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Cardiac arrhythmias have been traditionally simulated using continuous models that assume tissue

homogeneity and use a relatively large spatial discretization. However, it is believed that the tissue

fibrosis and collagen deposition, which occur on a micron-level, are critical factors in arrhythmo-

genesis in diseased tissues. Consequently, it remains unclear how well continuous models, which

use averaged electrical properties, are able to accurately capture complex conduction behaviors

such as re-entry in fibrotic tissues. The objective of this study was to compare re-entrant behavior

in discrete microstructural models of fibrosis and in two types of equivalent continuous models, a

homogenous continuous model and a hybrid continuous model with distinct heterogeneities. In the

discrete model, increasing levels of tissue fibrosis lead to a substantial increase in the re-entrant

cycle length which is inadequately reflected in the homogenous continuous models. These cycle

length increases appear to be primarily due to increases in the tip path length and to altered restitu-

tion behavior, and suggest that it is critical to consider the discrete effects of fibrosis on conduction

when studying arrhythmogenesis in fibrotic myocardium. Hybrid models are able to accurately cap-

ture some aspects of re-entry and, if carefully tuned, may provide a framework for simulating con-

duction in diseased tissues with both accuracy and efficiency. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4999605]

Computational models of cardiac conduction can play

an important role in understanding the mechanisms of

and developing treatments for fibrosis-induced cardiac

arrhythmias. However, most studies investigating the

arrhythmogenic role of cardiac fibrosis have modelled

the myocardium as a locally homogenous continuum with

slowed conduction and increased conduction anisotropy

in the areas of fibrosis. While these continuum methods

recreate normal conduction in healthy tissues and allow

for increased computational efficiency, it remains unclear

how effectively they are able to model complex conduc-

tion patterns such as re-entry. In this work, we show that

continuous models incompletely represent re-entrant

behavior because they are unable to capture changes in

tip trajectory and restitution. We find that hybrid mod-

els, which incorporate discrete heterogeneity into the con-

tinuous tissue representation, are able to capture some

aspects of complex re-entry and may allow for accurate

simulation with preserved computational efficiency.

INTRODUCTION

Understanding the mechanisms of cardiac arrhythmia

initiation and perpetuation has proven to be a challenging

problem because of the difficulties in studying the dynamics

of abnormal cardiac activity in vivo and recapitulating criti-

cal features of interest in vitro. Computational modeling of

cardiac electrophysiology provides a useful framework for

understanding the mechanisms of and developing treatments

for arrhythmia because of the ability to carefully control

parameters of interest. However, in order to accurately draw

conclusions about the nature of pathological conduction,

models must be constructed with sufficient fidelity to repro-

duce the structural components underlying human diseases.

Because cardiac tissue is a discontinuous network of

highly connected individual cells, and because conduction is

affected by the discrete cellular structure of the tissue,33 car-

diac electrical activity has often been modeled using micro-

structural model systems that can incorporate variation in the

cell shape, size and orientation as well as distinct gap junc-

tions between neighboring cells. This type of detailed struc-

tural model allows for the study of the effects of alterations

in the tissue structure on conduction, including alterations in

source-load balance, gap junctional distribution, and fibro-

sis.17,18,32 However, because these discrete models require

subcellular resolution, they are extremely computationally

expensive. In order to speed up computation and simulate

larger regions of conduction, continuous models with spatial

resolutions at the cellular scale and higher are typically

used.15 These models provide an idealized representation of

the tissue, with homogenized electrical properties that aggre-

gate the effects of tissue structure, connectivity and cellular

orientation.14 Continuous models have proven capable of

replicating the dynamics of conduction for models of healthy

tissues;5,35 however, recent evidence suggests that these

models may be less predictive under diseased conditions

such as ischemia35 and reduced coupling,5,11 or at the inter-

faces of regional heterogeneity.16

Recently, the effects of fibrosis on arrhythmogenesis

and arrhythmia dynamics have been of growing interest.

Cardiac fibrosis is an injury response that involves the

remodeling of gap junctions that couple neighboring cells,

proliferation of fibroblasts, and deposition of excess collagen

that separates and replaces the functional cardiac tissue,
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decoupling the syncytium that is necessary for normal cardiac

conduction. Fibrosis varies in density, distribution and size,

and different types of fibrosis (dense, interstitial, diffuse, etc)

have varying impacts on conduction.19,20 Marrouche et al.
have found that the degree of fibrosis (estimated via delayed

enhancement MRI) can be predictive of the likelihood of

recurrent arrhythmia after atrial fibrillation ablation.22 As

such, fibrosis may be an important target to new biological

therapies for arrhythmia.

The best way to represent fibrosis in tissue models is still

an open question. Spach et al. introduced interstitial fibrosis

in discrete models by representing non-conductive collage-

nous septa as the decoupling of transverse cellular connec-

tions,32 which maintains the electrical effects of fibrosis

without occupying space in the tissue domain. In continuous

computational models, fibrosis is traditionally incorporated

by decreasing conductivity values to reproduce experimen-

tally observed conduction slowing and conduction anisot-

ropy. While this approach reproduces the macroscopic

conduction behavior, it may not capture the microscopic

effects of fibrosis that could be crucial in arrhythmogenesis.

The more recent approach by Costa et al.9,10 of decoupling

elements in a coarse mesh to reproduce the effects of intersti-

tial fibrosis is analogous to the approach of Spach et al. in

the discrete model, and has shown promise in reproducing

microscale conduction. However, it remains unclear how

any of these approaches perform in the setting of complex

behavior such as re-entrant spiral waves.

In this study, we compare spiral wave behavior in both

discrete and two equivalent continuous models of interstitial

fibrosis to understand whether continuous computational

models that condense structural complexity into reduced

conductivity are sufficient to capture the details of re-entry.

We explore the potential source of divergence between dis-

crete and uniform continuous models and consider the use of

hybrid models that incorporate distinct decoupling septa into

a coarse continuous model.

METHODS

Tissue models

Two-dimensional monodomain microstructural models

of anisotropic cardiac monolayers that incorporate discrete,

uniformly distributed gap junctions were randomly generated

using previously described methods.18 Tissues used were

2 cm� 2 cm, with a spatial discretization of 20 lm. Individual

myocytes were an average of 100 lm in length and 20 lm in

width, arranged in a brick-wall form and aligned along their

length. An intracellular resistivity of 150 X�cm and a gap

junction conductance of 2.5 lS were used. Collagen septa of

variable length (selected from a Poisson distribution with

a mean length of 800 lm) were inserted, parallel to cellular

orientation, to occupy between 0% and 30% of transverse

interfaces between myocytes.18 [Fig. 1(a)]. All transverse

junctions between cells separated by collagenous septa were

removed to simulate the decoupling effect of collagen deposi-

tion. 70% of the remaining combined plicate transverse junc-

tions were decoupled to replicate the adult phenotype of gap

junctions concentrated at longitudinal cell junctions.17 Ten

distinct microstructural models with random septa placement

and transverse decoupling were constructed for each level of

fibrosis (0%, 10%, 20%, and 30%).

An equivalent homogenous continuous model with a spa-

tial discretization of 100 lm was produced for each discrete

model by adjusting the tissue conductivities to match the con-

duction velocities (CVs) of transverse and longitudinal con-

duction measured in the corresponding discrete model. In the

presence of fibrosis, the continuous model’s mean longitudi-

nal conductivities decreased by 5.7% from 0% to 30% fibrosis

(2.82 mS/cm to 2.66 mS/cm), while mean transverse conduc-

tivities decreased by 77.2% (0.445 mS/cm to 0.101 mS/cm).

Hybrid continuous models were created by inserting longitu-

dinally oriented decoupling septa of mean length of 800

microns into a homogenous continuous model to disrupt

between 10% and 50% of transverse coupling between nodes.

The electrical conductivities between the tissue nodes were

then adjusted such that the combination of decoupling septa

and tissue conductivity resulted in conduction velocities

equivalent to each discrete model.

Simulation of conduction

In each tissue model, longitudinal and transverse conduc-

tion velocities were measured following 2 Hz pacing with a

line electrode along the left or top boundary of the tissue.

Activation time (time to half-maximal voltage) and action

potential duration (APD80, to 80% repolarization) were mea-

sured. Conduction velocities were calculated by performing

linear regression on activation times.

FIG. 1. Discrete model of fibrosis. (a)

Fibrosis was modeled in the discrete

tissue by inserting non-conductive col-

lagen septa (solid) parallel to and

between individual cardiac cells (gray).

(b) Increasing the percent of transverse

cell-to-cell boundaries interrupted by

collagenous septa leads to a substantial

decrease in the transverse conduction

velocity (solid) and an increase in the

anisotropy of conduction (dashed).
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Re-entry was induced by the application of cross-field

S1–S2 stimulation. A planar wave was initiated by a line

stimulus along the left boundary of the tissue (S1). A prema-

ture second stimulus (S2) was applied in the top left region

of the tissue. A stable spiral wave was allowed to form for at

least three full revolutions, before the cycle length was mea-

sured at several points on the tissue. Tip trajectories were

tracked by generating a phase map at 2.5 ms intervals and

identifying phase singularities.

Transverse and longitudinal restitution were measured

by pacing the tissues in the selected direction at 2 Hz for

5 pulses, followed by application of a premature stimulus

of same amplitude. The conduction velocity and action

potential duration resulting from the premature stimulus

were recorded, and the interval between the final pacing

stimulus and the premature stimulus was decreased until

the premature stimulus no longer elicited a propagating

wave front.

Numerical methods

Cardiac conduction was simulated using the monodo-

main formulation of electrical propagation. The Wang-

Sobie membrane model of the neonatal mouse myocyte40

was used in all simulations because of its relatively short

action potential duration and governing ODEs (ordinary dif-

ferential equations) that are less stiff than the Bondarenko

et al. adult mouse model,4,34 reducing the overall computa-

tion time. While the model is not ideally suitable to the

adult tissue structure, the critical findings of this study were

found to be similar to the Bondarenko et al. model used in a

preliminary study.13 The governing equations were discre-

tized using finite differences, and propagation was simu-

lated using a semi-implicit Crank-Nicholson scheme with

adaptive time steps between 5 ls and 25 ls. A biconjugate

gradient stabilized solver with a tridiagonal preconditioner

was used at each time-step. Transmembrane potentials and

extracellular point electrograms were recorded at intervals

of 50 ls at selected points in the domain, as previously

described.18 The conductivity of the volume conductor was

set to achieve a peak-to-peak electrogram amplitude of

approximately 1 mV in the absence of fibrosis. In addition,

potentials were recorded at all nodes at intervals of 2.5 ms

for tracking tip trajectory and visualization. All simulations

were performed across 33 CPUs using the Cardiowave soft-

ware package28 (available online at cardiowave.duke.edu).

Analytical methods

All discrete model studies were conducted with 10 dis-

crete models at each degree of fibrosis. All continuous and

hybrid model studies were conducted in 10 models per

degree of fibrosis, with each model tuned to match the

behavior of the target discrete model.

All data are presented as mean 6 standard deviation,

unless otherwise specified. Differences in means between

groups are quantified and presented due to concerns regard-

ing the use of statistical tests in model-generated data.27

RESULTS

Propagation in microstructural models and equivalent
continuous models

The degree of fibrosis, characterized by the density of

collagenous septa, is expected to have an effect on the con-

duction velocity of wavefronts. Conduction velocity was mea-

sured in the discrete microstructural model after applying

2 Hz planar stimulation. As the degree of fibrosis was

increased, conduction velocity in the longitudinal direction

decreased slightly from 50.39 6 0.01 cm/s with no fibrosis to

48.65 6 0.01 cm/s with 30% fibrosis (n¼ 10 for each case).

Transverse conduction velocity slowed substantially with

increased fibrosis, from 19.23 6 0.004 cm/s to 6.83 6 0.90 cm/

s as fibrosis was increased from 0% to 30% [Fig. 1(b), solid],

resulting in an increase in the anisotropy ratio from 2.62:1 to

7.26:1 [Fig. 1(b), dashed].

The introduction of septa should affect the trajectory of

spiral waves in the discrete tissue. Spiral waves were induced

via cross-field stimulation. Increasing fibrosis leads to a pro-

longation of the mean cycle length from 76.27 6 0.04 ms in

the non-fibrotic tissue to 90.27 6 3.13 ms in 30% fibrosis, an

increase of 18.4% [Fig. 2(a), solid]. In addition, the variabil-

ity in the cycle length was also observed to increase with

increasing fibrosis, with minimal variability between non-

fibrotic models and substantial variability between 30%

fibrosis models. Unipolar electrograms recorded from point

electrodes exhibited increasing complexity and fractionation

in discrete tissues with 30% fibrosis. Representative electro-

grams are shown in Fig. 2(c) (left column).

An equivalent continuous model was created for each

discrete microstructural model by matching the microstruc-

tural model’s transverse and longitudinal conduction veloci-

ties following 2 Hz pacing, and spiral waves were induced in

each continuous model. The non-fibrotic continuous model

exhibited cycle lengths similar to those of the discrete non-

fibrotic tissue (CL¼ 74.73 ms vs 76.27 ms). However, at

higher degrees of fibrosis, the continuous tissues showed

only a modest increase in cycle length, with a maximal

increase to 82.24 6 2.63 ms (10% increase) in 30%-fibrosis-

equivalent tissue. As a result, the equivalent continuous

model has an 8.9% error in the projected cycle length at 30%

fibrosis, which is apparent from transmembrane potential

traces from discrete and equivalent continuous simulations

[Fig. 2(b)]. In addition, while unipolar electrograms from the

equivalent continuous model are qualitatively similar to

those of the discrete model in the absence of fibrosis, they

fail to exhibit the fractionation seen in electrograms of

fibrotic microstructural models [Fig. 2(c)].

Factors affecting the cycle length

To understand what factors lead to the longer cycle

length in the discrete model that are not fully captured in the

continuous models, the impact of tip trajectory and restitu-

tion behaviour was explored. Analysis of tip trajectory in the

control (non-fibrotic) case showed that non-fibrotic discrete

and continuous models exhibited similar tip trajectories

that were hypotrochoid-like in shape, with a mean span of
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3.4 mm in length and 0.96 mm in width [Fig. 3(a), left]. In

the presence of 30% fibrosis, the tip trajectory in the continu-

ous model remained unchanged in shape, but was signifi-

cantly flattened, with a mean span of only 0.36 mm in width

[Fig. 3(a), right]. However, in the discrete model, the tip tra-

jectory was much longer and thinner (with a mean span of

8.2 mm in length and 0.42 mm in width) [Fig. 3(a), center],

suggesting an anatomical rather than functional form of re-

entry.

Restitution behavior in the discrete and continuous mod-

els with 0% and 20% fibrosis was examined using a standard

S1-S2 pacing protocol, in both the longitudinal and transverse

directions. In all cases, because the homogenous continuous

models were constructed to replicate discrete model CVs at

2 Hz pacing, the CVs are equivalent at longer diastolic inter-

vals (of 500 ms or greater). As the diastolic interval is

decreased during longitudinal pacing, the continuous model

behavior closely matches that of the discrete model [Fig. 3(b),

top row]. Restitution in the continuous model deviates signifi-

cantly from the discrete model only at intervals under 100 ms

(p< 0.05). During transverse pacing of the non-fibrotic tissue,

the restitution of the continuous model deviates from the dis-

crete model at intervals below 140 ms, with a maximum error

of 14.0% at an S1-S2 interval of 90 ms [Fig. 3(b), bottom

left]. A larger deviation is noted in the case of fibrotic tissue

[Fig. 3(b), bottom right], where the continuous model signifi-

cantly underestimates CV slowing at S1-S2 intervals of

180 ms or below, with an error of 43.4% at an interval of

90 ms. As a result, the discrete model CV restitution curve

has a maximum slope that is 1.58 times greater than that of

the continuous model.

In order to understand how the character of fibrosis

affects continuous model estimations of cycle length, the

mean length of collagenous septa in the discrete model was

adjusted between 0 and 800 lm, and the cycle length was

examined in discrete and equivalent continuous models.

Because the total amount of fibrosis was maintained at 30%

of transverse node-to-node junctions, tissues with shorter

fibrosis lengths contained more individual septa. In the

absence of fibrosis, the continuous model underestimates the

FIG. 2. Continuous model fails to capture the details of re-entry. Re-entry was induced in discrete models and their equivalent continuous representations by

cross-field stimulation. (a) The discrete model exhibits a substantial increase in the cycle length of re-entry (solid), up to 18.4% in 30% fibrosis that is not cap-

tured by the equivalent continuous models (dashed). Cycle lengths are shown as mean 6 standard error. (b) Transmembrane potential traces show a clear dif-

ference in cycle length between the discrete model (solid) and the homogenous continuous model (dashed) at high degrees of fibrosis (lower panel) that is not

seen in the absence of fibrosis (upper panel). Scale bar represents 50 ms. Note that traces were time-shifted to align the first action potential. (c) Electrograms

in discrete model simulations exhibit complexity and fractionation in the presence of fibrosis, which is incompletely captured in the equivalent continuous

models.
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cycle length by 2.1% (1.53 ms). At a mean fibrosis length of

200 lm, there is minimal error between the discrete and

equivalent continuous models (0.14% error); however, as

fibrosis length is increased further, the continuous model pre-

dicts cycle lengths that are significantly shorter than that

observed in the discrete model. (Fig. 4).

Propagation in hybrid models

In order to capture the complexity of discrete fibrosis

and maintain the computational efficiency of continuous

models, we considered the development of hybrid models

that incorporate coarse spatial discretization and distinct

decoupling septa. Hybrid models were generated to replicate

the behavior of 30% fibrotic discrete tissue. The continuous

model was modified by disrupting 30% of transverse node-

to-node connections with non-conductive septa (mean length

800 lm), and tissue conductivities were adjusted such that

the combined effect of septa and conductivity tuning matched

the longitudinal and transverse CVs observed in each

FIG. 3. Factors contributing to continuous model cycle length error. (a) In the absence of fibrosis, both the discrete (left panel) and continuous (not shown)

models exhibit a hypotrochoid-like spiral wave tip trajectory. In the presence of fibrosis, the discrete mode (center panel) transits from functional to anatomical

re-entry with a long, linear tip trajectory, while the equivalent continuous model (right panel) continues to exhibit hypotrochoid-like tip trajectory, albeit signif-

icantly flattened due to slowed transverse conduction. Note that all figures show only a part of the domain. Scale bar¼ 2.5 mm. (b) Restitution behavior during

longitudinal pacing is nearly equivalent in the discrete (solid) and homogenous continuous (dashed) models, both in the presence and absence of fibrosis. In

the transverse direction, the continuous model restitution curve closely matches the discrete model in non-fibrotic tissues, with slight deviation (up to 14.0%)

at intervals below 100 ms. In contrast, in fibrotic tissues, the continuous model exhibits significantly faster conduction (up to 43.4% faster) at intervals below

180 ms.

FIG. 4. Effect of collagen septa size. Error between the discrete model

(solid) and the equivalent continuous models (dashed) is dependent on the

size of collagenous septa. Small collagenous septa result in a minimal differ-

ence between the discrete and continuous models. In all cases, total septa

density was fixed at 30%.
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discrete model. The resulting models exhibited spiral wave

behavior with a mean cycle length of 83.9 ms, 1.6 ms longer

than that in the homogenous continuous model, but still

6.37 ms shorter than the cycle length of re-entry in

the discrete model (Fig. 5). The amount of connection-

disrupting collagen in the hybrid models was then altered,

and each model was re-tuned to match discrete planer con-

duction velocities. Increasing the fibrosis density above

30% in the hybrid model resulted in the prolongation of

cycle lengths, and models with 50% transverse decoupling

closely matched the cycle lengths of the discrete model

(mean cycle length, 90.27 ms in 30% fibrotic discrete model

vs 89.88 in 50% fibrotic hybrid model). Simulation of 1.5 s

of spiral wave activity required substantially less computa-

tional time in the hybrid model than in the discrete model,

and there was a minimal difference in the simulation

time between the continuous and hybrid models [Fig. 5(b);

a mean of 4.0 h for discrete model vs 0.19 h for the

continuous model and 0.21 h for the hybrid model]. Three

representative unipolar electrograms from the hybrid model

are shown in Fig. 5(c). Electrograms from the hybrid tissues

appear to be qualitatively similar in fractionation and com-

plexity to those obtained from discrete tissues.

In order to understand how the hybrid model re-creates

discrete model behavior, we examined hybrid model restitu-

tion and tip trajectory. The tip trajectory profile of the spiral

wave in the hybrid model follows a path very similar to the

discrete model. The trajectory is thin and long (span of

7.3 mm in length and 0.35 mm in width) and appears to be

anatomical in nature rather than functional [Fig. 5(e)].

However, the transverse restitution profile of the hybrid

model closely matches that of the homogenous continuous

model rather than the discrete model [Fig. 5(d)], indicating

that the hybrid model’s ability to replicate discrete cycle

lengths is primarily due to tip trajectory rather than dynamic

variation in conduction velocity.

FIG. 5. Hybrid models improve continuous model accuracy. The introduction of discrete heterogeneities (in the form of decoupling septa) in the continuous

model allows for accurately replicating discrete model behavior. (a) The degree of fibrosis in the hybrid model was tuned to match discrete model cycle length.

For each level of fibrosis, tissue conductivities were first adjusted to match discrete planar conduction velocities. The hybrid model with 50% fibrosis was

selected for further use. (b) The hybrid model maintains 18� computational efficiency of the continuous model when each is run with equal computing resour-

ces. (c) The selected hybrid model produces electrograms that qualitatively display complexity and fractionation similar to the discrete model. (d) The tip tra-

jectory in the hybrid model is similar to that of the discrete model with a long and narrow path. Note that this panel shows only a part of the domain. Scale

bar¼ 2.5 mm. (e) The transverse restitution behavior of the hybrid tissue (dotted) remains the same as that of the continuous model (dashed) rather than that of

the discrete model (solid).
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DISCUSSION

In this study, we examined simulated re-entry in contin-

uous models of cardiac propagation and considered whether

continuous models of cardiac propagation are able to accu-

rately capture the details of re-entry in fibrotic myocardium.

We showed that (i) continuous models fail to fully capture

the increases in the cycle length of re-entry observed in

microstructural discrete models of interstitial fibrosis, (ii)

differences between discrete and continuous models are due

to differences in tip trajectory and restitution behavior, and

(iii) hybrid models that incorporate distinct edge-decoupling

on coarse discretization are able to, to some degree, recapitu-

late discrete model behavior without compromising the com-

putational efficiency.

Using a discrete model of cardiac tissue, we first showed

that increasing the interstitial fibrosis density in discrete, micro-

structural models of cardiac tissue causes transverse conduction

velocity to decrease at a decreasing rate, and longitudinal

velocity to be minimally decreased, as previously described.18

The resulting anisotropy ratios fall within that range previously

described experimentally.31,32 When spiral waves are induced

in these tissues, we observed that as the degree of fibrosis is

increased, the cycle length of re-entry increases, similar to pre-

vious findings in models of diffuse fibrosis.38 In addition, as

the degree of fibrosis was increased, the variability in the planar

conduction velocity and the cycle length increased as well, sug-

gesting that the spatial arrangement of fibrosis grows in impor-

tance at higher fibrosis densities.

Because several groups have modeled fibrosis in large

tissue or organ models as a homogenous decrease in conduc-

tivity to match experimental CVs (for example, Refs. 21 and

42), we used the same approach in developing equivalent

continuous models for each discrete tissue model. Despite

the fact that the continuous models each closely match the

conduction behavior of discrete models during 2 Hz linear

pacing, when re-entry was induced at higher densities of

fibrosis, the resulting cycle lengths were significantly shorter

than those in the discrete models [Fig. 2(a)]. This finding

suggests that homogenized models are inadequate to fully

capture the details of cardiac re-entry in the diseased tissue.

The impact of this discrepancy in the context of whole atrial

or ventricular models remains unclear. While the absolute

error in the cycle length is relatively modest (8.9% of the dis-

crete cycle length), an error on this magnitude could have a

significant impact on the determination of spiral wave stabil-

ity or instability.8 In addition, previous studies have used

computational models to develop tools for interpretation of

electrograms, but discrepancy in the complexity of electro-

grams in the discrete and continuous models suggests that

continuous models do not produce electrograms that capture

the complexity of the underlying substrate.

In order to understand this difference between continu-

ous and discrete cycle lengths, we examined the differences

in restitution behavior in these models. Even though the dis-

crete fibrotic model and the equivalent continuous model

have been calibrated to have an equal conduction velocity in

response to 2 Hz planar pacing, propagation at different rates

or of a premature stimulus may draw out differences between

the models. Because spiral waves in the discrete tissues do

not cycle at exactly 2 Hz, differences in restitution could

affect the cycle length of re-entry. A comparison of non-

fibrotic discrete and continuous tissues revealed a small dif-

ference in restitution behavior at very short coupling inter-

vals [Fig. 3(b), left column]. These differences, possibly

caused by source-load mismatches at cell-to-cell gap junc-

tions due to decreased sodium excitability, may result in the

small difference in the cycle length between discrete and

continuous models in the absence of fibrosis. In comparison

to non-fibrotic tissues, fibrotic tissues exhibited a larger dif-

ference in transverse restitution between discrete and contin-

uous models [Fig. 3(b), bottom right]. The additional

slowing seen in the discrete model is likely due to source-

load mismatches at regions where multiple nearby septa

result in tissue expansions, which have been shown to lead to

local conduction slowing.30 The resulting difference in resti-

tution, previously described in models of diffuse fibrosis,12

contributes to the prolongation of the cycle length in highly

fibrotic tissues that is not captured by the continuous model.

Restitution behavior plays a critical role in the initiation and

maintenance of arrhythmia.3,29 As such, it is vital for compu-

tational models to accurately capture restitution beyond just

the effects on cycle length. Variation in the slope of the CV

restitution curve has specifically been linked to the formation

of alternans, a precursor to re-entry,7 and in the presence of

fibrosis, the steepness of the discrete model’s transverse CV

restitution curve is poorly recapitulated by the continuous

model. Taken together, these differences represent signifi-

cant deficiencies in the continuous model under conditions

where the cycle length is not constant, such as during alter-

nans and the initiation of re-entry.

We also studied the path of the spiral wave tip during

re-entry in continuous and discrete models and found a sub-

stantial prolongation in the path length of re-entry in the

fibrotic tissue in the discrete model, but not in the continuous

model. This near doubling of the longitudinal tip path length

plays a critical role in the prolongation of the spiral wave

cycle length. While adjusting conductivities in a continuous

model may capture the impact of gap junctional remodeling

during fibrosis, the effects of collagen deposition cannot be

easily homogenized.

In recognition of potential limitations of using continu-

ous models to replicate the effects of fibrosis, Costa et al.
recently described a hybrid method for inserting non-

conductive septa into a coarse finite element mesh,9,10 analo-

gous to the insertion of septa into our discrete model.18 This

method has recently been used, in combination with simu-

lated junctional remodeling and fibroblast proliferation, in

several studies of atrial fibrosis by McDowell et al.23,25,26

Several other methods of incorporating discrete fibrosis into

a coarse model have been described. Percolation-based mod-

els include randomly distributed decoupled links or fully

decoupled sites to reproduce the effects of fibrosis.1,2,39

Studies using link-percolation are functionally equivalent to

the introduction of non-conductive septa of a fixed size equal

to the discretization of the domain, while site-percolation

methods create space-occupying fibrosis that may reproduce

functional changes in tissue geometry. The space-fractional
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model incorporates heterogeneity more abstractly as a devia-

tion from the standard laws of diffusion.6 However, the fidel-

ity of these methods, in comparison to discrete cardiac

models, remains unclear. To investigate this, we developed a

hybrid model by inserting non-conductive septa into a coarse

finite difference mesh. The prevalence of septa was varied

and each model was tuned to match planar conduction veloci-

ties of the 30%-fibrosis discrete models. We found that 30%

transverse decoupling by septa was insufficient to match the

discrete cycle length, likely because the coarse discretization

of the hybrid model meant that the total length of inserted

septa was substantially smaller than in the discrete model. By

increasing the number of septa such that they decouple 50%

of transverse node-node connections, we were able to closely

match the cycle lengths of re-entry observed in the discrete

tissue models. While this quantitative 20% difference in septa

density is not directly translatable into human fibrotic models

because of the inherent limitations of our 2D study, these sim-

ulations demonstrate that hybrid models are able to reproduce

the macroscale behavior of the discrete model when the

nature of the modeled fibrosis is appropriately tuned.

The hybrid model appears to recreate this behavior of the

discrete model primarily by capturing the prolonged tip trajec-

tory of the discrete model [Fig. 5(d)]. The presence of discrete

heterogeneities in the hybrid model allows for a transition to

anatomical re-entry. However, the hybrid model fails to cap-

ture the restitution effects of fibrosis in the discrete model.

This is potentially because the source-load imbalance that

leads to discrete CV slowing at shorter coupling intervals is

lost at the hybrid models coarser spatial discretization.

Despite this observed difference in restitution behavior,

hybrid models show promise in reproducing the aspects of

complex behaviors of the discrete model with a substantially

reduced computational load, and may prove to be a valuable

tool when carefully tuned for their intended purpose.

While homogenization is insufficient in modeling the

effects of interstitial fibrosis, our findings suggest that other

types of fibrosis, such as diffuse fibrosis, may be adequately

represented by altering conductivities of continuous models

because of the relatively small size of diffuse collagenous

deposits. As such, hybrid models that incorporate both dis-

tinct heterogeneities and reduced overall conductivity may

be ideally suited to recreate the physiology of conduction in

a complex fibrotic substrate. The conductive changes in

interstitial fibrosis do not occur in isolation, but rather in

concert with a host of other fibrotic changes. Proliferation of

myofibroblasts in the myocardium may increase the suscepti-

bility to arrhythmia,24 and the combination of myofibroblast

proliferation and gap junctional remodeling is implicated in

the initiation of re-entry.26 Models seeking to study the

mechanisms of and treatments for arrhythmia must therefore

incorporate not only the effects of collagenous deposition,

but also an accurate description of the impact of microscale

myocyte-myocyte and myocyte-fibroblast coupling.

Limitations

Because of the computational limitations of discrete models,

this work was performed in two-dimensional monolayer-like

models with idealized cell geometries. While three-

dimensional discrete models of cardiac tissue have been

previously described,36 they remain extremely computa-

tionally expensive. 2D models do not allow for conduction

perpendicular to the 2D domain, nor do they incorporate

the complexity of native cardiac tissue including the pres-

ence of fibers. However, 2D models of cardiac tissue have

been used extensively by our group and others37,41 to pro-

vide insights into the effects of structural heterogeneity on

conduction. They also allow direct comparisons to experi-

ments performed on in vitro monolayers. Another limita-

tion of the study is that the Wang-Sobie membrane model

of neonatal mouse cells used in this study has a relatively

short action potential duration compared to the human

models. The shorter action potential was needed to gener-

ate re-entrant propagation in the smaller, finely discretized

discrete tissue domains, making the multiple simulations

of re-entry in 2D discrete tissues computationally tractable.

While the membrane model is more applicable to valida-

tion in in vitro monolayers, the structure is more applicable

to adult tissues. Hence, the model choices were considered

as a compromise. Because of these limitations, the quanti-

tative findings of this study and specifically, the degrees of

error between discrete and continuous models will not

scale directly to simulations of human disease in the 3D

heart model; however, we believe that the general conclu-

sions highlighting the differences between these model

types are broadly applicable to more complex computa-

tional models in larger domains. We have previously dem-

onstrated qualitatively similar results as Fig. 2(a) (Ref. 13)

using the adult mouse Bondarenko model;4 however, as

noted, the numerical stiffness of the ODEs underlying this

membrane model34 required unreasonably long computa-

tion times. The biophysical Wang-Sobie was selected over

a simplified model because of its realistic ion channel

descriptions. The purpose of this study was to examine

whether the effects of fibrosis can be adequately captured

in continuous models, and the deviation in behavior

between model types in an idealized 2D case suggests that

care must be taken in developing models of complex fibro-

sis, in both 2D and 3D.

CONCLUSIONS

In this study, we examined the ability of continuous car-

diac models to capture complex conduction behaviour such

as re-entry in the setting of interstitial fibrosis. Our results

indicate that the difference in restitution behaviour and spiral

tip trajectory leads to modest error in continuous model esti-

mations of cycle length. However, we demonstrate that

hybrid models that incorporate non-conductive septa with

coarse discretization are able to recapitulate some aspects of

complex re-entry, while providing significant computational

efficiency. We suggest that it is critical to carefully consider

and validate methodologies of incorporating fibrosis in com-

putational tissue models before these models can be used to

gain a mechanistic understanding of and devise treatments

for clinical arrhythmia.
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