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Landscape genomics reveal that ecological
character determines adaptation: a case
study in smoke tree (Cotinus coggygria
Scop.)
Cai-Yun Miao, Yong Li* , Jie Yang and Run-Li Mao

Abstract

Background: The adaptive evolution of species response to environment are the key issues in molecular ecology
and evolutionary biology. The direction of adaptive differentiation of species in regions lacking strong selection
pressure is usually diverse. However, the driving mechanism of the diverse adaptive differentiation for regional
species is still undetermined to date. In this study, we used landscape genomics modelling to infer the adaptive
evolution of Cotinus coggygria in China’s warm-temperate zone.

Results: Using fifteen natural populations and nine start codon targeted (SCoT) markers, a total of 1131
unambiguous loci were yielded. Our results showed two genetic groups existed in the fifteen natural populations
of C. coggygria, which is due to the divergent selection driven by six environmental factors. Environmental
association analyses revealed the environmental variables related to precipitation were associated with high
numbers of environment-associated loci.

Conclusions: Our results indicated that the ecological characters of C. coggygria, i.e. avoiding wetness and
tolerating drought, determine its adaptive evolution. This study provides a reference that ecological character
determines the adaptive evolution of species in regions lacking strong selection pressure.
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Background
The adaptive evolution of species response to environ-
ment are the fundamental issues in molecular ecology
and evolutionary biology. The global climate is changing
rapidly and affecting the global ecosystem and biodiver-
sity. Under the pressure of climate change, species either
adapt or become extinct [1]. Species adaptation response
to rapid climate change can be divided into two. On the
one hand, species adapt through migration to adjust the
distribution [2]. On the other hand, for species that can-
not adapt to climate change through migration, they re-
sort to local adaptation. Thus, these species require
adaptive changes, especially in terms of phenology, re-
productive behavior, and phenotypic characteristics [3].
Adaptive phenotypic changes for fitting to the changing

climate are usually based on the adaptive evolution of
species genome [4]. Therefore, the identification of these
adaptive genes is the key in understanding species adap-
tive evolution.
To date, two strategies can be used to identify the adap-

tive genes. One is the “top-down” strategy, which mea-
sures the adaptive phenotype and phenological data using
common garden experiment or reciprocal transplant ex-
periment; then, this strategy links these data to genetic
variation via genome-wide association studies [5] or quan-
titative trait locus [6]. The other is the “bottom-up” strat-
egy, which searches the selected signals of adaptive
genetic evolution using genomics scanning and then asso-
ciates these signals with climatic data to determine the
adaptive genes [4]. An example of the latter strategy is
landscape genomics, which is less cost and more time
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efficient than the methods belonging to the former strat-
egy [7, 8].
In recent years, landscape genomics studies have pro-

vided information on the interactions between environ-
mental variations and adaptive genetic variations in
natural populations [9]. The universal pattern of adap-
tive evolution is especially popular for regional landscape
genomics studies. However, the universal pattern on
adaptation needs extreme selection pressure, such as
drought of desert and high salinity of ocean, for most
species in the same region [10, 11]. However, the strong
selection pressure produced by extreme environmental
conditions does not exist in most regions. Thus, the dir-
ection of adaptive differentiation of regional species is
usually diverse [9, 12]. However, the determinant of the
diverse adaptive differentiation for regional species is
still unclear to date. Determining the reason why these
environmental variables drive the comprehensive adap-
tive differentiation of species genomes is interesting.
In this study, we sampled Cotinus coggygria Scop.

(smoke tree) in China’s warm-temperate zone to infer
the relationship between environmental variables and
adaptive genetic variations in the plant’s genome. This
deciduous tree species is widely distributed in China’s
warm-temperate zone. This species prefers light; toler-
ates semi-shade, cold, and drought; and avoids wetness.
Although previous population genetics study on C. cog-
gygria had been conducted [13], the used neutral
markers of chloroplast DNA (cpDNA) reflected more
demography history events rather than adaptive evolu-
tion driving by environmental variations. Here, novel
molecular markers, start codon targeted (SCoT) poly-
morphisms, were used for genome scanning. Start codon
targeted polymorphism (SCoT) is a kind of gene targeted
marker that was developed based on the conserved re-
gion flanking the ATG start codon [14]. SCoT markers
have certain advantages, such as simplicity, reproducibil-
ity, abundant polymorphism, high throughput and not
require priori genomic information [15]. Therefore, this
marker is suitable for landscape genomics research.
We employed SCoT markers to detect environment-

associated loci (EAL) in response to environmental varia-
tions in natural populations of C. coggygria. The present
study aimed (i) to reveal the population genetic structure
of C. coggygria, (ii) identify the EAL in the genome of C.
coggygria, and (iii) detect the key environmental factors
that drive the adaptive differentiation of C. coggygria.

Results
Genetic structure
Nine SCoT primers were selected in investigating the
population genetic structure in C. coggygria. A total of
1131 unambiguous loci were identified with sizes ran-
ging from 60 bp to 1000 bp. The numbers of loci of the

nine primers ranged from 93 (SCoT31) to 163 (SCoT2).
The number of polymorphic alleles (NA) of each popula-
tion ranged from 134 (P9) to 325 (P14). The percentage
of polymorphic alleles (PPA) of each population ranged
from 11.8 (P9) to 28.7 (P14). The level of genetic diver-
sity (HE) of each population ranged from 0.038 (P9) to
0.098 (P4). Summary statistics for the genetic diversity
analyses for each population are shown in Table 1.
The Bayesian analysis with all loci of population struc-

ture (Fig. 1a) clearly demonstrated that the highest ΔK
value (Fig. 2) was obtained when populations were clus-
tered into two groups. One is the East group (P1 to P5),
the other is the West group (P6 to P15) (Fig. 3). The
non-hierarchical AMOVA (Table 2) revealed that these
populations were significantly structured at the species-
range scale (FST = 0.115, P < 0.001). Although two
groups were divided, only 5.30% genetic variation oc-
curred among groups (FCT = 0.053, P < 0.05) and most
genetic variation occurred within populations (86.06%,
FST = 0.139, P < 0.001). In addition, significant patterns
of isolation by distance were detected by comparing FST
values with geographical distances at the species-range
scale (r = 0.2452, P < 0.05).

Redundancy analysis
A total of 15 natural populations of C. coggygria and envir-
onmental variables were used as subjects and explanatory
variables to perform redundancy analysis (RDA). To avoid
overestimation of the contribution of environmental vari-
ables to population structure, the strong correlated environ-
mental variables were excluded from 19 environmental
variables (Table 3). After removing the strong correlated
environmental variables, nine remaining environmental
variables (Bio3, Bio5, Bio6, Bio7, Bio11, Bio12, Bio14, Bio15
and Bio18) were selected for RDA and environmental asso-
ciation analyses. Figure 4 shows the results of RDA per-
formed using 1131 SCoT allele frequencies as response
variables. Correlations of genetic variables with environ-
mental variables in axes 1 and 2 were 0.934 and 0.965, re-
spectively. The ratios of the total eigenvalues of axes 1 and
2 were 37.4% and 15.8%, respectively. RDA showed that six
environmental variables were significantly associated with
RDA axes 1 and 2 (Table 4), which suggested that the two
axes represented more of the changes in the six environ-
mental variables. Among these six environmental variables,
isothermality (Bio3), max temperature of warmest month
(Bio5), and temperature annual range (Bio7) were related
to temperature. Meanwhile, annual precipitation (Bio12),
precipitation seasonality (Bio15), and precipitation of
warmest quarter (Bio18) were related to precipitation.
Bio18 was the highest contributor among the nine environ-
mental variables because of the high ratios of the total ei-
genvalues of axis 1.
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Outlier detection
Using the FDIST2 method, 100 outlier loci with a P-
value under 0.05 were identified (Additional file 1: Fig-
ure S5A). The BayeScan method detected 74 loci as out-
liers with a log10PO above 0.5; this value is considered a
substantial evidence for selection and corresponds to a
posterior probability above 0.76 (Additional file 1: Figure
S5A). Among the 74 loci detected using the second ap-
proach, 27 common loci were detected using the first
approach (Additional file 1: Figure S5A). The detected

outlier loci all showed a positive alpha value, thereby in-
dicating positive or directional selection. To reduce the
false discovery rate, we used the 27 common loci for fur-
ther environmental association analyses.

Environmental association
The Pearson’s correlation analysis detected thirteen EAL
among the 27 outlier loci, which associated with at least
one environmental variable (Table 5). This number
accounted to 1.14% of the total number of SCoT loci.

Table 1 Details of population locations, sample size, genetic diversity of 15 population for C. coggygria

Population no. and code Locations Altitude
(meter)

Lat.(N)/ Long.(E) N NA PPA HE

1.HBWD Wudang Mt., Hubei 988 32.40/111.00 5 141 12.5 0.047

2.HNSM Song Mt., Henan 631 34.47/113.08 12 274 24.2 0.095

3.SDBD Baodugu, Shandong 287 35.00/117.70 12 241 21.3 0.083

4.HNJL Jiulian Mt., Henan 755 35.58/113.58 12 303 26.8 0.098

5.SDYM Yuan Mt., Shandong 241 36.47/117.85 12 232 20.5 0.087

6.SXLK Lingkong Mt., Shanxi 1673 36.60/112.08 11 254 22.5 0.070

7.HNLJ Laojun Mt., Henan 835 33.75/111.63 12 252 22.3 0.074

8.SXTB Taibai Mt., Shaanxi 3269 33.95/107.75 12 154 13.6 0.049

9.SXTT Tiantai Mt., Shaanxi 1167 34.28/107.18 11 134 11.8 0.038

10.SXLJ Laojun Mt., Shaanxi 1241 34.33/110.25 12 261 23.1 0.072

11.SXWL Wulaofeng, Shanxi 1191 34.83/110.58 9 220 19.5 0.048

12.HNYT Yuntai Mt., Henan 297 35.42/113.42 12 166 14.7 0.052

13.SXHM Hua Mt., Shaanxi 1160 35.55/110.10 8 256 22.6 0.059

14.SXTL Wuzhi Mt., Hebei 793 37.70/112.43 10 325 28.7 0.068

15.HBTG Tianlong Mt., Shanxi 612 38.25/113.73 6 206 18.2 0.059

NA number of polymorphic alleles, PPA percentage of polymorphic alleles; HE, Nei’s (1973) measure of gene diversity

Fig. 1 STRUCTURE analyses of fifteen sampled populations of C. coggygria. a Population genetic structure estimated by STRUCTURE analysis with
all SCoT loci. b Population genetic structure estimated by STRUCTURE analysis with all SCoT loci except EAL. Each vertical bar represents an
individual and its assignment proportion into one of two population clusters (K)
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Among the 13 detected loci, three were significantly re-
lated to temperature and precipitation, one was signifi-
cantly related to temperature, and nine were
significantly related to precipitation (Table 5). Among
these associated environmental variables, Bio14 and
Bio18 were associated with the highest numbers of EAL.
LFMM identified seventeen EAL among the 27 outlier
loci, which associated with at least one environmental
variable (Table 6). This number accounted to 1.50% of

the total number of SCoT loci. Among the 17 detected
loci, seven were significantly associated with temperature
and precipitation, and ten were significantly associated
with precipitation (Table 6). Similar to the Pearson’s cor-
relation analysis, LFMM showed that Bio14 and Bio18
were associated with the highest numbers of EAL. How-
ever, Bio15 was also identified as environmental variable
with high numbers of EAL. A total of 27 EAL with 12
common EAL were detected using the combined two
detection methods (Fig. 5b). To further test the contri-
bution of environmental variables to the spatial genetic
structure, the Bayesian analysis with all loci except EAL
of population structure was performed. After removing
the EAL, the two genetic groups also dissolved (Fig. 1b).

Discussion
This study analyzed the adaptive evolution of C. coggy-
gria to environmental factors through SCoT markers.
The overall outlier detection rates in the present study
were 8.84% (100 out of 1131) in FDIST and 6.54% in
BayeScan. The detection rates are consistent with previ-
ously reported rates on landscape genomics studies
(2.85% to 10%), such as 2.85% in Alnus glutinosa [16]
and 4.5% in Picea mariana [17] from SNPs, 9% in Ara-
bis alpina [18] and 10% in 13 alpine species [12] from
AFLPs, and 4.22% in Cephalotaxus oliveri [19] from
ISSRs. Although SCoT markers are non-neutral biased
nature, their detection rate in this study is not

Fig. 2 The uppermost hierarchical level of genetic structure
determined using values of ΔK. ΔK was computed by software
Structure Harvester

Fig. 3 Locations of the fifteen sampled C. coggygria populations. Map produced by software DIVA-GIS. The elevation layer file was downloaded
from http://www.diva-gis.org/
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significantly higher than that of other molecular
markers. Due to lacking DNA sequence information,
these loci could not be validated and might be suspected
as false-positive loci. In order to minimize false positive
rates, we used the loci that were jointly identified by two
methods at the same time.

Spatial population genetic structure
Landscape genomics studies have focused mostly on the
spatial population genetic structure of species [20, 21].
The influence of environmental variables on population
genetic structure has been increasingly revealed. How-
ever, addressing spatial population genetic structure con-
tributed by environmental variables is a serious
challenge because of the complex reciprocal interactions
of multifactors (i.e., gene flow, natural selection, and his-
torical events) [22–24]. Our survey on SCoT data dem-
onstrated significant hierarchical population genetic
structure across all the studied populations. The two
genetic groups, the East group (P1 to P5) and the West
group (P6 to P15) are geographically separated. The
spatial pattern is quite different from previous findings
in Wang et al. [13]. This is mainly due to the difference
in markers. The neutral cpDNA markers mainly reflect

Table 3 Nineteen environmental variables used in this study

Temperature
(period
1950–2000)

Bio1: Annual mean temperature (°C × 10)

Bio2: Mean diurnal range
(Mean of monthly (max temp - min temp))

Bio3: Isothermality (Bio2/Bio7) (×100)

Bio4: Temperature seasonality
(standard deviation ×100)

Bio5: Max temperature of warmest
month (°C × 10)

Bio6: Min temperature of coldest
month (°C × 10)

Bio7: Temperature annual
range (E5-E6)

Bio8: Mean temperature of wettest
quarter (°C × 10)

Bio9: Mean temperature of driest
quarter (°C × 10)

Bio10: Mean temperature of warmest
quarter (°C × 10)

Bio11: Mean temperature of coldest
quarter (°C × 10)

Precipitation
(period
1950–2000)

Bio12: Annual precipitation (mm)

Bio13: Precipitation of wettest month (mm)

Bio14: Precipitation of driest month (mm)

Bio15: Precipitation seasonality (coefficient of variation)

Bio16: Precipitation of wettest quarter (mm)

Bio17: Precipitation of driest quarter (mm)

Bio18: Precipitation of warmest quarter (mm)

Bio19: Precipitation of coldest quarter (mm)

Fig. 4 RDA analysis was performed to determine the relative
contribution of environmental variations shaping the genetic
structure. The biplot depicts the eigenvalues and lengths of
eigenvectors for the RDA. Population locations on the spatial axes
are marked by their number

Table 4 Correlations between environmental variables and the
ordination axes

Environmental variable Axis 1 Axis 2 Axis 3 Axis 4

Bio3 0.327 −0.523 * 0.436 0.475

Bio5 0.251 −0.702 ** −0.082 0.065

Bio6 0.283 0.062 −0.459 −0.303

Bio7 0.053 −0.846 ** 0.282 0.321

Bio11 0.297 −0.213 −0.332 −0.185

Bio12 0.331 0.750 ** −0.270 −0.257

Bio14 0.471 0.444 −0.166 −0.403

Bio15 0.192 −0.637 ** −0.063 0.510 *

Bio18 0.689 ** 0.415 −0.323 −0.071

Statistically significant correlation by * (P < 0.05) and ** (P < 0.01)

Table 2 Hierarchical AMOVAs for SCOT variation surveyed in C.
coggygria

Source of variation d.f. %Total variance F-statistic P-value

Non-hierarchical AMOVAs

Total 14 11.52% FST = 0.115 P < 0.001

East group 4 5.34% FST = 0.053 P < 0.001

West group 9 11.73% FST = 0.117 P < 0.001

Hierarchical AMOVAs

Among two groups 1 5.30% FCT = 0.053 P < 0.05

Among populations 13 8.65% FSC = 0.091 P < 0.001

Within populations 141 86.06% FST = 0.139 P < 0.001
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seed mediated gene flow and population dynamics.
SCOT markers can simultaneously reflect seed and
pollen mediated gene flow, as well as population dynam-
ics and species adaptive evolution. Our results showing
significant IBD pattern in C. coggygria indicated re-
stricted gene flow. However, the restricted gene flow can
only increase the degree of genetic differentiation among
populations and cannot explain the spatial separation of
the two genetic groups. Three hypotheses can be used to
explain this large-scale intraspecific genetic disjunction.
First, C. coggygria was compressed to two refugia (i.e.,
gene pools) during climate fluctuations in the past, and
the current distribution pattern resulted from the redis-
tribution of the two gene pools. Second, a geographical
barrier existed between the two groups, and long-term
blocking of gene flow by geographical barrier led to the
genetic divergence of the two groups. Third and last,

significant environmental differences occurred between
the two regions, and these heterogeneous environmental
conditions resulted in divergent selection and eventually
led to the genetic divergence of the two groups. Previous
phylogeographical study on C. coggygria suggested that
this species survives in situ and occupies multiple local-
ized glacial refugia rather than compressing to two refu-
gia during the Pleistocene glaciations [13]. Therefore,
the first hypothesis failed to explain the genetic diver-
gence of C. coggygria. Assuming that C. coggygria agreed
with the second hypothesis, significant genetic differenti-
ation could be expected between the two groups with
sufficiently strong geographic barrier. However, our
AMOVA analysis based on all loci and STRUCTURE
analysis with all loci except EAL (i.e., most of the neutral
loci) both showed weak genetic differentiation between
the two groups. Thus the second hypothesis was also

Table 5 The EAL as indicated by Pearson’s correlation coefficients

Pearson’s correlation coefficients

Locus code Bio3 Bio5 Bio6 Bio7 Bio11 Bio12 Bio14 Bio15 Bio18

2–024 0.536* 0.713**

2–046 0.607*

2-064

2–070 0.643**

2–085

2–086

2–087 0.584*

2-096

2–108

3–075

6–014

14–038

14–045 0.570* 0.675**

16-002

22–002 0.570* 0.622*

22-003 0.595* 0.658**

22-009

22–011 0.526*

22-015

22–016 0.531* 0.602*

22-018

22–022 0.587* 0.584*

22-023

22–077

22–083 −0.720**

31–009 0.533* −0.732** −0.635* −0.773**

31-014 0.578* −0.650** −0.581* −0.569*

*, P < 0.05; **, P < 0.01
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Table 6 The EAL as indicated by |z|-score

Locus
code

|z|-score

Bio3 Bio5 Bio6 Bio7 Bio11 Bio12 Bio14 Bio15 Bio18

2–024 4.131*** 3.954*** 3.487*** 6.657***

2–046 3.652*** 3.765*** 4.653***

2–064

2–070 3.774*** 5.195***

2–085 4.172*** 3.966***

2–086

2–087 4.258*** 3.191*** 4.569***

2–096 3.737*** 3.994***

2–108

3–075 3.949***

6–014

14–038

14–045 3.981*** 5.754***

16–002 5.970*** 4.952*** 4.517*** 3.798***

22–002 3.644*** 4.689***

22–003 4.039*** 5.105***

22–009

22–011

22–015

22–016 4.722***

22–018

22–022 3.406*** 3.871***

22–023

22–077 4.168***

22–083 8.429*** 5.581*** 4.424*** 4.021*** 4.964*** 3.309***

31–009 5.021*** 8.265*** 7.486*** 9.638***

31–014 4.176*** 5.174*** 4.682*** 4.961***

Statistically significant correlation by *** (P < 0.001)

Fig. 5 Number summary of outlier loci and EAL. a One hundred, 74, and 27 loci were detected as outlier loci in C. coggygria using Bayescan,
Dfdist, and both with Dfdist and Bayescan, respectively. b Thirteen, 17, and 12 loci were detected as EAL in C. coggygria using Pearson’s
correlation, LFMM, and both with Pearson’s correlation and LFMM, respectively
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not appropriate for C. coggygria. Considering that the
third hypothesis was appropriate for C. coggygria, a shal-
low genetic divergence might occur between the two
groups because of the interaction between natural selec-
tion and gene flow. This expectation is consistent with
our detection results (FCT = 0.053). To verify that the
differences between the groups were caused by environ-
mental factors, we compared the STRUCTURE analyses
with all loci and all loci except EAL. When the EAL
driven by environmental variables were excluded, the
two genetic groups were also dissolved (Fig. 1a and b).
Therefore, the genetic divergence of the two groups is
due to the divergent selection driven by environmental
factors. To further infer the relative contribution of en-
vironmental variables in driving population genetic
structure, RDA was performed. The RDA results sug-
gested that six environmental variables related to
temperature and precipitation remarkably influenced the
spatial population genetic structure. Among these envir-
onmental variables, Bio18 was the most important envir-
onmental factor in driving population genetic structure.
Furthermore, our results showed that these environmen-
tal variables could significantly subdivide the populations
into two groups (Fig. 4). In general, the third hypothesis
holds true for C. coggygria.

EAL driven by environmental factors
Previous phylogeographical studies have confirmed that
the warm temperate vegetation adapts to climate change
through migration or local adaptation [25]. Plants with
long-term local adaptation often face the divergent se-
lection driven by environmental variables, thereby lead-
ing to the adaptive evolution of species genome [4]. For
some regions under extreme selection pressures, such as
desert areas, species undergo convergent evolution at
the genomic or phenotypic scale [26]. However, for most
regions, such as the distribution area of C. coggygria, ex-
treme selection pressures that drive species convergent
evolution do not exist. In this case, species follows a var-
iety of evolution directions. However, the environmental
variables that significantly affect the genome and play a
decisive role on the direction of species evolution are
still unknown.
In this study, we selected C. coggygria as a model in

addressing the abovementioned issues. We hypothesized
that species ecological characters would drive adaptive
evolution and produce large number of EAL. Here, the
species ecological characters refer to the sensitivity,
adaptability and resistance of species to environmental
factors during local adaptation. Thus, examining the
ecological characters of C. coggygria is urgently neces-
sary. This species tolerates cold and drought, and avoids
wetness. According to the adopted nine environmental
variables, min temperature of coldest month (Bio6) and

mean temperature of coldest quarter (Bio11) were asso-
ciated with the ecological character of tolerating cold;
precipitation of driest month (Bio14) was associated with
tolerating drought, precipitation of warmest quarter
(Bio18) were associated with avoiding wetness. In
China’s warm-temperate zone, rainy and hot seasons
overlap most of the time. Thus, precipitation of warmest
quarter (Bio18) is tantamount to precipitation of wettest
quarter (Bio16). The results of auto correlation analysis
of environmental variables also confirmed this climate
characteristic in this region. Therefore, we expected that
the large numbers of EAL were associated with the en-
vironmental variables associated with the ecological
characters, i.e. Bio6, Bio11, Bio14 and Bio18. As ex-
pected, the results of the Pearson’s correlation analysis
and LFMM both showed that Bio14 and Bio18 were as-
sociated with the highest number of EAL. However, the
environmental variables related to tolerating cold, Bio6
and Bio11, were not associated with high number of
EAL. Our results suggested the environmental variables
associated with the ecological characters of tolerating
drought and avoiding wetness played more important
roles in adaptive evolution in C. coggygria. Thus, most
aspects of the characterized EAL of C. coggygria agreed
with the hypothesis that ecological characters determine
adaptation.
Whether the deduction that ecological character deter-

mines adaptation is universal must also be discussed. To
date, landscape genomics studies in China’s warm-
temperate zone are rare. Therefore, comparison with
other species cannot help in confirming the universality
of our results in this region. Thus, we reviewed some
published works on landscape genomics in other regions
in recent years. Prunier et al. [17] argued that the adap-
tive SNPs in Picea mariana are related to temperature
and correspond to the nature of cold resistance of bud-
set. De Kort et al. [16] mentioned that the detection of
several temperature-dependent SNPs in Alnus glutinosa
is related to its resistance to drought. Wang et al. [19]
stated that the ecological characters of Cephalotaxus oli-
veri in response to temperature and precipitation sensi-
tivity determine its adaptive evolution. Roschanski et al.
[27] reported that the detected adaptive SNPs in Abies
alba are associated with winter and drought and corres-
pond to the ecological characters related to drought and
cold tolerance. On the basis of this considerable evi-
dence, we suggested that the ecological characters of
species might be related to species adaptive evolution.
Under high intensity of selection pressure, species usu-
ally loses ecological character and evolves toward ex-
treme environments for survival. Without the strong
selection pressure, species ecological character appears
and evolution develops toward variety to ensure a better
survival of species. This study provides a reference that
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ecological character, i.e. species sensitivity, adaptability
and resistance to environmental factors, determines the
adaptive evolution of species in regions lacking strong
selection pressure.

Conclusions
The differences in the intensity of selection pressure
affect the direction of species evolution. In this study,
we sampled C. coggygria from China’s warm-temperate
zone, a region lacking strong selection pressure. Nine
SCoT markers were used to investigate the adaptive gen-
etic variation in C. coggygria. Our results showed that
significant hierarchical population genetic structure of C.
coggygria is due to the divergent selection driven by en-
vironmental factors. The ecological characters of C. cog-
gygria, tolerating drought and avoiding wetness,
determine its adaptive evolution. Therefore, species eco-
logical character determines the adaptive evolution of
species in regions lacking strong selection pressure.

Methods
Sample collection
A total of 156 individuals from fifteen natural popula-
tions of C. coggygria were collected from the entire dis-
tribution range in China (Fig. 3). Population samples
included five to 12 individuals, and each sample was col-
lected at least 10 meters apart. All individuals were col-
lected when the population size was less than ten.
Young, healthy leaves were collected and stored in silica
gel at room temperature until DNA extraction and
genotyping. The geographical coordinates for each sam-
pled population are presented in Table 1.

Molecular protocols
Genomic DNA was isolated from approximately 30 mg
of dried leaves using Plant DNA Extraction Kit DP305
(Tiangen, Beijing, China) following the protocols of the
manufacturer. DNA concentration was measured using
Microcolume Spectrophotometer ND5000 (BioTeke,
Beijing, China). After preliminary screening, nine SCoT
primers (SCoT2, SCoT3, SCoT6, SCoT14, SCoT16,
SCoT22, SCoT30, SCoT31, and SCoT33) from Collard
and Mackill [14] were selected for polymerase chain re-
action (PCR). SCoT2, SCoT16, and SCoT33 were 5′
fluorescent primers labeled with FAM; SCoT3, SCoT22,
and SCoT30 were labeled with HEX; SCoT6, SCoT14,
and SCoT31 were labeled with TAMRA. PCR was con-
ducted in a 20 μL-reaction mixture consisting of 20 ng
template DNA, 1 × reaction buffer (pH 8.3), 0.2 mM
dNTPs, 0.3 μM primer, 1 unit of Taq polymerase, and
DNA-free water. In an iCycler gene amplification system
(Bioteke, Beijing, China), PCR was started with an initial
denaturation at 94 °C for 5 min followed by 35 cycles at
94 °C for 40 s, primer-specific annealing temperature

(50 °C for SCoT2; 52 °C for SCoT3, SCoT6, SCoT22,
SCoT30, and SCoT31; 56 °C for SCoT16 and SCoT33;
and 60 °C for SCoT14) for 45 s and 72 °C for 1 min, a
final extension at 72 °C for 5 min, and termination by a
final hold at 4 °C. PCR products were mixed with 10 μL
of HiDi formamide and 0.1 μL of ROX1000 size stand-
ard (Applied Biosystems, Foster City, USA). These prod-
ucts were then separated on an ABI 3730 DNA Analyzer
at BGI (Beijing, China).

Data analysis
Electropherograms were viewed with GeneMarker 2.2.0
(SoftGenetics, State College, Pennsylvania, USA). To
minimize scoring false alleles, peaks between 60 and
1000 bp and heights above 300 relative fluorescent units
were scored as a presence (1) or absence (0) matrix for
each sample. Subsequent statistical analyses were per-
formed on the basis of this matrix.
AFLPSURV 1.0 [28] was used to calculate the genetic

parameters for each population. The estimates included
the number of polymorphic alleles (NA), percentage of
polymorphic alleles (PPA), gene diversity of Nei (HE)
[29], pairwise Fst between populations, and gene fre-
quencies per allele.
The analysis of hierarchical population structure was im-

plemented using the Bayesian-based program STRUC-
TURE 2.3.4 [30]. For the analysis, a no-admixture model
with independent allele frequencies was selected. K values
were tested from 1 to 10, and 10 replicates were performed
for each K. Burn-in periods of 1 × 105 and 2 × 104 Monte
Carlo and Markov chains were specified. The choice of the
optimal value of K was based on the method introduced by
Evanno et al. [31], and this method was implemented in
STRUCTURE HARVESTER [32]. Hierarchical and non-
hierarchical AMOVA were calculated in ARLEQUIN
3.5.1.2 [33] in inferring the distribution of genetic differenti-
ation at various levels. Mantel tests of isolation-by-distance
(IBD) were performed in IBD 3.23 [34] in determining the
relation of geographical distance (km) to genetic differenti-
ation (FST). RDA was conducted using CANOCO 4.5 [35]
in disentangling the relative contribution of environmental
variables in driving population genetic structure. In RDA,
allele frequencies per population (Additional file 2) were
used as the response variable and environmental variables
(Additional file 3) were used as explanatory variables. Envir-
onmental data from 1950 to 2000 at 2.5 arcmin resolution
were downloaded from the world climate database (http://
www.diva-gis.org/climate). Additional data for each popula-
tion were extracted using the DIVA-GIS 7.5.0 [36]. In
China’s warm-temperate zone, rainy and hot are over the
same period, cold and drought are over the same period.
Thus, some environmental variables of temperature and
precipitation might be significantly acossiated. To avoid
overestimation of the contribution of environmental
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variables to population structure, the strong correlated en-
vironmental variables (r > 0.95) are excluded. Auto correl-
ation analysis of environmental variables was performed
using Pearson’s regression in SPSS 19 (SPSS Inc., Chicago,
IL, USA).
Two approaches were used to identify the outlier loci.

The first approach was based on the FDIST2 approach
proposed by Beaumont and Nichols [37] and was imple-
mented in the program Arlequin 3.5.1.2 [33]. The hier-
archical island model in Arlequin was selected. The
running parameters were set as follows: 100 simulated
demes and 20,000 coalescent simulations. The loci out-
side the 95% confidence interval were regarded as outlier
loci. To reduce the false discovery rate, loci with minor
allele frequency < 5% were excluded. The second ap-
proach was based on the Bayesian approach and imple-
mented in BayeScan 2.01 [38]. The running parameters
were set as follows: sample size of 5000, thinning inter-
val of 10, 20 pilot runs with a run length of 5000, and
additional burn-in of 50,000 iterations. The loci with
posterior probability >0.76 were regarded as outlier loci.
In further detecting the EAL potentially driven by envir-

onmental variations, two methods of environmental associ-
ation analyses were performed. The first method is
Pearson’s correlation analysis, which was implemented
using SPSS 19 (SPSS Inc., Chicago, IL, USA). This regres-
sion analysis ignored the population structure, which might
produce a relaxed result of EAL. Similar to RDA, allele fre-
quencies per population were used as the response variable
and environmental variables were utilized as explanatory
variables. The loci with |r| > 0.50 and P < 0.05 were
regarded as EAL. The second method is LFMM, which was
implemented in LFMM 1.2 [39]. This Bayesian mixed
model considered the population structure, thereby avoid-
ing the bias caused by population history and isolation by
distance and producing a robust result of EAL. The run-
ning parameters were set as follows: 10,000 sweeps, 1000
burn-in sweeps, and number of latent factors as suggested
by STRUCTURE. The loci with |z| > 3 and P < 0.001 were
regarded as EAL.

Additional files

Additional file 1: The outlier loci identified by FDIST2 and BayeScan.
(DOCX 27 kb)

Additional file 2; Gene frequencies per allele of 1131 alleles for each
population. (DOCX 143 kb)

Additional file 3: Environmental variables for each location from the
WorldClim database. (DOCX 15 kb)
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