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ANALYTIC PERSPECTIVE

Model checking in multiple imputation: 
an overview and case study
Cattram D. Nguyen1,2*, John B. Carlin1,2 and Katherine J. Lee1,2

Abstract 

Background:  Multiple imputation has become very popular as a general-purpose method for handling missing data. 
The validity of multiple-imputation-based analyses relies on the use of an appropriate model to impute the missing 
values. Despite the widespread use of multiple imputation, there are few guidelines available for checking imputation 
models.

Analysis:  In this paper, we provide an overview of currently available methods for checking imputation models. 
These include graphical checks and numerical summaries, as well as simulation-based methods such as posterior 
predictive checking. These model checking techniques are illustrated using an analysis affected by missing data from 
the Longitudinal Study of Australian Children.

Conclusions:  As multiple imputation becomes further established as a standard approach for handling missing data, 
it will become increasingly important that researchers employ appropriate model checking approaches to ensure that 
reliable results are obtained when using this method.

Keywords:  Missing data, Model checking, Multiple imputation, Posterior predictive checking, Cross-validation, 
Diagnostics
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Background
Missing data are a pervasive problem in medical and epi-
demiological research. In recent years there have been 
advances in missing data methods, as well as increased 
recommendations from scientific journals to apply prin-
cipled methods to incomplete data problems [1]. One of 
the commonly used methods for handling missing data 
is multiple imputation (MI). Under this approach each 
missing value in the dataset is replaced with an imputed 
value; this process is repeated with an element of ran-
domness resulting in multiple “completed” datasets, 
each consisting of observed and imputed values. Stand-
ard analysis methods are then applied to each of the 
completed datasets, and the results are combined using 
simple formulae (known as Rubin’s rules) to give final 
estimates of target parameters with standard errors that 

appropriately allow for the uncertainty of the missing 
data [2].

MI has become very popular, as it can provide gains 
over analyses that only include data from participants 
with completely observed data (known as complete case 
analyses). MI does not suffer from the same losses of 
information as complete case analyses, because it can use 
information from cases with partially observed data, and 
it also has the potential to correct for bias associated with 
the omission of incomplete cases [3, 4].

In order for MI to produce valid results, the imputa-
tions must be generated using a sensible process. The 
most challenging task when using MI is the specification 
of the model for producing the imputed values (gener-
ally referred to as the “imputation model”). When con-
structing imputation models, imputers need to make 
several decisions concerning, for example, the functional 
form of the imputation model [5], the selection of vari-
ables to include in the model [6], possible methods for 
accommodating non-linear relationships [7], and how 
best to impute categorical and non-normal continuous 
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variables [8–10]. In many cases, there is no consensus in 
the literature to inform these modelling decisions. If the 
imputation model is poorly specified (such as through 
the omission of variables that appear in the subsequent 
analysis model), this can lead to invalid estimates of the 
target parameters. Given that best practice guidelines for 
MI are still evolving, it can be challenging for researchers 
to avoid pitfalls in imputation modelling [3].

The validity of MI also rests on assumptions concerning 
the missing data mechanisms, i.e. the processes underly-
ing how the missing data arose. Most standard imple-
mentations of MI assume that the unobserved values 
are missing at random (MAR), i.e. that the probability of 
non-response depends on the observed data and not on 
the values of the missing data. The assumption of MAR 
is fundamental to most implementations of MI, as it ena-
bles the imputations to be generated without explicitly 
modelling the missing data process.

As with all statistical models, it is important that 
researchers perform checks of their imputation models 
to examine how the results of the desired analysis may be 
affected by the specified imputation model. Despite the 
popularity of MI, the checking of imputation models is 
not part of routine practice. A recent review highlighted 
the rapid uptake of MI in the last few years, but also iden-
tified that very few researchers check imputation models 
or examine the sensitivity of results to modelling deci-
sions [11]. The failure to perform model checks may be 
due to the lack of guidance for performing imputation 
diagnostics, or the dearth of tools for performing such 
checks in statistical packages.

In this paper, we aim to address this gap by providing an 
overview of available methods for checking imputation 
models. In the next section, we introduce an illustrative 
analysis affected by missing data from the Longitudinal 
Study of Australian Children. We then review existing 
methods for checking imputation models and illustrate 
these techniques using the case study. We end with a dis-
cussion of the proposed model checking approaches.

Missing data case study
The case study in this paper uses data from the Longitudi-
nal Study of Australian Children (LSAC), a nationally rep-
resentative study of childhood development [12]. LSAC 
is a longitudinal cohort study consisting of 5107 children 
recruited at 0−1 years of age (B cohort) and 4983 children 
recruited at 4−5 years of age (K cohort), who have been 
followed up every two years since 2004. Details of the 
study design have been described elsewhere [13].

In this paper, we use data from LSAC’s B cohort to 
examine the relationship between harsh parental disci-
pline in early childhood (2–3  years) and conduct prob-
lems at 6–7  years. The outcome was assessed using the 

conduct subscale of the Strengths and Difficulties Ques-
tionnaire [14] with scores ranging between 0 and 10. 
These scores were dichotomised to produce a binary 
variable that was equal to 1 (i.e. “conduct problems”) if 
a child scored 3 or above, and 0 otherwise. The exposure 
of interest was measured by the hostile parenting scale 
[15–17], on which scores ranged between 1 and 10, with 
higher scores representing harsher parenting.

The following logistic regression model was used to 
assess the relationship between the risk of conduct prob-
lems and harsh parental discipline, with adjustment for 
potentially confounding parent and child factors (child 
sex, family socioeconomic status, financial hardship and 
maternal psychological distress):

where conduct_bin represented conduct problems 
and harsh was the harsh parenting exposure vari-
able. Sex was a binary variable where 0 =  female and 
1 =  male, SEP was an internally standardised measure 
(“Z-score”) of a family’s socioeconomic position, hard-
ship was a measure of financial stress (range 0–6) and 
distress was the mother’s score on the Kessler-6 scale 
for psychological distress (range 0–24) [18]. We refer to 
this logistic regression model as the “analysis model” to 
distinguish it from models used for imputation. Note that 
the example is used for illustrative purposes only, as it 
simplifies various aspects of the underlying substantive 
issues concerning parenting and child behaviour.

Assessment of missing data
Of the 5107 children in the B cohort, 3163 (62%) children 
had data available for all variables in the analysis model. 
Eighteen percent of the study participants had missing out-
come data, while 31% did not have data for the exposure of 
interest (harsh). The only completely observed variable 
was child sex. Table 1 shows the patterns of co-occurrence 
of missing values across the variables in the analysis. The 
missing data patterns do not follow a regular pattern, with 
many participants missing individual covariates.

Table  2 presents summary statistics of baseline vari-
ables for the complete and incomplete cases. Children 
with completely observed data differed from the incom-
plete cases in the following major ways: they had higher 
socioeconomic Z-scores on average (complete cases: 
mean  =  0.19 vs. incomplete cases: mean  =  −0.31), as 
well as a higher percentage of mothers completing high 
school (74 vs. 55%) and speaking English as their primary 
language (90 vs. 82%). There was a smaller proportion of 
sole parent families among complete cases compared to 
incomplete cases (6 vs. 15%).

logit p(conduct_bin) = γ0 + γ1harsh+ γ 2sex

+ γ3SEP+ γ4hardship

+ γ6distress
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The assessment of the missing data suggests that this 
analysis could benefit from MI. Firstly, there is a substan-
tial amount of missing data, with nearly all of the analysis 
model variables being incompletely observed. A complete 
case analysis would discard 38% of the sample, whereas 
MI can use partially-observed data from the incomplete 
cases. Secondly, restricting the analysis to the complete 
cases could produce biased results since there appear to 
be systematic differences between those with observed 
and missing data. Finally, use of MI in this analysis could 
take advantage of the availability of several other vari-
ables in the LSAC dataset that could be included in the 
imputation model.

Proposed imputation model
After assessing the missing data and deciding that MI 
would be an appropriate method of analysis, the next 
step is to develop the imputation model that will be used 
to generate imputed values. Based on recommendations 
in the MI literature [19, 20], we included all of the vari-
ables from the analysis model in the imputation model 
to ensure that the imputation model preserved the rela-
tionships between the variables of interest [21, 22]. We 
included the continuous version of the outcome variable 
(conduct) in the imputation model, because it poten-
tially contained more information than the dichotomised 
version (conduct_bin). After imputation, we derived 

Table 1  Missing data patterns for variables in the logistic regression analysis model (n = 5107)

Nb. + indicates value is present and − indicates value is missing. The sex variable was not included in the missing data patterns, because it was completely observed

Number of  
participants

Percent Conduct  
problems

Harsh  
discipline

SEP Hardship Psychological 
distress

3163 62 + + + + +
733 14 + − + + +
352 7 − − − − −
255 5 − + + + +
234 5 − − + + +
149 3 + − − − −
82 2 + − + + −
55 1 + + + + −
41 1 − − + + −
22 0.4 + + + − +
7 0.1 − + + + −
5 0.1 + − + − +
3 0.1 − − + − +
2 0.04 − + − + +
1 0.02 − − + − −
1 0.02 − + + − +
1 0.02 + − − + −
1 0.02 + + − + +

Table 2  Baseline characteristics of  participants with  complete and  incomplete data for  the variables in  the analysis 
model

Nb. The denominators in the fractions are the numbers of participants for whom the measure was available

Variable Complete cases (n = 3163) Incomplete cases (n = 1944)

Mother’s age (at baseline), mean (SD) 31.8 (4.9) 29.6 (6.0)

Socioeconomic Z-score, mean (SD) 0.19 (1.0) −0.31 (1.0)

Child sex (male), fraction (%) 1625/3163 (51.4) 983/1944 (50.6)

Indigenous status, fraction (%) 73/3163 (2.3) 157/1944 (8.1)

Mother’s main language is not English, fraction (%) 2825/3126 (90.4) 1539/1877 (82.0)

Sole parent family, fraction (%) 183/3163 (5.8) 294/1944 (15.1)

Child has a sibling, fraction (%) 1895/3163 (59.9) 1193/1944 (61.4)

Mother completed high school, fraction (%) 2350/3161 (74.3) 1060/1937 (54.7)
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the binary outcomes from the imputed values of the con-
tinuous outcome variable. We note, however, that imput-
ing the continuous version of the outcome variable could 
lead to problems with the imputation model not aligning 
with the logistic regression analysis model, an issue to 
which we return later.

We also included a number of variables that were not 
in the analysis model (often referred to as auxiliary vari-
ables in the MI literature) [6]. Because LSAC is a longi-
tudinal study, we had access to repeated measurements 
of the variables that were in our analysis model. These 
repeated measurements are good candidates for use as 
auxiliary variables, as they are highly correlated with 
our incomplete variables, and hence could be expected 
to improve the prediction of the missing values [6, 23]. 
The MI literature also recommends including predictors 
of missingness in the imputation model, to improve the 
plausibility of the MAR assumption underlying MI [3, 
24]. Predictors of missingness included: mother’s age, 
whether the mother’s main language is English, child’s 
indigenous status, and whether the mother completed 
high school [25]. We selected 19 auxiliary variables, giv-
ing a total of 25 variables in the imputation model.

Because of the patchwork (“non-monotone”) pattern of 
missing values occurring in several variables, and because 
we needed to impute missing values for different types of 
variables (e.g. continuous and categorical), we decided to 
use multiple imputation by chained equations (MICE). In 
this approach missing values are imputed using a series 
of univariate conditional imputation models [26, 27]. 
We imputed continuous variables using linear regres-
sion models and binary variables using logistic regression 
models. Although some of the continuous variables were 
skewed, they were imputed on the raw scale (i.e. without 
transformation) irrespective of their distribution [10, 28]. 
MI was implemented using the mi impute chained com-
mand in Stata software version 14.1 [29]. We generated 
40 imputed (“completed”) datasets based on the rule of 
thumb that the number of imputations should be at least 
equal to the percentage of incomplete cases (which was 
38% in this case) [19].

Checking the imputation model
In this section, we provide an overview of currently avail-
able methods for checking imputation models, ranging 
from simple graphical displays of the data through to 
complex simulation-based methods. These model check-
ing approaches are illustrated using the LSAC case study.

Exploring the imputed values
A useful initial check is to explore the imputed values 
that have been generated by the imputation model. This 
can be done using graphical displays of the imputed 

data using plots such as histograms or boxplots. The 
imputed data can also be checked numerically by gener-
ating descriptive statistics. These graphical and numeri-
cal checks provide information about the distribution of 
imputed values, and can be useful for assessing whether 
the imputed data are reasonable.

Judgements about the plausibility of the imputed data 
should be made with respect to subject matter knowl-
edge. Abayomi et  al. [30] characterise such diagnostics 
as external checks, since the model is being evaluated 
with respect to information external to the data at hand. 
Imputed data that are extremely implausible given sub-
ject matter knowledge could signal a potential problem 
with the imputation model.

However, it is also important to keep in mind that the 
goal of MI is not to recover or replace the missing values, 
rather it is to produce valid analytic results in the pres-
ence of missing data. Simulation studies have indicated 
that it is not essential that imputed values fall within 
plausible or possible ranges [28, 31]. For example, con-
sidering missing values in our harsh discipline variable, 
it may not be problematic if imputed values fall outside 
the range of possible scores on the harsh parenting scale. 
Given that our interest lies in associations between harsh 
parenting and child behaviour, it may be more important 
that relationships between variables are preserved during 
the imputation process.

Comparisons between observed and imputed data
One of the commonly recommended diagnostics is a 
graphical comparison of the observed and imputed data 
[19, 20, 30, 32]. These comparisons can be considered an 
internal check, as the data are being assessed with respect 
to available data [30]. Recommended plots for compar-
ing observed and imputed data include histograms [33], 
boxplots [19], density plots [30], cumulative distribution 
plots [34], strip plots [20] and quantile–quantile plots 
[32]. Figure  1 presents four plot types for comparing 
observed and imputed harsh parental discipline scores 
for a single imputed dataset. Figure  1a (kernel density 
plot) and b (histogram) demonstrate that the observed 
data are positively skewed, while the distribution of the 
imputed values is symmetrical. The quantile–quantile 
and cumulative distribution plots in Fig.  1c, d shows 
alternative comparisons of the distribution of observed 
and imputed values which do not readily highlight this 
difference in the distributions. Figure 2 shows a boxplot 
of the observed data (labelled 0) alongside the imputed 
data for the first 20 imputations (labelled 1–20). This type 
of plot enables each of the imputed datasets to be viewed 
separately in a single figure. Again, the boxplots reveal 
some differences between the observed and imputed 
data, including a more symmetrical distribution for the 
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imputed data, and slightly higher median values in the 
imputed data compared to the observed data.

When working with multiple incomplete variables, 
it is not always feasible to perform graphical checks 
of all imputed variables and all sets of imputations. An 

alternative approach is to tabulate summary statis-
tics of the observed and imputed data (Table  3). In our 
case study, the observed and imputed harsh discipline 
scores had similar means (3.36 vs. 3.44) and standard 
deviations (1.44 vs. 1.47). However, there were discrep-
ancies between the observed and imputed values of 
other variables, including differences in mean socio-
economic position (observed =  0.0, imputed = −0.51), 
and mean psychological distress score (observed = 2.93, 
imputed = 3.70).

Some authors have proposed using formal numeri-
cal methods to compare the distributions of observed 
and imputed values, in order to highlight variables that 
may be of concern. For example, Stuart et  al. [32] pro-
posed comparing the means and variances of observed 
and imputed values. They suggested flagging variables if 
the ratio of variances of the observed and imputed val-
ues is less than 0.5 or greater than 2, or if the absolute 
difference in means is greater than two standard devia-
tions. Abayomi et al. [30] proposed using the Kolmogo-
rov–Smirnov test to compare the empirical distributions 
of the observed and imputed data, and they flagged varia-
bles as potentially concerning if they had a p value below 
0.05. Although such numerical tests provide an expedient 
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Fig. 1  Graphs comparing the distributions of the observed (n = 3506) and imputed (n = 1601) harsh discipline scores. a Kernel density plot of the 
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means for checking a large number of imputed variables, 
the results can be difficult to interpret, because the mag-
nitude of the p-values depends on both the sample size 
and the proportion of missing values in the incomplete 
variables [35].

It is also important to recognise that discrepancies 
between observed and imputed data are not necessar-
ily problematic, since under MAR we may expect such 
differences to arise. To interpret whether these discrep-
ancies could be problematic, one can draw on exter-
nal information [30, 32, 33]. Imputers should consider 
whether observed discrepancies are to be expected given 
what is known about the incomplete variables and the 
missing data process. For example, in the case of LSAC 
it is known that lower socioeconomic position is associ-
ated with missingness, so we would expect the imputed 
socioeconomic scores to be lower than the observed [36].

Bondarenko and Raghunathan [37] suggested compar-
ing the observed and imputed distributions conditional 
on the propensity of response for that variable. Under 
MAR mechanisms, this is a potentially more useful strat-
egy, as we expect the observed and imputed data to be 
similar conditional on the response probability. To check 
the imputed values of harsh discipline, we estimated 
probabilities of response using a logistic regression model 
with the missing data indicator as the outcome variable 
and completed variables as predictors (this was done sep-
arately for each imputed dataset). We then checked the 
imputations graphically by plotting the harsh discipline 
scores against the estimated response propensity, using 
different coloured markers for the observed and imputed 
data (Fig. 3). The plot can be examined for major differ-
ences in the distribution of observed and imputed data 
for a given value of the propensity score [37]. Figure  3 
suggests slight differences in the shapes of the distribu-
tions of the observed and imputed harsh discipline values 
(conditional on response propensity), with the observed 
distribution being less symmetrical. However, the means 

of the observed and imputed values are conditionally 
very similar.

It is also possible to perform more formal checks 
after grouping individuals into strata according to 
their estimated probabilities of response. For example, 
Bondarenko and Raghunathan [37] propose checking 
continuous variables using analysis of variance (ANOVA) 
where the outcome variable is the variable being imputed 
and the factors are the response stratum, the indicator 
for observed/imputed status and their interaction. Based 
on empirical results from simulations, Bondarenko and 
Raghunathan [37] suggest rejecting an imputation model 
if the ANOVA test is rejected in 2 of 5 imputed datasets 
(using an alpha level of 0.05). We performed an ANOVA 
on each of the 40 imputed datasets; in 7 of the 40 imputed 
datasets the p-value for the interaction was <0.05, and in 
2 of the 40 datasets the p-value for main effect for miss-
ingness indicator was <0.05. Based on these checks, the 

Table 3  Summary statistics of the observed and imputed data for the incomplete variables in the analysis model

The summary statistics of the imputed data were calculated using pooled data over 40 imputations

SD standard deviation, Min minimum, Max maximum
a  Percent with characteristic

Observed Imputed

N Mean SD Min Max N Mean SD Min Max

Harsh discipline 3506 3.36 1.44 1 10 1601 3.44 1.47 −2.73 9.94

Socioeconomic position 4602 0.00 1.00 −4.90 3.03 505 −0.51 1.03 −5.24 3.20

Financial hardship 4574 0.29 0.71 0 6 533 0.46 0.77 −2.36 3.94

Psychological distress 4419 2.93 3.24 0 24 688 3.70 3.49 −9.01 19.87

Conduct problems 4211 21.5%a 896 20.1%a
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observed values (black) and imputed values (red) for one imputed 
dataset only
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imputation model appeared to be adequate for the impu-
tation of the harsh discipline variable.

Standard regression diagnostics
Imputation models are often based on regression mod-
els, either when imputing a single incomplete variable, 
or within a sequence of univariate regression imputa-
tion models using MICE as described above [26]. In this 
context, it is natural to check the goodness-of-fit of the 
imputation models using established methods for check-
ing assumptions of regression models. Standard regres-
sion diagnostics include investigations of residuals, 
outliers and influential cases. Marchenko and Eddings 
[38] suggest fitting the proposed regression imputation 
model to the observed data prior to performing MI, and 

then performing regression diagnostics. If the diagnos-
tics suggest poor model fit, then the imputation model 
could be modified before generating the imputations. For 
example, Fig. 4 shows a plot of residuals against fitted val-
ues for the linear regression imputation model for harsh 
discipline score (applied to the observed data, i.e. prior to 
imputation). This plot can be used to check the assump-
tions of the linearity of the regression function and the 
homogeneity of error variance. There is some striation in 
the plot (due to many of the harsh discipline scores tak-
ing on integer values), but on the whole, the residuals 
appear to have constant variance and do not display any 
trends across the range of fitted values.

If the substantive analysis is a regression analysis, then 
it is also possible to perform standard regression diag-
nostics for the analysis model after imputation. These 
diagnostics are primarily a check of the fit of the analy-
sis model, but they can be used to check for differences 
in the model fit across the multiple completed datasets. 
After performing MI, residuals can be generated for 
each completed dataset. For individuals with observed 
data, the residual is calculated as the difference between 
the observed value and its prediction from the analysis 
model; while for those with imputed data, the residual 
is the difference between the imputed value and its pre-
diction from the analysis model. The residuals can then 
be plotted against the fitted values for each completed 
dataset. White et al. [19] suggested that, if problems (e.g. 
outliers) occurred in only a few of the residual plots, then 
this might indicate a problem with the imputation model. 
If, however, the extreme values were consistent across all 
datasets, then the problems could be attributed to the 
analysis model.

Cross‑validation
Checking of imputation models can also be performed by 
cross-validation, which assesses the predictive ability of a 
model. In leave-one-out cross-validation, a single obser-
vation is deleted and the proposed model is fitted to the 
remaining data and used to predict the outcome for the 
excluded data point. This process is repeated by cycling 
through each observation, deleting and predicting the 
outcome for each observation in turn. The predictive 
performance of the model can be assessed numerically 
by summarising the discrepancies between the observed 
and predicted outcome values. The model can also be 
assessed graphically by plotting the predicted values 
against the observed values [39].

Figure  5 shows a leave-one-out cross-validation plot 
for the harsh discipline score. To produce this graph, 
the observed values of harsh were deleted in turn and 
imputed using 20 imputations. Because there were 3506 
participants with observed harsh discipline values, the 
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plot could have been generated based on 3506 cycles of 
deletion and imputation. To reduce the computational 
burden, this cross-validation plot was produced using a 
random selection of 10% of the observations. In Fig.  5, 
the median imputed values (calculated over 20 imputed 
datasets) have been plotted against the observed values. 
The error bars span between the 5th and 95th percentiles 
of the imputed values. The markers were jittered in the 
x-direction, because many participants shared the same 
observed harsh discipline values.

In Fig.  5, the prediction intervals do not always con-
tain the observed values. At the lower end of the harsh 
discipline scale, the imputation model overestimates the 
scores, while at higher values of harsh discipline, the 
scores tend to be underestimated. This suggests that the 
imputation model has poorer predictive performance at 
the extreme values.

Posterior predictive checking
One final method that has been proposed for checking an 
imputation model is posterior predictive checking (PPC) 
[40–43]. This is a Bayesian model checking technique 
that involves simulating “replicated” datasets from the 
proposed imputation model [40] (see He and Zaslavsky 
[42] for a practical method for generating replicated 
datasets using standard MI routines).

An important feature of PPC is that it is designed to 
investigate the potential effect of model inadequacies 
on the ultimate results of interest (rather than focussing 
on the intermediate step of the quality of the imputed 
data values). This is done by comparing inference from 
the completed data (consisting of observed and imputed 
data) to the inference from the replicated data (drawn 
entirely from the imputation model). The premise of PPC 
is that if the model were a good fit to the data, then analy-
ses of the completed and replicated datasets should yield 
similar results.

To assess an imputation model using PPC, one or more 
test quantities are selected; these test quantities are gen-
erally parameters of scientific interest. For example, if the 
analysis model were a regression model, the test quanti-
ties could be regression coefficients, standard errors and 
p-values. To test model fit using PPC, after simulating 
replicated datasets from the imputation model, the test 
quantities are estimated in both the replicated and com-
pleted datasets. Systematic differences in the estimates 
from the completed data and replicates may indicate 
poor model fit with respect to the chosen test quantities.

The discrepancy between the completed and replicated 
data can be summarised using the so-called posterior 
predictive p-value, which is defined as the probability 
that the replicated data are more extreme than the com-
pleted data with respect to the chosen test quantity [42]. 
The posterior predictive p-values can be estimated as the 
proportion of replications in which the estimate of the 
test quantity from the replicated data is larger than that 
estimated from the completed data. Posterior predictive 
p-values that are close to 0 or 1 indicate systematic dif-
ferences, and potential problems with the imputation 
model.

For the LSAC example, we performed PPC using as 
test quantities the estimated coefficients from the logis-
tic regression analysis. We created 2000 replications and 
calculated means of the test quantities in the replicated 
and completed data. The discrepancies between the com-
pleted and replicated data were then summarised both 
graphically and numerically. In Table 4 we present sum-
mary statistics of the estimates of the test quantities in 
the completed and replicated data. T̄ (Ycom) and T̄ (Y

rep
com) 

represent the (posterior predictive) means of the test 
quantities across 2000 completed and replicated datasets, 
respectively. For example, for the regression coefficient 
for harsh discipline, the estimated mean in the completed 
datasets was T̄ (Ycom) = 0.31 (corresponding to an odds 

Table 4  Results of posterior predictive checking for the logistic regression coefficients

Posterior predictive p values (PPP) are shown along with means of the test quantities (regression coefficients) estimated in the completed datasets, T̄ (Ycom), and the 
replicated datasets, T̄ (Yrep

com). Results are based on 2000 replications
a  The initial imputation model included the outcome variable as a continuous variable
b  The updated imputation model included the binary version of the outcome variable that was also used in the analysis

Test quantity (regression coefficient) Initial imputation modela Updated imputation modelb

T̄(Ycom) T̄(Y
rep
com) PPP T̄(Ycom) T̄(Y

rep
com) PPP

Harsh discipline 0.31 0.26 0.026 0.31 0.33 0.71

Sex 0.39 0.38 0.45 0.39 0.37 0.44

Socioeconomic position −0.31 −0.3 0.63 −0.34 −0.34 0.53

Financial hardship 0.08 0.1 0.63 0.09 0.11 0.63

Psychological distress 0.04 0.06 0.94 0.04 0.05 0.62
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ratio = 1.36), while the estimated mean in the replicated 
datasets was T̄ (Y

rep
com) = 0.26 (odds ratio = 1.30).

Table  4 also displays the posterior predictive p-value 
for each of the test quantities. The PPC results point to 
potential model inadequacies with respect to the logistic 
regression analysis. The posterior predictive p-value for 
the regression coefficient for harsh discipline was 0.026; 
thus, in 2.6% of the 2000 replications, the estimate in the 
replicated dataset was larger than that obtained from 
the actual data, suggesting poor model fit. These results 
are also displayed visually in Fig. 6, which is a scatterplot 
of the estimated regression coefficient for harsh disci-
pline in the replicated data plotted against the estimated 
regression coefficient in the completed data. The propor-
tion of points above the y = x line corresponds to the 
posterior predictive p-value (i.e. 0.026).

The graphical and numerical PPC results revealed a 
potential lack of fit of the imputation model with respect 
to the logistic regression analysis. These PPC results 
drew our attention to a problem with the proposed impu-
tation model; the imputation model was incompatible 
with the logistic regression analysis, in the sense that the 
continuous version of the outcome variable (conduct) 
was included in the imputation model rather than the 
binary outcome that was used in the analysis (conduct_
bin). The imputation model fitted linear relationships 
between the conduct outcome variable and the covari-
ates, whereas a threshold relationship was the analysis 
of interest. As a result of these checks, we repeated the 
imputation, using conduct_bin instead of conduct 
in the imputation model, and found that the PPC p-val-
ues became less extreme, i.e. moved closer to 0.5 (see 
Table 4).

Availability of model checking tools
To date very few imputation diagnostics have been 
made available in statistical software. At the time of 
writing, add-on packages for R offered the widest 
range of imputation diagnostics. For example, the mi, 
mice and Amelia packages include features for model 
checking in addition to their core functions for imput-
ing missing values [33, 44, 45]. The VIM and miP pack-
ages in R have been designed specifically for visualising 
imputed data [46, 47]. All of these packages have func-
tions for graphically comparing the distributions of the 
observed and imputed data. Some of these packages 
also offer scatterplots for plotting the observed and 
imputed data against another variable [33, 44, 46, 47]. 
The mi package has tools for producing residual plots 
for checking imputation models when imputing data 
using MICE [33]. The Amelia software also has a diag-
nostic feature called “overimputation”, which gener-
ates cross-validation plots of the mean imputed values 
against the observed values with 90% confidence inter-
vals [45].

There are very few imputation diagnostics available in 
the popular commercial packages. For example, at the 
time of writing this paper, SAS [48] and Stata [29] did 
not have built-in features for performing imputation 
diagnostics (besides checks of convergence). However, in 
Stata there is a user-written command, midiagplots, 
for producing graphical diagnostics [34]. This command 
has features for comparing the imputed and the observed 
data using plots such as kernel density plots. Although 
diagnostic features have not yet been incorporated into 
many statistical packages, it is possible to write syntax to 
perform many of these checks (see Additional file 1).

Conclusions
In this paper, we have provided an overview of a number 
of proposed diagnostics for checking of imputation mod-
els, from simple descriptive methods through to more 
complex approaches such as cross-validation and poste-
rior predictive checking. A summary of the model check-
ing approaches is shown in Table 5.

We illustrated the model checking techniques using a 
case study of parenting and child behaviour. The model 
checks in the case study drew our attention to potential 
problems with our imputation model. In particular, the 
PPC diagnostic flagged an important issue regarding the 
omission of the binary outcome variable from the impu-
tation model. This was a reminder of the importance of 
compatibility between the imputation and analysis mod-
els, and the need to tailor imputation models for the 
analysis at hand [49].

Although we illustrated a number of diagnostic 
methods, they all have strengths and weaknesses. The 
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Fig. 6  Posterior predictive checks of the coefficient for harsh dis-
cipline from the logistic regression analysis model. Estimates of the 
regression coefficient for harsh discipline from the replicated data 
are plotted against the estimates from the completed data (based 
on 2000 replications). The proportion of markers above the y = x line 
represents the posterior predictive p value (PPP = 0.026)
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graphical checks were useful for exploring the imputed 
values, but it can be challenging to apply them rou-
tinely to all imputed variables when working with large 
numbers of incomplete variables. Comparisons of the 
observed and imputed data can be used to identify dis-
crepancies between the observed and imputed data, but 
these comparisons can be difficult to interpret when data 
are suspected to be MAR. PPC is preferable to methods 
that focus on the plausibility of imputations, because it 
checks models with respect to quantities of substantive 
interest. In general, we suggest treating each of the tech-
niques presented in this paper as separate elements of a 
diagnostic toolkit.

In this paper, we assumed that the missing data mecha-
nism is MAR and that an MI analysis under MAR would 
be less biased than a complete case analysis. However, 
we acknowledge that there are scenarios under which 
MI can also produce biased results even when data are 
MAR (as illustrated in [50]). Unfortunately it difficult to 
identify such scenarios in practice when working with 
complex multivariate missing data problems. In addi-
tion, it is not possible to check the validity of the MAR 
assumption without knowing the values of the missing 
data. Thus, in addition to performing diagnostic checks, 
it is also important to examine whether results change 
under different assumptions concerning the missing data 
mechanisms. This is an ongoing area of research, with 
pattern mixture methods [51] and weighting approaches 
[52] being proposed methods of analysis when data are 
suspected to be not missing at random.

Given the increasing popularity of MI and the avail-
ability of automated tools for generating imputations, we 

echo the concerns of others that greater attention should 
be paid to methods for checking imputation models [30, 
42]. Our overview of currently proposed methods for 
model checking highlights the need for further research 
on this topic, in particular to develop better understand-
ing of how useful each of these methods is for detecting 
problems with imputation models. Such work should 
encourage the development of both computational tools 
and guidance for carrying out imputation model checks, 
which are needed to promote the sensible implementa-
tion of MI. This will become increasingly important as 
MI becomes further established as a standard missing 
data method into the future.
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Table 5  Overview of approaches to model checking in multiple imputation

Consider the plausibility of the imputed data

Explore imputed values using descriptive statistics and graphical displays

Use subject matter knowledge to judge the plausibility of imputed values, but remember that imputed values do not necessarily have to resemble 
observed data, as the goal of MI is not to predict the missing values but to produce valid inference in the presence of missing data

Comparisons of observed and imputed data

The imputed data should be compared with the observed data to assess plausibility and identify major problems with the imputation model

Comparisons can be made using summary statistics and graphical methods

Discrepancies between observed and imputed data do not necessarily signal a problem under MAR, but should be judged for their plausibility under 
likely missingness processes

Consider the analysis of interest

Consider the target analysis when making judgements about model adequacy. If one is interested in characteristics of the marginal distributions (e.g. 
percentiles), then it might be important that features of the marginal distributions are preserved in the imputed data. This becomes less critical if the 
primary interest lies in relationships between variables

Posterior predictive checking can be used to check the adequacy of imputation models with respect to quantities of substantive interest. Model fit 
can be explored using either graphical or numerical summaries (e.g. posterior predictive p-values), but again there can be no hard and fast rules for 
determining adequacy of model specification

Take a multifaceted approach

Use a number of different diagnostics to check imputation models. For example, descriptive statistics can be used to check the quality of imputed 
values themselves, while methods such as posterior predictive checking can be used to assess the imputation model with respect to target analyses
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