty. We are 

therefore interested in first determining the distributions of boundary conditions by 

performing data assimilation, i.e., by estimating the 0D model parameters using adaptive 

Markov chain Monte Carlo (MCMC). Due to the number of model evaluations typically 

required to produce independent samples from a stationary posterior distribution in MCMC, 

a condensed resistive representation of the three-dimensional model is also computed, 

leading to a dramatic reduction in the overall computational cost (from several hours to a 

fraction of a second, see [33], for a single model solution). The proposed multi-resolution 

approach to uncertainty propagation is employed to propagate the distributions of 

assimilated boundary conditions through a full multi-scale model, therefore quantifying the 

variability in local hemodynamic indicators of interest.

Finally, we address the reasons why the proposed approach should be preferred to Monte 

Carlo Simulation for cardiovascular applications. The primary factors in the choice of 

method are the moderate dimensionality, the non-smoothness of the stochastic response 

(likely limited to a small subsets of dimensions), and the high computational cost needed to 

produce each multi-scale model evaluation. These conditions arise particularly when 

studying the effect of combined uncertainty sources, e.g., clinical data, model geometry and 

vessel wall material properties. Specifically, changes in the model geometry for 

configurations characterized by competing flow (e.g., total cavopulmonary connection in 

Fontan completion surgery [34]) are likely to produce a non-smooth variation in the outputs. 

Under these conditions and from the results of the numerical experiments in Section 6, the 

proposed approach is likely to result in computational savings with respect to MCS due to 

the smaller number of model evaluations needed to capture the statistics of interest.

7.2. Clinical targets selection and parameter identifiability study

In this section we provide details on the preliminary steps needed to produce random input 

samples for the uncertainty propagation task. Specifically, we discuss clinical target 

selection for data assimilation and preliminary identifiability analysis. Please refer to [33] 

for further details. Targets were acquired using routine clinical measurements, population 

average values, echocardiography data, and complemented with literature data on coronary 

flow. Diastolic, systolic and mean aortic pressures were estimated from the patient's cuff 
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pressures during echocardiogram. Other patient-specific measurements from 

echocardiography included stroke volume, ejection fraction, ratio of early to late flows into 

the left ventricle, valve opening times relative to the heart cycle duration, systolic pressure 

difference between the right ventricle and right atrium measured from tricuspid valve 

regurgitation, and the mean right atrial pressure estimated from the diameter and degree of 

inspiratory collapse of the inferior vena cava [33].

Additional data from literature was used to improve parameter identifiability. In this regard, 

a mean pulmonary pressure of 14.0 mmHg was considered together with 4% of the cardiac 

output entering the coronaries. Representative left and right coronary waveforms from 

Doppler flow wire measurements [35] were also used to quantify the diastolic to systolic 

coronary peak flow ratio, the diastolic to systolic coronary blood volume, and the ratio of the 

flow in the coronary arteries occurring in the first 1/3 and 1/2 of the heart cycle.

Standard deviations for these targets were determined from the literature and personal 

communication with our clinical collaborators. Measurements derived from tracking the left 

ventricular wall during echocardiography are characterized by limited uncertainty, whereas 

higher uncertainties occur in flow measurements from doppler echocardiography.

Identification of both influential and unimportant parameters was performed using a 

combination of prior experience in manual tuning, analysis of structural identifiability 

through the Fisher Information Matrix (FIM), and the marginal parameter distributions 

resulting from Bayesian estimation (where a flat marginal posterior is generally indicative of 

unimportant parameters). Previous experience with manual tuning allowed us to 

immediately identify parameters significantly affecting the systemic blood pressure, stroke 

volume, systemic to coronary flow split, and qualitative shape of the coronary flow 

waveforms. The left ventricular elastance Elv affects the stroke volume and mean systemic 

blood pressure, while the aortic compliance Cao affects the systemic diastolic to systolic 

pressure range. The coronary downstream resistance scaling factor Ram,cor has a strong 

influence on the flow splits, while the coronary capacitances and dP/dtr (i.e., the 

intramyocardial pressure time derivative) significantly affect the shape of the coronary 

waveforms. The downstream systemic resistance scaling factor Rrcr affects both the aortic 

diastolic to systolic pressure range and the stroke volume.

The Fisher Information Matrix (FIM) rank is a local measure of identifiability, i.e., the 

ability to uniquely characterize parameter combinations from the available observations 

[36]. A singular FIM reveals the presence of non-identifiable parameter combinations and an 

analysis of the eigenvectors associated with the zero eigenvalues (so-called null 
eigenvectors) can be useful to identify these parameters. In this regard, a null eigenvector 

with a dominant component along a certain parameter typically suggests this parameter to be 

unimportant. Thus, we used the FIM to detect all the unimportant parameters until no more 

trivial null eigenvectors were found.

We then examined the estimated posterior marginal variance as a measure of global 

identifiability. In particular, we quantified the ability to learn the parameter yi by comparing 

the posterior and prior marginal variances using the coefficient θi as
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(56)

where ν2[yi |d] and ν2[d] are the posterior and prior marginal variances, respectively. Well-

learned parameters will have a much smaller variance after being conditioned to the clinical 

observations (θ → 1), while poorly learned parameters, on the other hand, will have 

resulting variances that are close to their prior variance (θ → 0). Intuitively, parameters 

associated with large marginal variances will likely have a limited impact on the model 

results selected for identification, since these parameters can take on a wide range of values, 

but produce results with similar posterior.

Prior tuning experience, FIM analysis, Bayesian learning metrics, and qualitative knowledge 

of expected physiologic coronary waveforms, allowed us to determine a reduced set of 13 

parameters (see Table 3). This subset consistently generated excellent agreement between 

model outputs and clinical targets, and produced flow and pressure waveforms consistent 

with qualitative expectations [33].

An adaptive Markov chain Monte Carlo strategy was used, at this point, to sample from the 

posterior distribution of these 13 model parameters, constructed using the clinical data and 

associated uncertainty discussed above.

7.3. Uncertainty propagation results

The availability of samples from the joint posterior distribution of the random inputs, is a 

prerequisite to performing uncertainty propagation using the proposed approach, with the 

goal of statistically quantifying the outputs of interest. As a first step, the marginals were 

determined for the random inputs y (Fig. 15) as well as the coefficients β(k), k = 1, … , M. 
We then used 64 sub-samples from the MCMC parameter traces (after removing the 

realizations produced during burn-in, see [37]) and computed solutions of the full multi-

scale model at these realizations using a stabilized finite element solver [38]. Note how the 

parameter realizations provided by MCMC are roughly 1.5M and it would be impossible to 

compute a stabilized finite element solution for all the MCMC parameter realizations. 

Statistics were computed through Monte Carlo averaging and by forward propagation using 

the proposed multi-resolution approach, using the same number of model solutions (64) for 

various multi-wavelet orders. Results were very similar to those provided by MCS, as shown 

in Figs. 16 and 17. Fig. 16 reports the average value and standard deviation for the pressure 

distribution in one of the seven patients analyzed in [33]. We see that the standard deviation 

is not negligible in this case, and the proposed approach with a multi-wavelet order of 1 

produces the same results as MCS. Fig. 17 represents a typical case where, instead, the 

variability of wall shear stress-derived quantities is negligible with respect to the associated 

mean value. We observe that, even in these cases, there is a good agreement between the 

MCS results and those produced by the proposed approach.

This confirms the accuracy of the approach when random inputs are not independent, but 

available through MCMC samples. Moreover, we have shown in the previous sections that 
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the proposed approach outperforms MCS, requiring in most cases a significantly smaller 

number of model evaluations to accurately compute the output statistics. This suggests that 

multi-resolution uncertainty propagation has enough flexibility to handle cases where 

estimated distributions of boundary conditions are combined with assumed geometrical 

and/or material parameter uncertainties. Future studies will investigate the performance of 

the proposed approach under these more general settings.

8. Conclusion

We propose a generalized multi-resolution expansion with random inputs characterized by 

arbitrary probability distributions and random sample locations. The framework has built-in 

adaptivity metrics based on the natural decomposition of the total regressor variance in 

multi-scaling and multi-wavelet contributions. A set of ad-hoc multi-resolution bases is 

constructed orthonormal with respect to an arbitrary distribution function defined on a subset 

of the input space. This approach, particularized to uniform underlying measures with 

Legendre multi-scaling, can be used to evaluate the integration constant and the marginal 

distributions from Markov chain Monte Carlo samples, allowing to perform expectations of 

arbitrary correlated random inputs. Performance and convergence of the method was 

demonstrated on several model problems and on a large scale computational model in 

cardiovascular hemodynamics. For problems in stochastic cardiovascular modeling, 

especially under a multiplicity of uncertainty sources, the proposed approach is expected to 

provide a computationally more efficient alternative to Monte Carlo Sampling, leading to 

accurate statistics with a smaller number of required multi-scale model evaluations.
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Fig. 1. 
Examples of multi-scaling and multi-wavelet basis orthogonal to a uniform and truncated 

Gaussian distribution, respectively. MS denotes multi-scaling functions while MW multi-

wavelet functions.
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Fig. 2. 
Decay of multi-wavelet variance for an increasing number of samples for constant (left) and 

quadratic (right) functions with exact representation.
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Fig. 3. 
Computing the integration constant of a variably correlated multi-variate Gaussian with 

multi-resolution regression. The sample distribution and refined hypercube partitions are 

shown for τ = 1/2 (a), together with the reconstructed distribution (b) and convergence plots 

in terms of the absolute (ABS) relative error between the estimate and the true integration 

constant (c).
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Fig. 4. 
Error in average value (a) and standard deviation (b) for identity map of Gaussian random 

variable computed using a multi-wavelet expansion with orthogonality with respect to the 

truncated Gaussian distribution.
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Fig. 5. 
Error in average value (a) and standard deviation (b) for identity map of Gaussian random 

variable computed using a multi-wavelet expansion with orthogonality with respect to (0, 

1) and transformation through projections on the cumulative distribution. Note that in (a) the 

statistics computed using quadrature grids of increasing order are not visible, due to the very 

small associated error.

Schiavazzi et al. Page 34

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Representation of the two non-smooth benchmark functions. The first (a) is expressed 

through the relationship (49) and has been proposed in [30], while the second (b) is 

expressed using (50) and proposed in [10]. For this latter function, the hypercube partition at 

refinement iteration 19 is also shown (c).
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Fig. 7. 
Error in average value (a) and standard deviation (b) for the discontinuous function proposed 

in [30]

Schiavazzi et al. Page 36

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Error in average value (a) and standard deviation (b) for the function with slope 

discontinuity proposed in [10].
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Fig. 9. 
Convergence of error norms e1, e2 and e∞, plotted using 1000 random check points. (a) 

Convergence for (49), (b) convergence for (50).
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Fig. 10. 
Convergence in average value (a) and standard deviation (b) for the 1D KO problem.

Schiavazzi et al. Page 39

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Convergence in average value (a) and standard deviation (b) for the 2D KO problem.
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Fig. 12. 
Iterative refinement of (0, 1) and progressive approximation of the stochastic response u1(y, 
t) at t = 30 s for the one-dimensional KO problem (a). Refinement of (0, 1)2 (b) and 

reconstructed response (c) for the two-dimensional KO problem.
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Fig. 13. 
Convergence in standard deviation for the 3D KO problem.
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Fig. 14. 
Schematic representation of a multi-scale model for coronary artery bypass surgery from 

[33]. The anatomical model contains the aortic arch, thoracic aortic branches, coronary 

arteries and bypass grafts. The boundary conditions are provided by a lumped parameter 

model that mimics the heart and peripheral circulation.
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Fig. 15. 
Normalized frequency plots and multiwavelet approximants for the marginal PDF of random 

inputs y3, y4 and y5.
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Fig. 16. 
Contour plot representing the estimates of the average pressure (a) and its standard deviation 

(b) on a three-dimensional multi-scale model of the aorta and coronary circulation. The 

statistics of the proposed multi-resolution approach are compared to those obtained from 

Monte Carlo sampling, computed over 64 realizations.
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Fig. 17. 
Comparison between average and standard deviation of time averaged wall shear stress 

(TAWSS) and oscillatory shear index (OSI) computed using Monte Carlo simulation and the 

proposed multi-resolution approach. The two approaches result in practically the same 

contours for the quantities of interests.
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Table 2

List and description of the free parameters and threshold quantities used in the proposed uncertainty 

propagation approach.

Free parameter Value for test cases in 
Section 6

Description

Number of initial samples (random 
sampling) or Sampling grid order (grid 
collocation).

2, 10, 20 for “O2”, “O10” 
and “O20” test cases, 
respectively.

This parameter quantifies the initial number of model solutions 
that will be used to evaluate a Multi-wavelet expansion on the 
full hypercube. Alternatively, for collocation on quadrature grids, 
it quantifies the grid order in every element.

Maximum multi-wavelet order. m = 2. This is the maximum order of the multi-wavelet basis. Generally 
orders 1 and 2 are preferred. We found that a piecewise quadratic 
approximation usually suffices to obtain a satisfactory multi-
wavelet approximant.

Quadrature order for multi-wavelet basis 
construction.

nq = 30. Sets the order of the univariate quadrature rule when computing 
integrals during the construction of the multi-wavelet basis, as 
discussed in Section 3.1.

Minimum element size. 1.0 × 10−3 (1/1000 of the 
minimum size of Σy).

This is the minimum element size allowed for a single 
dimension. Elements having size smaller than this threshold are 
left unrefined.

Maximum partition aspect ratio. Default set to 1.0 (promotes 
squared elements).

This parameter governs element aspect ratios.

Minimum number of samples in partition 
(random sampling only).

2, 10, 20 for “O2”, “O10” 
and “O20” test cases, 
respectively.

For random sampling, elements with less than this number of 
samples are left unrefined.

Multi-wavelet variance ratio γt. γt ∈ [10−8, 10−6]. This parameter (discussed in Section 5.2) sets a limit in the 
multi-wavelet variance for each element. Elements characterized 
by a multi-wavelet variance smaller than γt are regarded as 
converged.
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Table 3

Thirteen identifiable 0D model parameters included as stochastic inputs.

Parameter Description Parameter Description

Erσ Right ventricular elastance. Cam,l Distal capacitance at left coronary outlet.

Elσ Left ventricular elastance. Ca,l Proximal capacitance at left coronary outlet.

Elσp Scaling factor for left ventricular elastance rate. Cam,r Distal capacitance at right coronary outlet.

Cao Aortic compliance. Ca,r Proximal capacitance at right coronary outlet.

Kxp,ra Passive right atrial curve scaling factor. Rrcr Downstream systemic resistance scaling factor.

Kxp,la Passive left atrial curve scaling factor. dP/dtr Intramyocardial pressure time derivative.

Ram Coronary downstream resistance scaling factor.
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