
Familial exudative vitreoretinopathy (FEVR; OMIM 
133780) is a rare genetic disorder characterized by abnormal 
development of retinal blood vessels or incomplete vascular-
ization of the peripheral retina [1], first described by Criswick 
in 1969 [2]. The symptoms of FEVR vary widely among 
patients in the same family, and even between the two eyes of 
a given patient [3], with phenotypes ranging from the absence 
of visual symptoms to total blindness. Most symptomatic 
individuals with FEVR experience onset in early infancy, 
frequently manifesting retinal folds, tears, and detachments 
in the first decade of life [4]. These ocular anomalies are 
then followed by additional complications, such as peripheral 
retinal ischemia, retinal neovascularization and exudates, 
temporal dragging, vitreous bleeding, vitreoretinal traction, 
ectopia of the macula, and cataracts [5].

FEVR is genetically heterogeneous, displaying various 
inheritance patterns depending on the genetic architec-
ture involved [6]. To date, six candidate genes have been 
confirmed to be associated with the development of FEVER. 
The frizzled-4 (FZD4; 11q14-q21; OMIM 604579) [7], low 
density lipoprotein receptor like protein 5 (LRP5; 11q13.4; 
OMIM 603576) [8], and tetraspanin-12 (TSPAN12; 7q31.31; 
OMIM 613,138) [9] genes have all been associated with auto-
somal dominant or autosomal recessive FEVR. Mutations in 
the zinc finger protein-408 (ZNF408; 11p11.2; OMIM 616454) 
[10] and kinesin family member 11 (KIF11; 10q23.33; OMIM 
148760) [11,12] genes have exclusively been reported to have 
an autosomal dominant pattern of inheritance. In contrast, 
X-linked recessive FEVR can be caused by mutations in the 
Norrie disease pseudoglioma (NDP; Xp11.4-p11.3; OMIM 
300658) [13] gene. However, it has been reported that the 
genetic effect attributable to the gene mutations above is 
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Purpose: Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, character-
ized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients 
in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic 
defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR.
Methods: To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was per-
formed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger 
sequencing and quantitative real-time PCR (QPCR).
Results: Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two 
known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous 
deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion 
mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which 
could be explained by the protein function prediction.
Conclusions: We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); 
TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a 
severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further 
enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide 
useful information for disease diagnosis, prognosis, and effective genetic counseling.
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about 50% [10], indicating that additional risk loci for FEVR 
remain to be identified.

Recently, it has been reported that FEVR severity 
detected in patients with TSPAN12 deletion mutation was not 
more severe than in a patient with TSPAN12 point mutation 
[14], which is different from our traditional knowledge. To 
gain a more comprehensive mutation spectrum in FEVR 
patients and explore the severity of deletion mutation in 
FEVR, we custom designed a targeted gene region capture 
protocol, using next-generation sequencing next-generation 
sequencing (NGS) to identify genetic defects in a patient 
cohort of ten unrelated Chinese families afflicted with FEVR. 
Pathogenic mutations have been identified for six probands, 
and two novel heterozygous deletion mutations [LRP5, c.4053 
DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] were identified 
to give rise to a relatively severe FEVR phenotype, which 
could be explained by the protein function prediction.

METHODS

Clinical evaluation: The present study involved ten probands 
and their family members, from ten unrelated families (n=41, 
male=19, female =22, age= 38.74±21.87 years old) as well as 
256 normal control volunteers (male=123, female=133, age= 
35.55±23.99 years old) between July 2015 and August 2016 
at the Eye & Ent Hospital of FUDAN University, who come 
from the South-East of China. Patients were diagnosed with 
FEVR by clinical diagnostic criteria based on an ophthalmic 
examination, including best-corrected visual acuity testing, 
color vision (the Ishihara color plate), slit-lamp biomicros-
copy, tonometry (Humphrey VisualField Analyzer, Carl Zeiss 
Inc., Jena, Germany), dilated fundus examination, spectral 
domain optical coherence tomography (SD-OCT, Spectralis 
HRA + OCT, Heidelberg Engineering Inc., Heidelberg, 
Germany), and fundus fluorescein angiography (FFA) using 
Retcam (Clarity Medical Systems, Inc., Pleasanton, CA). 
Blood samples were collected from peripheral blood in EDTA 
blood collection tubes and stored in 4 °C before further anal-
ysis. Genomic DNA was extracted from whole-blood samples 
using a Gentra Puregene Blood kit (Qiagen, Valencia, CA) 
according to the manufacturer's instructions. All families’ 
participants in this study signed informed consent and were 
involved in publication; all procedures were performed in 
accordance with the tenets of the Declaration of Helsinki and 
were approved by the Ethics Committee of the Eye & ENT 
Hospital of Fudan University.

Target capture and next-generation sequencing: Total 
genomic DNA was extracted by using a blood DNA extrac-
tion kit according to the standard protocol. The genomic 

DNA sample of the proband in each family was subjected to 
analysis using panel-based NGS.

A gene capture panel was designed to encompass the 
exons and untranslated (UTR) region of 790 genes related to 
eye disease. The capture probes were custom designed and 
produced by BGI (Shenzhen, China). Before the study, we 
tested the sensitivity of our method using one YH sample 
(a Han Chinese, a representative of Asian individual), by 
sequence capture performed on a BGISEQ-500 sequencer 
at different times. Briefly, all samples had an average depth 
of more than 400X, and the coverage of the target region 
was around 99.9% by using BGISEQ-500 (Figure 1). Exon 
deletion was identified by copy number variation (CNV) 
detection using a statistical algorithm in the workflow as was 
reported in 2014 [15].

Bioinformatics analysis: We aligned sequence data to the 
human reference genome (UCSC hg 19) with the Burrows-
Wheeler aligner version 0.7.10 (BWA-MEM) [16], performed 
variant calling using Genome Analysis Toolkit version 3.3, 
and completed functional annotation of the variants using 
Annovar [17] and SnpEff [18]. Then the variants identified 
through this pipeline were further filtered to eliminate benign 
variants with minor allele frequency (MAF) >0.1% in the 
1000 Genomes data set [19], the Single Nucleotide Poly-
morphism (dbSNP) [20], Exome Aggregation Consortium 
(ExAC) [21], and ESP6500 [22] databases, and internal data. 
Finally, the variant prioritizations were performed combining 
total depth, quality score, MAF, potential deleterious effect, 
and the existence of mutation reports in common databases, 
such as the Human Gene Mutation Database (HGMD) [23], 
the Retinal Information Network (RetNet) [24], ClinVar [25], 
and Online Mendelian Inheritance in Man (OMIM) [26].

Mutation validation: The NGS-panel sequencing and data 
analysis called the different heterozygous genetic variants 
in each respective proband family. Sanger sequencing was 
used to identify the point deletion variant. To confirm the 
large deletion, quantitative real-time (QPCR) was performed 
on the sample. PCR primers were designed with Primer3, the 
sequences were as follows: (family A) 5′-GGT GGG TGG 
AGA CTG TAC TA-3′ and 5′-ACT GAG GCA GAC TCT 
GTA GC-3′; (family B) 5′-CCC TGA TCA GCT TAA GAC 
AAT G-3′ and 5′-TCA GAA AAC TTT CAA TAT TGG TGA 
C-3′. The first step in the PCR is performed at 95 °C for 5 
min, then followed by 30 cycles of denaturation at 95 °C for 
30 s, annealing at 55°C for 30 s, extension at 72 °C for 30 
s and a final extension at 72 °C for 7 min. The first stage 
of QPCR is performed at 95 °C for 2 min, the second stage 
includes 30 cycles of 95 °C for 15 s, 58 °C for 30 s, 72 °C for 
30 s, the third stage is the melt curve stage.
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RESULTS

Patient characteristics: A total of ten probands and their 
family members were recruited to participate in this study 
based on the diagnosis of FEVR in one or more member. 
Three patients in family A (five members) and four patients 
in family B (six members) were identified as having a 
clinical diagnosis of severe FEVR. The proband in family A 
is a 25-year-old woman. She has had a progressive decrease 
in visual acuity, experiencing blindness at age 2–3 years 
old. Her right eye was enucleated at age 4. The ophthalmic 
examination (left eye) showed the intraocular pressure 
(IOP) was 11 mmHg. The pupil was occluded by pupillary 
membrane; thus, the fundus could not be observed. The 
B-scan ultrasonographic showed an unsmooth peripheral 
wall of the eyeball and persistent fetal vasculature with the 
hyaloid artery (Figure 2A). After vitrectomy, the color photos 
demonstrate prominent subretinal exudate, mild subretinal 
hemorrhage, and laser scars in the periphery (Figure 2B). 
The proband in family B is a 34-year-old woman. She has 
had a progressive decrease in visual acuity since birth. In 
the fundus were retinal vascular abnormalities, expansion, 

and a falciform retinal fold with tractional hole forma-
tion in the inferotemporal quadrant (Figure 2C). SD-OCT 
detected retinal detachment and hyperreflective epiretinal 
membrane-like appearance in the inner surface of the retina 
(Figure 2D). The FFA test showed various vascular branches 
of the posterior pole retina, the temporal peripheral retinal 
showed nonperfusion zones along with abnormal new blood 
vessels and fluorescence leakage (Figure 2E). The fundus 
examination was consistent with the diagnosis of FEVR. An 
ophthalmological examination of the other family members 
confirmed that they exhibited mild symptoms of FEVR, and 
the FFA test showed the peripheral avascular area, the most 
typical feature in FEVR (Figure 3). Clinical information of 
the probands in the ten families is shown in Table 1.

Mutation identification: Through sequencing and bioin-
formatics analysis, six pathogenic variants were identified, 
including four novel and two known heterozygous mutations. 
Of the variants identified, two novel heterozygous deletion 
mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, 
EX8Del] were identified in the proband families A and B, 
respectively (Figure 4). Sanger sequencing was used to 

Figure 1. The evaluation of capture 
panel by YH sample in different 
sequencing times (YH.1, YH.2, 
YH.3). A: The average depth of 
the target regions on different 
chromosomes. B: The coverage 
(%) of target regions on different 
chromosomes.

http://www.molvis.org/molvis/v23/605


Molecular Vision 2017; 23:605-613 <http://www.molvis.org/molvis/v23/605> © 2017 Molecular Vision 

608

further identify the variation (which would result in a frame-
shift and a premature-termination codon, p.Ile1351IlefsX88) 
in members of family A [I:2 (the mother of the proband, 
affected), II:1 (the proband), III:1 (the son of the proband, 
affected)]. QPCR was performed on members of family B 
[II:1 (the proband), II:2 (the sister of the proband, unaffected), 
II:3 (the sister of the proband, affected), and II:4 (the brother 
of the proband, affected)]. The results showing the mutations 
in each family cosegregated with phenotype (shown in Figure 
5).

Multiple orthologous sequence alignment (MSA) 
revealed that 1,351 codon isoleucine of LRP5 and its subse-
quent sequences were highly conserved amino acids across 
different species (Figure 6A). This suggests that any mutation 
at those codons may lead to a deleterious effect.

The TSPAN12 protein is a member of the tetraspanin 
family, of which there are 33 members in humans [27]. 
TSPAN12 contains four transmembrane domains linking 
three loops: a small extracellular loop (EC1), a large extracel-
lular loop (EC2), and a tiny inner loop (Figure 6B). Within 
the EC2, tetraspanins have a conserved CCG motif and two 

other cysteine residues, which are crucial for forming disul-
fide bonds and protein folding [28]. Exon 8 of the TSPAN12 
gene encodes 101 amino acids from position 205 to 305. The 
first amino acid is glycine, which is located in the front of the 
cysteine residue on the EC2. Therefore, the deletion of exon 8 
of TSPAN12 could disrupt the folding of this domain and then 
abolish the protein function.

DISCUSSION

FEVR is a rare hereditary ophthalmic disease with obvious 
genetic and phenotypic heterogeneity. Because of this hetero-
geneity, the relationship between the causative gene and the 
clinical characteristics is unclear. To our knowledge, there are 
many reports of pathogenic point variations associated with 
FEVR but comparatively few reports of deletion mutations. 
In addition, few reports include measurements of FEVR 
severity in patients with different types of genetic variants. 
In this study, we mainly focused on two FEVR families 
with deletion variants and describe their genotype–pheno-
type correlations. Two novel pathogenic deletion variants in 
two different genes (LRP5, c.4053DelC (p.Ile1351IlefsX88) 

Figure 2. Clinical examinations 
of patients with severe FEVR. A: 
B-scan ultrasonographic of the 
proband in family A reveals an 
irregular peripheral wall of the 
eyeball and persistent fetal vascu-
lature with the hyaloid artery. B: 
Fundus image of the proband in 
family A. C: The same for family 
B. D: Spectral domain optical 
coherence tomography (SD-OCT) 
detected ret inal detachment 
and hyperref lective epiretinal 
membrane-like appearance in 
the inner surface of the retina. E: 
Fundus f luorescein angiography 
(FFA) shows the various vascular 
branches of the posterior pole 
retina. The temporal peripheral 
retinal shows nonperfusion zones 
along with abnormal new blood 
vessels and fluorescence leakage.
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and TSPAN12, EX8Del) were detected using targeted NGS. 
These two mutations are not recorded in all public mutations 
databases (dbSNP, EXAC, and ESP6500). The LRP5 gene, 
encoding a transmembrane low-density lipoprotein receptor, 
is a coreceptor involved in the canonical Wnt and/or Norrin/
b-catenin pathway signaling network which plays a vital role 

in vascular development [29,30]. LRP5 mutations are reported 
to contribute 12–25% of FEVR. In this study, two out of ten 
families have pathogenic genetic variants in LRP5, a propor-
tion which is consistent with past studies [29,31]. A novel 
pathogenic heterozygous frame-shift variant in LRP5, c.4053 
DelC was detected in the affected patients from family A but 

Figure 3. Clinical examinations of 
the patients with mild FEVR. A: 
Fundus image of the proband with 
mild familial exudative vitreoreti-
nopathy (FEVR). B: Fundus fluo-
rescein angiography (FFA) shows 
the vessels in the peripheral retina 
walking as broom-like, and the 
temporal peripheral retinal shows 
capillary nonperfusion zones. C: 
Spectral domain optical coherence 
tomography (SD-OCT) detected 
retinal dystrophy and a hyperre-
flective epiretinal membrane-like 
appearance in the inner surface of 
the retina.

Table 1. Clinical information of the probands in the ten families.

Probands 
ID Age/sex

BCVA 
(R/L)

Retinal 
vascular 
abnor-
malities

Retinal 
detach-
ment

Retina 
fold

Retinal 
neovascu-
larization

Fluores-
cence 
leakage

Nonperfusion 
zones Mutation

1 25/female */NLP -/+ -/+ -/+ -/+ -/+ -/+ LRP5; c.4053 delC
2 34/female HM/0.15 +/+ -/+ -/+ +/+ +/+ +/+ TSPAN12; EX8DEL

3 18/female 0.8/0.4 +/+ −/− -/+ −/− +/+ -/+
LRP5; c.746_747 
delCT

4 34/female 0.6/0.4 +/+ −/− −/− -/+ +/+ +/+ TSPAN12;c.806A>T
5 34/male 0.6/0.6 +/+ −/− −/− −/− +/− +/+ -
6 15/male 0.6/0.6 +/+ −/− −/− −/− +/+ +/+ -
7 62/male 0.5/0.4 +/+ −/− −/− −/− -/+ +/+ -
8 20/male 0.6/0.8 +/+ −/− −/− −/− +/− +/+ -
9 1/female * +/+ −/− −/− −/− * * FZD4; c.313 A>G

10 2/male * +/+ −/− −/− −/− * * FZD4; c.313 A>G

*Not obtained. NLP: no light perception. HM: hand motion.
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not in the 256 in-house controls. Furthermore, it has been 
reported that the transcript would be degraded if the stop 

codon was located >50–54 bp away from the beginning of the 
final exon [32]. LRP5 has 23 exons, and c.4053 DelC, which 
located on exon 19, is more than 54 bp from the beginning 
of exon 23. Accordingly, as a new stop codon, c.4053 DelC 
would lead to degradation of LRP5 mRNA. Based on the type 
of mutation and clinical features, it was presumed that the 
heterozygous frame-shift variation in LRP5, c.4053 DelC is 
causative of FEVR.

The TSPAN12 protein is a member of the tetraspanin 
family and is required for Norrin-induced β-catenin signaling 
transduction and regulation [33]. It accounts for 3% to 10% 
of the mutation frequencies of FEVR [31]. Recent research 
has reported that deletions in exon 4 of TSPAN12 can result 

Figure 4. Pedigrees of the families with FEVR who participated 
in this study.

Figure 5. Identification of the muta-
tions in two families. Family A: A 
heterozygous deletion LRP5, c.4053 
DelC. Family B: A heterozygous 
deletion TSPAN12, EX8Del.
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in FEVR, and large TSPAN12 deletions were more common 
than single nucleotide variants [14]. In the current study, large 
TSPAN12 deletions in exon 8 were detected in the patients 
from family B and were cosegregated with the expected 
phenotype within the families, though further investigation 
is required to evaluate the functional significance of this 
sequence change.

The phenotype of FEVR has long been assumed to be 
isomorphic to the genes associated with it. Toomes et al. 
identified that patients with two variant alleles in TSPAN12 
have a much more severe phenotype than those with a single 
variant [34]. The LRP5 and TSPAN12 genes usually result 
in a more severe phenotype [30,34]. FZD4 variants seem 
to result in a milder phenotype than variants in LRP5 [35]. 
In this study, all affected members harboring LRP5, c.4053 
DelC (p.Ile1351IlefsX88), or TSPAN12, EX8Del have a severe 
phenotype, including tractional retinal detachments, whereas 
the majority of the remaining affected family members with 
characterized genetic variants presented a milder phenotype, 
restrained to retinal exudates and peripheral avascularity. 
These data raise the possibility that patients with heterozy-
gous mutations in LRP5, c.4053 DelC (p.Ile1351IlefsX88), or 
TSPAN12, EX8Del have a severe form of FEVR. Due to the 

limited number of subjects, analyzing a larger population of 
clinically diagnosed patients actually might provide hints for 
suggesting the precise genotype–phenotype correlation.

This study is the first replication that a heterozygous 
frame-shift variant in LRP5, c.4053 DelC or deletions within 
exon 8 of TSPAN12 can result in FEVR, and these genetic 
variations exhibit an exceptionally severe form of FEVR with 
tractional retinal detachments. The present study provides 
useful information for disease diagnosis, prognosis, and 
genetic counseling. Further analyses of these two novel, 
presumably causative genetic variants and the correlations 
between the genotype and the phenotype associated may 
contribute to a better understanding of the pathophysiological 
consequences of FEVR, as well as possible prophylactic treat-
ments for retinal detachment in individuals with this genetic 
predisposition.
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