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Abstract

The instrumental variable (IV) design is a well-known approach for unbiased evaluation of causal 

effects in the presence of unobserved confounding. In this paper, we study the IV approach to 

account for selection bias in regression analysis with outcome missing not at random. In such a 

setting, a valid IV is a variable which (i) predicts the nonresponse process, and (ii) is independent 

of the outcome in the underlying population. We show that under the additional assumption (iii) 

that the IV is independent of the magnitude of selection bias due to nonresponse, the population 

regression in view is nonparametrically identified. For point estimation under (i)–(iii), we propose 

a simple complete-case analysis which modifies the regression of primary interest by carefully 

incorporating the IV to account for selection bias. The approach is developed for the identity, log 

and logit link functions. For inferences about the marginal mean of a binary outcome assuming (i) 

and (ii) only, we describe novel and approximately sharp bounds which unlike Robins-Manski 

bounds, are smooth in model parameters, therefore allowing for a straightforward approach to 

account for uncertainty due to sampling variability. These bounds provide a more honest account 

of uncertainty and allows one to assess the extent to which a violation of the key identifying 

condition (iii) might affect inferences. For illustration, the methods are used to account for 

selection bias induced by HIV testing non-participation in the evaluation of HIV prevalence in the 

Zambian Demographic and Health Surveys.
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1 Introduction

A common complication in regression analysis is that the outcome may not be observed for 

a subset of the sample. In such settings, if missingness remains associated with the outcome 

even after adjusting for fully observed covariates, the missing data mechanism is said to be 

not at random and the regression of interest may not be identified without an additional 
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assumption (Little and Rubin, 2002). Consider a study of risky sexual behavior among men 

in India using data collected from the National Family Health Survey (NFHS); a nationally-

representative household-based survey of HIV-related knowledge, attitudes, and behavior. 

Suppose that one aimed to estimate the prevalence of high-risk sexual behavior such as 

contact with a commercial sex worker. Due to the sensitive nature of this type of query and 

the face-to-face nature of the interview, it may not be surprising that participants often fail to 

respond (DHS, 2013). Bias due to item non-response may be present if the average response 

of males who completed the survey’s item differs systematically from the average outcome 

of non-responders. A valid analysis of such data must account for potential selection bias 

due to non-response.

Existing strategies to address outcome data missing not at random in regression analysis rely 

for identification purposes on rather strong parametric assumptions (Diggle and Kenward, 

2004, Wu and Carroll, 1988, Roy, 2003, Rotnitzky and Robins, 1997) and may be sensitive 

to small deviations from these assumptions. Sensitivity analysis techniques have also been 

proposed (Robins et al, 1999), and in simple settings, worst case scenarios of such analyses 

produce bounds for certain population parameters.

In this paper, we follow an alternative analytic strategy, and develop an instrumental variable 

(IV) approach for regression analysis when the outcome is missing not at random. A valid 

IV in this context must satisfy two conditions summarized below and more formally defined 

in the next section: (i) first, the IV must be conditionally independent of the outcome in the 

underlying population, given fully observed covariates, (ii) second, the IV must be 

associated with the nonresponse mechanism conditional on observed covariates.

Therefore, a valid IV must predict a person’s propensity to have complete outcome data, 

without directly influencing the outcome itself conditional on covariates. Similar to IV 

assumptions in causal inference, assumptions (i) and (ii) essentially amount to a form of 

exclusion restriction such that the IV and the outcome in view are correlated in the observed 

sample only to the extent that they are both associated with non-response. A valid IV for 

non-response may not always be easy to find, however, as we show below, if such a variable 

can be found, it may potentially be used to correct for selection bias. The use of variables 

satisfying the exclusion restriction to adjust for non-random selection or non-response is a 

familiar concept, particularly in econometrics and other social sciences (Heckman, 1979, 

Dubin and Rivers, 1990, Winship and Mare, 1992, Manski, 2003, Nicoletti, 2010). The 

notion that interviewer characteristics or other operational features of a study (e.g. interview 

mode, length and design of the questionnaire) could serve as credible IVs for non-response 

has gained prominence (Lepkowski and Couper, 2002, Manski, 2003, Schrapler, 2004, 

Nicoletti and Peracchi, 2005, Bärnighausen et al, 2011). Interviewer and other operational 

study characteristics are invariably strong correlates of non-response (condition (ii)), will 

often also satisfy the exclusion restriction (condition (i)) and are relatively straightforward to 

collect. Therefore, suitable IV options will often be more readily available for missing data 

than for endogenous treatments. However, meeting assumptions (i) and (ii) alone, do not 

generally suffice for identification; an additional assumption is needed. The standard 

analytic framework in the social sciences was proposed by Heckman (1976, 1979) who 

achieves identification under assumptions (i) and (ii), and additional parametric 
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assumptions. Yet, it is well known that Heckman’s selection model can be sensitive to these 

parametric assumptions (Arabmazar & Schmidt 1981, Winship and Mare, 1992, Puhani, 

2000).

In this paper, a straightforward identification strategy is proposed, which involves restricting 

the amount of heterogeneity in the magnitude of selection bias due to non-response, but 

allows the full data distribution to a priori remain unrestricted. For instance, suppose one is 

interested in a population regression model defined with the identity link function. Then, 

seletion bias due to non-response can be encoded as the difference in the average outcome 

comparing individuals with complete data to individuals with incomplete data conditional on 

covariates and the IV. Our identifying assumption on the additive scale is stated in terms of 

this selection bias: (iii) the magnitude of selection bias does not vary on the additive scale, 

with changes in the value of the IV conditional on covariates. Assumption (iii) states that 

selection bias on the additive scale is independent of the IV given covariates. Thus, in the 

NFHS example, assumption (iii) requires that conditional on covariates, the difference in the 

prevalence of risky sexual behavior (the outcome of interest) for respondents compared to 

non-respondents, is independent of interviewer’s gender. Note that the assumption does not 

rule out differences in the prevalence of risky sexual behavior for non-respondents 

interviewed by a male vs a female. In the next sections, we show that under assumptions (i)–

(iii), the population conditional mean of the outcome given covariates is non-parametrically 

identified, allowing for either identity, log (see Supplemental Materials) or logit link 

function. Furthermore, we propose a simple approach for estimation and inference based on 

a complete-case regression analysis, in which the population regression model of interest is 

modified by introducing a special covariate, carefully constructed using the IV to account 

for selection bias due to non-response. For illustration, the methods are used to account for 

bias due to HIV testing non-participation in the evaluation of HIV prevalence among men in 

Zambia. For inferences about the population mean of a binary outcome assuming (i) and (ii) 

only, we describe new approximately sharp bounds which are closely related to sharp 

bounds proposed by Robins (1989) and independently by Manski (1990). An important 

feature of our bounds is that unlike the Robins-Manski bounds, they are smooth in model 

parameters, thus permitting a straightforward account of uncertainty. The approach delivers 

asymptotically valid confidence intervals for the population outcome mean. Although, as 

shown below, the point estimate obtained under (i)–(iii) may be useful in finite samples, to 

anchor the bounds and to ensure that they remain coherent in the sense that the estimated 

lower bound does not exceed the estimated upper bound for the mean.

Although the paper focuses primarily on inference in the context of parametric models both 

for practical convenience and to more clearly communicate the main ideas, out results do not 

rely on parametric restrictions; the extension to semi-parametric and non-parametric 

inference can be entertained, curse of dimensionality permitting, without presenting new 

challenges for identification. Additional results are relegated to the Supplementary Materials 

where we compare the proposed approach for point identification to a non-parametric 

formulation of Heckman’s selection model according to Das et al (2003). We argue that 

certain parametric distributional assumptions not needed in our approach are essential for 

identification in Heckman’s selection model.
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2 Notation, Assumptions and Preliminary Result

Suppose that we have observed n independent and identically distributed data (X, RY, R) 

with X fully observed and R the indicator of whether the person’s outcome Y is observed. 

Suppose that, one aims to estimate the population regression function E(Y|X = x) = g−1 

{μ(X)} encoding the relationship between X and the corresponding mean of Y, with g the 

identity, log or logit link function: Until otherwise stated, we will focus on the identity link 

typically used for a continuous outcome: Let  define the 

probability that Y is observed given (X, Y): Under missing at random, it is assumed that 

 does not further depend on Y, so it can be dropped as an argument of , in which 

case, μ(X) is nonparametrically identified without an additional assumption. Here we do not 

make such an assumption, and we allow  to depend on Y, such that the missingness 

process is nonignorable, and therefore, the regression function μ(X) is not identified from 

the observed data without an additional assumption.

The following result characterizes the bias due to nonignorable missingness, in terms of 

selection bias which we define as . The function 

encodes on the mean difference scale, the extent to which the outcome mean differs between 

complete and incomplete cases. Thus,  corresponds to no selection bias given X. We 

note that

Thus, the bias between E(Y|X) and the complete case regression E(Y|X, R = 1) is

(1)

which vanishes if either  or equivalently if , i.e. if data are missing at 

random, or if Pr(R = 1|X) = 1 and therefore there are no missing data.

In the presence of nonignorable nonresponse, neither of the above conditions will hold. 

Nonetheless, we can make progress, if in addition to X, we also observe a valid instrumental 

variable Z, in which case the observed data is O = (X, RY, R, Z). As an IV, Z must satisfy 

assumptions (IV.1)–(IV.3) given below. Let π(X, Z) = Pr(R = 1|X, Z) denote the propensity 

score for the missingness mechanism given X and Z. Our assumptions entail,

(IV.1) Exclusion restriction: E(Y|X, Z) = E(Y|X) almost surely,

(IV.2) IV relevance: π(X, z) − π(X, z′) ≠ 0, almost surely, for z ≠ z′.

(IV.3) Homogeneous additive selection bias: E(Y|R = 1, X, Z) − E(Y|R = 0, X, Z) = 

δ(X) almost surely.
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The exclusion restriction (IV.1) states that the IV and the outcome are conditionally mean 

independent in the underlying population given X. This assumption is similar to the 

assumption of no direct effect of the IV on the outcome, typically made in causal inference. 

The second assumption (IV.2) requires that Z is associated with R conditional on X. In spite 

of (IV.2), assumption (IV.1) implies that Z cannot completely eliminate the dependence 

between R and the mean of Y, since to do so would require that Z be an intermediate 

variable between R and Y, which contradicts assumption (IV.1). Consequently, Pr(R = 1|Y, 

X, Z) remains a function of Y even after conditioning on Z and X. The last assumption (IV.

3) implies that the magnitude of selection bias measured on the additive scale does not 

depend on Z. For all practical purposes, it is as if the IV were randomized with respect to the 

degree of selection bias within levels of X. To motivate assumption (IV.3), in the 

Supplementary Materials, we describe a fairly large semiparametric shared parameter model 

for which (IV.3) can be shown to hold.

3 Inference with identity link function

We are now ready to state our first identification result. All proofs are relegated to the 

Supplementary Materials.

Result 1: Under assumptions (IV.1)–(IV.3), the regression function μ(X) is nonparametrically 

identified from O. Furthermore, the complete-case regression curve m(X, Z) = E(Y|Z, X, R 
= 1) can be expressed explicitly as the following function of μ(X), δ(X) and π(X, Z):

(2)

Result 1 states that the regression curve μ(X) is identified in the presence of nonignorable 

nonresponse of the outcome, provided that Z satisfies conditions (IV.1)–(IV.3). The 

identification result is nonparametric in the sense that assumptions (IV.1)–(IV.3) do not 

impose any restriction on the functional form of μ(X), δ(X) and π(X, Z). This in turn 

implies that no restriction is placed on m(X, Z), and thus that the model is just-identified 

without restricting the observed data likelihood.

Result 1 also gives an explicit parametrization of the complete-case regression m(X, Z) in 

terms of the selection bias function, the missingness propensity score and the underlying 

regression curve of interest. It is natural to use this parametrization to make inferences about 

μ(X).

To ground ideas, suppose that one aims to estimate the linear model, μ(X; β) = (1, X′) β. 

Suppose also that one posits the following models for the selection bias function, δ(X; η) = 

(1, X)η, and for the propensity score, logit π(X, Z; α) = (1, X′, Z)α. Other model 

specifications equally apply with no real additional difficulty. Assuming that the residual 

ε(θ) = Y − m(X, Z; θ) is normally distributed with variance σ2, where m(X, Z; θ) = δ(X; η) 

(1 − π(X, Z; α)) + μ(X; β) θ = (β, α, η, σ2). The corresponding maximum likelihood 

estimator  solves
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(3)

f1 the normal density with mean zero and variance σ2, and f2 the Bernoulli density with 

mean π(X, Z; α). The variance-covariance matrix of  is given by the standard inverse of the 

observed information matrix. Furthermore, inference based on the Wald, score or likelihood 

ratio statistics may be obtained under standard maximum likelihood theory. It is 

straightforward to verify that the above approach is not sensitive to a violation of the 

normality assumption, and that the score equation under the normal model remains unbiased 

even if the assumption does not hold, provided the mean, selection bias and the propensity 

score models are all correct. However, when εi (θ) fails to be normal, the variance-

covariance matrix of  should be estimated using either the standard sandwich formula or the 

bootstrap. An alternative, potentially less efficient two-stage approach may also be 

considered whereby an estimate of α is obtained by maximizing the partial log-likelihood Σi 

log f2 (Ri|Zi, Xi; α), and the remaining parameters are obtained by maximizing Σi Ri log f1 

(εi (θ)|Xi, Zi; σ2) with the maximum partial likelihood estimator of α subtituted in. A 

potential advantage of the two-stage approach is that it may more easily be performed using 

standard statistical software for regression analysis. Because the linear regression is a 

complicated nonlinear function of the parameter indexing the propensity score; the log 

likelihood function (3) may be multimodal at small to moderate sample sizes. Although 

bound to be asymptotically less efficient than the maximum likelihood estimator, the two-

stage estimator may be particularly valuabe as providing a good starting value for 

optimization of the log likelihood function.

In the Supplementary Materials, we extend the methodology developed in this section to 

accommodate a log link function and give a result analogous to Result 1 for the log case.

4 Inference with the logit link

In this section, we consider regression analysis for a binary outcome using a logit link 

function, with the population model of interest now defined as: interest as followed,

(4)

Likewise, let ODDS (X, R = 1) = Pr(Y = 1|X, R = 1)/Pr(Y = 0|X, R = 1). We begin by 

defining the selection bias on the odds ratio scale. Note that
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where  and, where we have used the following 

key property of the odds function (See Tchetgen Tchetgen, 2013), ODDS (X) = E{ODDS(X, 

R)|X, Y = 0}, the function  encodes the degree of association between Y and R given X 
on the odds ratio scale, and quantifies selection bias. Naturally, Pr(Y = 1|X, R = 1) = Pr(Y = 

1|X) if and only if  or Pr(R = 1|X, Y = 0) = 1, that is if and only if there is no 

selection bias or no missing data among noncases. We say that Z is a valid IV for a logistic 

regression analysis with nonignorable missing outcome, if Z satisfies assumption (IV.1) and 

(IV.2) and the following additional assumption,

(IV.3†) Homogeneous odds ratio selection bias:log ODDS (X, R = 1, Z)/ODDS (X, R 
= 0, Z) = ω(X) does not depend on Z; where ODDS (X, R = 1, Z) = Pr(Y = 1|X, R = 

1, Z)/Pr(Y = 0|X, R = 1, Z).

(IV.3†) is similar to assumption (IV.3), and states that conditional on X, the IV behaves 

essentially as if it were randomized relative to selection bias on the odds ratio scale. Our 

identification result for the odds ratio scale is given below.

Result 2: Under assumptions (IV.1)–(IV.3†), the regression function μ(X) is 
nonparametrically identified from the observed data O, and the observed regression curve: 
logitn (X, Z) =logitPr(Y = 1|X, R = 1, Z) can be expressed as a function of μ(X), ν(X) and 

π(X, Z) as follows: , where 

, and λ (X, Z) = Pr(R = 1|X, Z, Y = 0) 

satisfies

Result 2 states that the regression curve Pr (Y = 1|X) =expit{μ(X)} is identified from data O 
provided that Z is an IV which satisfies (IV.1)–(IV.3†). The result gives an explicit 

representation for the complete-case logistic regression n(X, Z) as a function of the 

regression of interest μ(X), the selection bias function ω(X) and (X, Z).

For inference, one may use a maximum likelihood approach, which entails maximizing the 

log-likelihood

(5)

using the parametrization of Result 2. For instance, suppose that one aims to estimate the 

logistic regression model μ(X; ψ) = (1, X′). Further suppose that one specifies a similar 

linear model for the selection bias log odds ratio function ω(X; η) = (1, X′), and assuming 

that logitλ(X, Z; α) = (1, X′, Z′)α, gives the following complete-case model,
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The maximum likelihood estimator of (ψ, α, η) maximizes the loglikelihood (5) under Pr(Y 
= 1|R = 1, X, Z; ψ, α, η) and π(X, Z; ψ, α, η). Inference may then proceed using standard 

maximum likelihood theory.

5 Detecting the presence of selection bias

Interestingly, if Z is known to satisfy assumptions (IV.1) and (IV.2) but not assumption (IV.

3) (nor (IV.3†) and (IV.3′) of the Supplementary Materials), it can no longer be used to 

correct for selection bias. However, as we argue next, such a variable may still be used as a 

tool for detecting the presence of selection bias. This is because (IV.3) ((IV.3′) and (IV.3†)) 

are trivially satisfied under the null hypothesis of no selection bias, i.e. if 

 in the Supplementary materials, and  for all X 

respectively: Therefore a test statistic of H0 ( and ) based on either the Wald, score or 

likelihood ratio tests constitutes under assumptions (IV.1) and (IV.2), a valid test statistic of 

the null hypothesis that selection bias is absent on a given scale. Furthermore, such a test 

will for most alternatives be consistent under the hypothesis that selection bias is present on 

that scale, regardless of whether assumption (IV.3) ((IV.3′) or (IV.3†)) holds.

6 Partial identification via smooth bounds for binary outcome

Assumption (IV.3†) is not empirically testable and may at best only be approximately correct 

in a given application. For this reason, it is crucial in practice, to supplement the proposed 

IV approach with IV inferences based only on assumptions (IV.1) and (IV.2) for validity. It is 

straightforward to check that for binary Y, the population mean is contained in the interval 

defined by so-called assumption-free bounds that do not make use of Z,i.e. p = E(Y) ∈[Pr 

{Y = 1, R = 1}, Pr {Y = 1, R = 1}+Pr {R = 0}]. However, the length of this interval is equal 

to the proportion of missing data and therefore most informative when the proportion of 

missing data is negligible in which case selection bias is less of a concern. Robins (1989) 

and Manski (1990) independenlly proposed IV bounds for the mean of Y which can be 

considerably tighter than the assumption-free bounds. Specifically, in the case of binary 

outcome, polytomous Z and assuming for simplicity that (IV.1) and (IV.2) hold without 

conditioning on X, the mean of Y is contained in the interval [LB, UB] defined by Robins-

Manski IV bounds: LB = max{Pr {Y = 1, R = 1|z}: z} and UB = min {Pr {Y = 1, R = 1|z} + 

Pr {R = 0|z} − max {− Pr {Y = 1, R = 1|z} − Pr {R = 0|z}: z}. There are two potential 

difficulties with implementing the Robins-Manski bounds in practice. To discuss these 

difficulties, note that in practice the bounds must be estimated from the observed data O. Let 

θ denote a finite dimensional parameter indexing models for Pr {Y = 1|R = 1, z; θ and Pr {R 
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= 1|z; θ}. Let  denote the maximum likelihood estimator of θ, 

, , and  and 

denote the estimated lower and upper bounds. The first difficulty arises in accounting for the 

uncertainty due to estimation of θ, because LB (·) and UB (·) are non-smooth functionals of 

θ so that the delta method cannot be used to obtain the large sample distribution of 

and . The second difficulty is that in finite sample  may be greater than 

due to sampling variation, in which case the estimated bounds are not coherent. We propose 

to resolve both difficulties by first replacing the nonsmooth max function with a smooth 

approximation known as the softmax function defined for fixed scalar parameter ν as the 

mapping  for K real numbers 

(b1,…bK). For large values of ν, softmaxν (b1,…bK) ≈ max (b1,…bK), and while the right-

hand side is not differentiable in bk the left-hand side is. To address the second difficulty we 

leverage the availability of a point estimate of E(Y|X) under assumptions (IV.1)–(IV.3) 

(respectively (IV.3′) or (IV.3†)) as proposed in previous Sections. Because this point 

estimate is obtained under a submodel of the IV model defined by (IV.1) and (IV.2) only, it 

must be contained within the IV bounds with probability tending to one as sample size goes 

to infinity. We may refine the smoooth bounds by ensuring that this property holds in finite 

sample. In this vein, let  denote the IV estimator of p obtained using results from Section 4, 

e.g. . A smooth estimator of the IV lower bound may be 

defined as  where 

 is a smooth approximation of the indicator 

function  for sufficiently large ρ, ensuring that the lower bound does not 

exceed the point estimator . Likewise, we define a smooth estimator of the IV upper bound 

as . For sufficiently 

large values of ν and ρ, the interval  is 

asymptotically approximately equal to Robins-Manski bounds and therefore guaranteed to 

include the true population mean p under assumptions (IV.1) and (IV.2). Furthermore, 

assuming that  is asymptotically normal, a straightforward application of the delta 

method implies that  is a valid asymptotic 

95% confidence interval for p, where  and  are consistent estimators of the standard 

error of  and , respectively, obtained by a straightforward 

application of the delta method, or the nonparametric bootstrap. In practice, one may choose 

ρ and ν such that larger values of either parameter do not substantially change results.

7 Empirical Illustration

To illustrate the proposed instrumental variable approach, we obtained data from the 2007 

Zambia Demographic and Health Survey to estimate HIV prevalence among adult men 

adjusting for selective non-participation in the HIV testing component of the survey study. 

Further details regarding sampling and data collection procedures of the Zambia DHS are 
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available elsewhere (CSO, 2009). Briefly, this cross-sectional, population-based survey, 

carried out over a 6-month period from April to October 2007, employed a complex 

sampling scheme to assess the general health status and family welfare among households in 

Zambia. At the initial household visit, a representative from the household was asked to list 

and provide basic demographic information on all usual household members and any visitors 

who stayed in the household the previous night. Of those listed, men aged 15–59 years and 

women aged 15–49 years were eligible for participation in an individual interview and HIV 

testing. In total, 7,146 eligible men were identified from 7,164 household interviews; 7,116 

(>99%) men had complete information from the household interview. Of those with 

complete information, 5,145 (72%) provided a specimen for HIV testing. The 1,971 (28%) 

eligible men without an HIV test result comprise both individuals who either could not be 

contacted or were contacted and refused to participate in all components of the survey 

including HIV testing (N=654) and those who agreed to participate in the individual 

interview, but refused to be tested for HIV (N=1,317).

7.1 Instrumental variables

In order to select instrumental variables, we adapted the approach used by Bärnighausen and 

colleagues (2011). Specifically, we used household interviewer identity and an indicator 

variable for whether or not a household was visited on the first day of data collection within 

a cluster. As described earlier, interviewer characteristics such as gender, personality, and 

interpersonal skills may lead to different response rates. Likewise, the chances of 

encountering and enrolling eligible individuals are higher for households reached early in 

data collection because there are more opportunities for repeat visits by data collectors. Both 

the specific interviewer deployed to a household and the timing of that visit were determined 

at random (or by a known algorithm) (CSO, 2009). As a result, these factors are unlikely to 

directly influence an individual’s HIV status upon adjusting for key correlate of HIV 

prevalence such as household geographic location. In the 2007 Zambia DHS survey, 53 

distinct interviewers conducted 50 or more household interviews with men, the remaining 

interviewers were pooled into a 54th category, and 1,831 (36% of 5,130) households were 

reached on the first day of data collection within a cluster. Both of these factors were highly 

associated with HIV testing non-participation (P<0.001).

7.2 Propensity Score and Selection Bias Models

For estimation, we used standard logistic regression to model the population prevalence of 

HIV (Y), conditional on observed covariates X containing age, education, wealth quintile, 

and location type of household. Table 1 summarizes the model and indicates most factors are 

strongly predictive of HIV seropositivity in this population. Likewise, we modeled the 

probability of participation in the survey HIV testing component (R) using the model 

described in Section 4 with covariates X and the IVs Z consisting of household interviewer 

identity and visit on the first day of data collection within a cluster. Table 2 provides a 

complete description of this model, and summarizes evidence of strong correlation between 

interviewer identity and participation, indicating that assumption (IV.2) holds in this sample. 

Finally, we modeled the selection bias function as linear in X on the log odds ratio scale: 

Table 3 provides a complete description of this last model and gives evidence of statistically 
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significant selection bias in the odds ratio association between education and household 

location type, with HIV prevalence.

We computed the estimate  of the marginal HIV prevalence p = Pr(Y = 1) as a weighted 

average, of individual fitted values , with survey weights Wi, i.e. 

.

All statistical analyses were conducted using SAS software version 9.3 (SAS Institute, Cary, 

NC). We applied standard Taylor-series expansion arguments to derive the following large-

sample variance estimator for the resulting point estimate  of HIV prevalence, which 

simultaneously acknowledges the uncertainty due to estimation of t(X), and the presence of 

sampling weights, , where , 

, and  was obtained from the inverse 

information matrix of the mle of (ψ, α, η) for the loglikelihood derived in the previous 

section. The survey weights were not used to obtain  because conditioning on the 

covariates X gave virtually the same results for the first stage whether the weights were 

included or not (data not shown), although the weights were used to obtain . We used the 

above estimated standard errors to construct Wald-type 95% confidence intervals (CIs) for p.

7.3 A random effect formulation

In the above formulation of the IV model, interviewer identity is entered in the nonresponse 

regression as a fixed effect, and thus in principle, may not be well estimated for an 

interviewer with few interviews. To address this potential concern, we also explored an 

alternative random effect formulation, whereby interviewer identity is specified as a mean 

zero normal random effect in the nonresponse regression, i.e. Letting Z1 denote indicator of 

visit on first day, and Z2 interviewer identity,  is mean 

zero normal with variance  which is estimated jointly with the fixed effects (associated 

with X) in models for Y and R by maximum likelihood using PROC NLMIXED in SAS.

7.4 Results

We obtained a complete-case crude estimate of HIV prevalence of 12.2% (95% CI: 11.2% to 

13.1%) compared to the IV-adjusted estimate of 21.1% (95% CI: 16.2% to 25.9%) obtained 

using the proposed approach (Table 4). Furthermore, we computed three-well known 

estimators of p that rely on the assumption that HIV status is missing at random conditional 

on (X, Z): inverse probability weighting, outcome regression and doubly robust estimation 

(Wirth, Tchetgen Tchetgen and Murray, 2010). All three estimators produced results nearly 

identical with the complete-case analysis clearly failing to account for selection bias. The 

IV-adjusted point estimate obtained using our methods essentially agree with the IV-

corrected estimates obtained via a parametric Heckman-type selection model for a binary 

outcome used by Bärnighausen et al (2011), which we replicated to produce a prevalence 

estimate of 21.0% (95% CI: 19.8% to 22.2%). This suggests that, at least in this specific 

empirical example, the IV results appear to be fairly robust to the assumptions underlying 
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either adjustment strategy, and that the adjustment for selection bias with an IV appears to 

matter more than the specific IV analysis. The 95% CI obtained implementing the Heckman-

type estimator as outlined in Bärnighausen et al (2011) is considerably narrower than the one 

obtained with our approach. The observed difference is primarily due to the fact that our CI 

accurately reflects all sources of uncertainty including from the first stage estimation of t 
(X), whereas the CI of Bärnighausen et al (2011) does not appropriately account for the 

uncertainty due to the analogous preliminary estimation of Pr(R = 1|X) obtained with 

Heckman’s model. Therefore their reported CI likely understates the actual uncertainty 

around Heckman’s estimator. Finally, the random effect formulation of the model produced 

an estimate of HIV prevalence aligned with the fixed effect estimate (see Table 4).

7.5 Smooth Bounds for Zambia DHS data

In order to account for uncertainty about assumption (IV.3†), we computed the proposed 

smooth bounds. For simplicity, we ignored covariates in computing these bounds which may 

lead to some efficiency loss but is unlikely to invalidate IV assumptions (IV.1) and (IV.2). 

Thus, lower and upper bounds were evaluated using interviewer-specific empirical estimates 

of proportions Pr {R = 1, Y = 1|z} and Pr{R = 0|z} defining . We report estimated bounds 

for the choice of ρ = ν = 100 as larger values of either parameter did not substantially 

change results. The lower and upper bounds with corresponding 95% confidence intervals 

were  (95%CI: 0.14–0.21) and  (95%CI: 0.17–0.27) 

therefore producing a 95%CI of HIV prevalence in Zambia equal to (14%–27%), only 

slightly wider than the 95%CI obtained under assumptions (IV.1)–(IV.3†).

8 Final remarks

This paper has considered the somewhat pernicious problem of selection bias due to a 

regression outcome missing not at random. We have shown that this seemingly intractable 

problem can be made more tractable with the aid of an IV. Straightforward, yet novel 

identification assumptions are obtained for this IV framework, which yield a simple strategy 

for estimation, appropriately accounting for the presence of selection bias. The approach 

was then illustrated in a data set from Zambia, to obtain an adjusted estimate of HIV 

national prevalence, accounting for selection bias due to testing refusal. Straightforward 

bounds were also obtained allowing for inferences with a valid IV appropriately accounting 

for uncertainty about assumption (IV.3) needed for identification. Although not pursued 

here, our smooth bounds can easily be generalized to any bounded outcome.

Several interesting extensions could be explored in the future, including analogous methods 

for longitudinal data, as well as for dependent censoring of a survival outcome. It may also 

be of interest to extend the approach to a regression framework with covariate missing not at 

random. Finally, in future work, we plan to explore semiparametric doubly robust estimators 

that are guaranteed to remain consistent even under partial model mis-specification of the 

observed data likelihood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Log odds ratios (OR) and 95% confidence intervals (CI) for HIV seropositivity among 7,116 adult men in 

Zambia, 2007.

Log OR
HIV seropositivity

(95% CI) Pa

Intercept −3.369 (−4.824, −1.914) <0.0001

Age (years) <0.0001

 55 to 59 1.276 (0.249, 2.303)

 50 to 54 1.988 (0.972, 3.004)

 45 to 49 2.090 (1.079, 3.102)

 40 to 44 1.954 (0.990, 2.918)

 35 to 39 2.263 (1.297, 3.229)

 30 to 34 2.023 (1.085, 2.960)

 25 to 29 1.493 (0.610, 2.376)

 20 to 24 0.941 (0.137, 1.744)

 15 to 19 (ref) –

Educational attainment (years) 0.042 (0.008, 0.077) 0.02

Wealth quintile – 0.02

 5th (wealthiest) 0.858 (0.191, 1.524)

 4th 0.989 (0.363, 1.614)

 3rd 0.494 (−0.107, 1.095)

 2nd 0.394 (−0.214, 1.002)

 1st (poorest) (ref) –

Location type of household 0.0001

 Countryside −0.801 (−1.218, −0.385)

 Town −0.305 (−0.638, 0.0288)

 Small city 0.200 (−0.237, 0.637)

 Capital, large city (ref) –

a
P-value from Wald χ2 test.
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Table 2

Log odds ratios (OR) and 95% confidence intervals (CI) for HIV testing participation among 7,116 adult men 

in Zambia, 2007.

Log OR
HIV testing participation

(95% CI) Pa

Intercept −0.075 (−0.811, 0.660) 0.84

Age (years) 0.30

 55 to 59 0.485 (−0.089, 1.058)

 50 to 54 1.015 (0.050, 1.980)

 45 to 49 0.711 (0.015, 1.407)

 40 to 44 0.345 (−0.116, 0.805)

 35 to 39 0.748 (0.058, 1.439)

 30 to 34 0.602 (0.069, 1.134)

 25 to 29 0.201 (−0.171, 0.573)

 20 to 24 0.178 (−0.164, 0.520)

 15 to 19 (ref) –

Educational attainment (years) 0.08845 (0.050, 0.127) <0.0001

Wealth quintile 0.28

 5th (wealthiest) 0.037 (−0.503, 0.576)

 4th 0.144 (−0.322, 0.610)

 3rd −0.241 (−0.601, 0.118)

 2nd −0.286 (−0.646, 0.075)

 1st (poorest) (ref) –

Location type of household 0.11

 Countryside 0.554 (−0.082, 1.189)

 Town 0.504 (−0.039, 1.046)

 Small city 0.982 (0.056, 1.907)

 Capital, large city (ref) –

Household visited on first day of data collection within a cluster (yes/no) 0.093 (−0.036, 0.222) 0.16

Interviewer identityb – – <0.0001

a
P-value from Wald χ2 test.

b
Log ORs and 95% CIs comparing each of the 47 interviewers with ≥50 household interviews to a combined reference group of all other 

interviewers with <50 household interviews not shown for the purpose of simplicity; data are available upon request from the corresponding author.
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Table 3

Linear log odds ratios (OR) and 95% confidence intervals (CI) for selection bias in HIV seropositivity due to 

nonignorable missingness among 7,116 adult men in Zambia, 2007.

Log OR
Selection bias

(95% CI) Pa

Intercept −0.300 (−3.542, 2.942) 0.86

Age (years) 0.16

 55 to 59 0.056 (−1.946, 2.059)

 50 to 54 −1.113 (−3.166, 0.941)

 45 to 49 −0.219 (−2.198, 1.760)

 40 to 44 0.837 (−0.933, 2.607)

 35 to 39 −0.414 (−2.228, 1.400)

 30 to 34 −0.342 (−2.050, 1.367)

 25 to 29 −0.281 (−1.898, 1.338)

 20 to 24 −0.850 (−2.392, 0.693)

 15 to 19 (ref) –

Educational attainment (years) −0.102 (−0.178, −0.026) 0.01

Wealth quintile – 0.52

 5th (wealthiest) −0.686 (−2.529, 1.156)

 4th −0.579 (−2.320, 1.162)

 3rd 0.166 (−1.543, 1.875)

 2nd 0.142 (−1.545, 1.830)

 1st (poorest) (ref) –

Location type of household 0.44

 Countryside 0.025 (−1.021, −1.021)

 Town −0.326 (−1.148, 0.496)

 Small city −0.923 (−2.112, 0.267)

 Capital, large city (ref) –

a
P-value from Wald χ2 test.
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Table 4

Prevalence of and 95% confidence intervals (CI) for HIV seropositivity among 7,116 adult men in Zambia 

according to method of adjustment for HIV testing non-participation.

Prevalence (95% CI)

Unadjusted

 Complete case analysis 12.2% (11.2%, 13.1%)

Adjusteda

 Inverse probability weighting 12.4% (11.5%, 13.3%)

 Outcome regression 12.5% (11.8%, 13.2%)

 Doubly robust estimator 12.5% (11.6%, 13.4%)

 Heckman-type selection 21.0% (19.8%, 22.2%)

 Instrumental variable

  Fixed effects 21.1% (16.2%, 25.9%)

  Mixed effects 21.2% (12.6%, 29.8%)

a
All adjustment methods considered the following set of covariates: age (in 5-year categories), wealth (in quintiles), educational attainment (in 

years) and location type of household.
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