Biased reading frames of pre-existing $D_{\mu} - J_{\mu}$ coding joints and preferential nucleotide insertions at $V_{\mu} - DJ_{\mu}$ signal joints of excision products of immunoglobulin heavy chain gene rearrangements

Takeyuki Shimizu and Hideo Yamagishi

Department of Biophysics, Faculty of Science, Kyoto University, Kyoto 606, Japan

Communicated by K.Rajewsky

During B cell differentiation immunoglobulin (Ig) D_H segments join to $J_{\rm H}$ segments, followed by joining of $V_{\rm H}$ to DJ_{H} . Although circular excision products of $D_{H} - J_{H}$ rearrangements have been characterized, excision products of $V_{\rm H}$ to $DJ_{\rm H}$ joining have never been isolated. We selectively denatured chromosomal DNA of mouse splenocytes and enriched circular DNA spanning the long distance between V_H and D_H. Subsequent PCR amplifications allowed the identification of signal joints of V_H to DJ_H . Sequence analysis indicated that preexisting $D_H - J_H$ coding joints of excision products showed a strong bias for reading frame 1, and the absence of reading frame 2, which would allow the expression of a truncated μ chain called D_µ protein. When comparing the joints of the $V_H - DJ_H$ and $D_H - J_H$ rearrangements we observed N-nucleotide insertions to be abundant at the $V_H - D_H$ signal joint, but very sparse at the $D_H - J_H$ signal joint, while the coding joints of both contained abundant N-insertions. These differences in N region insertions at the signal joints suggest a differential control of the D-J and V-DJ rearrangements.

Key words: alkaline lysis/circular DNA/D-J and V-DJ joining/DJ_H reading frame/N sequences

Introduction

The initial diversity in Ig and TCR is afforded by combinatorial diversity generated by the combination of different V, (D) and J gene segments. In addition, considerable diversity is generated at the junction of these segments, namely junctional site diversity (deletion) by exonuclease activity, and junctional insertion diversity (addition of N nucleotides, thus 'N region diversity'), presumably by the enzyme terminal deoxynucleotidyl transferase (TdT).

Although it is common in adult lymphocyte repertoires, N region diversity at the junctions is rare in prenatal and neonatal repertoires of B cells (Gu *et al.*, 1990; Meek, 1990; Feeney, 1990; Bangs *et al.*, 1991), $\gamma\delta$ T cells (Asarnow *et al.*, 1988; Elliott *et al.*, 1988; Lafaille *et al.*, 1989) and $\alpha\beta$ T cells (Bogue *et al.*, 1991). The lack of N region diversity correlates with low levels of the enzyme TdT in fetal liver and fetal thymus (Gregoire *et al.*, 1979; Rothenberg and Triglia, 1983; Opstelten *et al.*, 1986).

The V(D)J joining results in two distinct classes of

recombination products: a coding joint and a signal joint created by the fusion of two joining signal sequences flanking the coding elements. According to recombination analysis performed with extrachromosomal recombination substrates. the incidence of N-insertions in a signal joint correlates well with the level of TdT activity in the cell line, but the incidence of coding joint insertions does not (Lieber et al., 1988). Differential N-insertions at the signal joint in the presence of TdT activity were obvious in TCR gene rearrangements of adult mouse thymocytes because Ninsertions in coding joints were common for every TCR gene γ , δ , β and α , but those in signal joints were mostly restricted to TCR γ and δ rearrangements (Takeshita *et al.*, 1989; Iwasato and Yamagishi, 1992). This may correlate with the overall temporal order of TCR gene rearrangement as suggested by Pardoll et al. (1987).

During B cell differentiation, the Ig genes encoding H and L chain are assembled by sequential rearrangements (Tonegawa, 1983). First, D_H segments are joined to J_H segments, followed by V_H to DJ_H joining. After successful IgH rearrangement with possible N region addition at the coding joint, V_L to J_L rearrangement takes place at the IgL loci. No N region diversity is introduced at the V_L-J_L junctions, possibly because TdT activity is turned off at this later stage of B cell development. For the IgH rearrangement, two separate controls seem to operate in D-J and V to DJ rearrangements as shown for the TCR β locus (Ferrier *et al.*, 1990; Rolink and Melchers, 1991). These stage-specific rearrangements led us to investigate whether N-insertions at signal joints might be differentially regulated in B cell precursors.

To answer this question, we isolated the circular excision products containing signal joints of D_H to J_H and V_H to DJ_H rearrangements. Excision products of D_H-J_H rearrangements were prepared from the 'cleared lysate' (Stanfield and Helinski, 1976) of splenocytes and the linear DNA was digested by ATP-dependent DNase (Yamagishi et al., 1983). We introduced alkaline lysis methods (Carroll et al., 1987) for the enrichment of large circular molecules spanning the long distance of murine V_H locus containing 500-1000 or more members (Livant et al., 1986; Rathbun et al., 1989). $V_H - DJ_H$ signal joints were sequenced following PCR amplification from the large circular DNA-enriched fraction. These results show that N region nucleotides were lacking in almost all $D_H - J_H$ signal joints, but were present abundantly at V_H to DJ_H signal joints. Therefore, the addition of N regions at the signal joint suggests the accessibility of TdT to recombination complexes, or the higher TdT activity at the stage of V_H to $D_H J_H$ joining.

We also examined the reading frame of the $D_H - J_H$ coding joints obtained from circular excision products and discussed the role of a short μ protein consisting of DJ_H and C_{μ} sequence (D_{μ} protein) in the early B cell development.

Results

Circular DNA preparation and DNA clones homologous to D_H or V_H

We have enriched small circular DNAs in the 'cleared lysate' (Stanfield and Helinski, 1976) from mouse splenocytes and purified them with the use of ATP-dependent DNase as previously described (Yamagishi et al., 1983). We prepared a phage DNA library of EcoRI or BamHI fragments of circular DNA and screened circular DNA clones by plaque hybridization with a D_{SP2} probe and a mixture of V_H probe composed of V_{HJ558} , V_{H36-60} , V_{HS107} , V_{HQ52} and V_{H7183} (Table I). Many clones reacted with D_{SP2} but no clones were positive with V_H probes. The high frequency of mitochondrial DNA clones showed the purity of circular DNA. Since the total length of the human $V_{\rm H}$ region is estimated to be ~3000 kb (Matsuda et al., 1988), circular DNA spanning the long distance between V_H and DJ_H may have been lost during the high-speed centrifugation of 'cleared lysate' which was standardly used for the preparation of 150-200 kb circular DNAs (Fujimoto and Yamagishi, 1987; Iwasato et al., 1990, 1992). In an attempt to isolate larger DNA circles we used the alkaline lysate method, involving alkaline lysis to denature selectively chromosomal linear DNA ('alkaline lysate') and then performed phase separation of circular DNA (Carroll et al., 1987). Now, we obtained several V_Hpositive clones even in a small scale screening. In this library, mitochondrial DNA clones were enriched 500-fold and VHpositive clones are enriched several 10-fold as compared with the chromosomal genomic library. To purify the circular DNA further we used CsCl-ethidium bromide (EtBr) gradients to band it. As measured by the frequency of mitochondrial DNA clones, circular DNAs were enriched to 3000-fold in the alkaline lysate method (15-16.5%) of the clones consist of mitochondrial DNA), but not to the high levels of purity obtained with the cleared lysate method (65% mitochondrial DNA clones). Many V_H-positive clones as well as D_{SP2}-positive clones were obtained from these adult splenocytes. Nevertheless, circular DNA libraries prepared from day 18 fetal liver by these two methods did not show any V_{H} -positive clones. V-DJ rearrangements may be rare if not totally absent in fetal liver.

DJ_H recombinants in circular DNA

The D_{SP2} probe (pHC100) used in this study contained the germline sequence of $D_{SP2.9}$ (Lawler *et al.*, 1987) followed

Table I Preparation of circular DNA clopes and plaque hybridization

by a new pseudo D element [93% homologous to ψD_1 (Lennon and Perry, 1989) and termed ψD_3] (EMBL, GenBank and DDBJ nucleotide sequence database under the accession number D13199). D_{SP2.9} has an unique sequence in the coding region but a high homology to other D_{SP2} genes in the flanking sequence and is virtually identical with D_{SP2.9} shown by Gu *et al.* (1991).

Circular DNAs were prepared from the 'cleared lysate' of splenocytes, digested by *Eco*RI and cloned into $\lambda gt11$ phage. Out of 5×10^5 phage, 32 D_{SP2}-positive clones were obtained (Table I). We selected 28 clones and recloned into plasmid pHSG399 (Table II). Although a linkage map of D_{SP2}-positive EcoRI fragments is known (Kurosawa and Tonegawa, 1982), recombinant structures were not predictable from the insert length, possibly due to a strainspecific polymorphism. We performed preliminary nucleotide sequencing with respect to the specified base using specific sequence primers from the upstream sense strand or downstream antisense strand of D_{SP2} as shown in Figure 1. D_{SP2}-sequence primers reacted to 23 clones but did not react to the other five clones (pHC6, 13, 17, 21 and 31). Out of 23 D_{SP2}-sequence reactive clones, 13 clones carried the germline configuration of D_{SP2} and 10 clones showed a rearrangement of D_{SP2} sequence, namely four clones contained a single signal joint and six clones contained both coding joint and signal joint in the same molecule. In Figure 1, the rearranged sequences of these 10 clones are shown with the previous three sequences (Toda et al., 1989). The five clones negative for D_{SP2} primers are 1.2 kb (pHC6, 13, 21 and 31) and 1.1 kb (pHC17) in length. We subcloned pHC6 and pHC17, and completed the sequences (1190 bases for pHC6; 1085 bases for pHC17) as registered in the databases under the accession number D13197 and D13198, respectively. pHC6 contained the region upstream of the pseudo D element (ψD_1) possessing a functional 3' recombination signal but no 5' signal (Lennon and Perry, 1989). pHC17 contained two recombination sites; one was a coding joint of another new pseudo D element [94% homologous to ψD_1 (Figure 1a) and thus termed ψD_2 and J_{H3} , and the other a signal joint of $D_{SP2.9}$ with J_{H4} (Figure 1b). The sequence downstream of signal joint was identical with the D_{SP2} probe containing ψD_3 element. Negative reaction of pHC17 to the antisense primer downstream of D_{SP2} may be due to a single base change in the D_{SP2.9} spacer sequence.

Mouse strain	Source	DNA preparation	Vector (cloning site)	No. of clones _ screened	Probes		mtDNA clones (%)
					D _{SP2}	V _H	
BALB/c	7WS	CL/CsCl-EtBr	λgt11 (EcoRI)	2.4×10 ⁵	22	0	65.0
				2.7×10^{5}	10	ND	ND
BALB/c	7WS	CL/CsCl-EtBr	Charon 27 (BamHI)	1.2×10^{6}	404	0	57.5
BALB/c	4WS	AL	λgt10 (EcoRI)	4.4×10^{4}	0	10	2 5
BALB/c	4WS	AL/CsCl-EtBr	λgt10 (EcoRI)	1.5×10^{5}	25	13	15.0
BALB/c	4WS	AL/CsCl-EtBr	$\lambda gt 10 (EcoRI)$	2 6 × 105	17	41	15.0
C57BL/6	fetal liver	CL/CsCl-EtBr	$\lambda g t = 0$ (EcoRI)	2.0×10	1	41	10.5
C57BL/6	fetal liver	AL/CsCl-EtBr	λ gt10 (<i>Eco</i> RI)	1.7×10 ⁶	22	0	15.5
BALB/c	4WS	total	λgt10 (EcoRI)	1.9×10 ⁶	15	38	0.005

Probe-positive clones were scored. V_H , coding regions of V_{HJ558} , V_{H36-60} , V_{HS107} , V_{HQ52} and V_{H7183} . Circular DNA was prepared from 'cleared lysate' (CL/CsCl-EtBr) or 'alkaline lysate' (AL) followed by CsCl-EtBr branding (AL/CsCl-EtBr). 4WS, 4 week old mouse splenocytes; 7WS, 7 week old splenocytes.

A partially rearranged DJ_H allele including ψD_1 segment has the capacity to initiate a D_{μ} transcript starting at the 5' flanking region of the D segment (Nelson *et al.*, 1983; Reth and Alt, 1984; Lennon and Perry, 1989). However, the D_{μ} protein is produced only when the D segment rearranges to the J_H segment in the appropriate reading frame (RF), RF2 according to the numbering system of Ichihara *et al.* (1989). We thus examined the RF of DJ_H coding joints obtained from circular excision products produced by secondary DJ_H rearrangements (Figure 1a). We detected six RF1 and two RF3 while no RF2 was found.

N-insertions were noticed at eight of nine coding joints. However, only two N-insertions were found in 14 DJ_H signal joints (Figure 1b).

$V_H - DJ_H$ recombinants in circular DNA clones

In order to analyze V_{H} -positive clones in circular DNA libraries prepared by the alkaline lysis method (Table I) in more detail, we selected four clones at random for recloning, restriction site mapping and sequencing. Three clones, pHC102 (1.5 kb), pHC103 (3.5 kb) and pHC104 (5.0 kb) contained different members of V_{HJ558} family in the germline configuration and another clone pHC105 (1.2 kb) contained the germline sequence of V_{H36-60} family (database accession numbers D13200-D13203). We prepared 3'V_H probes from these germline V_H sequence clones; 0.2 kb *DdeI* fragment (from pHC102), 0.15 kb

BanI-EcoRV fragment (from pHC103) and 0.1 kb BanII-EcoRI fragment (from pHC105). However, no double-positive clones for 3'V_H and D_{SP2} probes were obtained in the circular DNA libraries. Since the excision products of V_H-DJ_H rearrangement may harbor several thousand varieties of V_H in germline configuration, a single V_HD_H signal joint may be too rare to be cloned into phage vectors. Alternatively, the murine V_H orientation may be completely inverted with respect to the DJ_H loci and the $V_H - DJ_H$ rearrangements could generate both coding and signal joints in the same chromosomes. To distinguish between those two possibilities we tried to clone the $V_H D_H$ signal joint following PCR amplification from either circular DNAs or chromosomal DNAs digested by EcoRI using primers specific to $3'V_H$ and $5'D_{SP2}$ as shown in Figure 2. For $3'V_{H}$ -specific primers, we used the most J_{H} -proximal V_{H} gene, V_{H81X} of the V_{H7183} family which is preferentially utilized in neonatal spleen (Yancopoulos et al., 1984; Malvnn et al., 1990) and the most upstream and largest gene family, V_{HJ558} (Brodeur et al., 1988). We amplified circular DNAs from 4 week old mouse spleen and fetal liver prepared by alkaline lysis and purified by banding in CsCl-EtBr gradients as well as chromosomal DNA from 4 week old mouse spleen and liver. PCR amplification of DNA using $3'V_H$ and $5'D_{SP2}$ primers having EcoRI or BamHI cloning sites was attained exclusively in the circular DNAs from adult splenocytes. No PCR products were

Clones	Size (kb)	Sequences determined				
		Coding joint	Germline	Signal joint		
pHC1	7.0		D _{SP2}			
pHC2	4.6		D _{SP2}			
pHC3	4.6		D _{SP2}			
pHC5	4.6		D _{SP2}			
pHC6	1.2		ψD_1			
pHC7	4.2	$D_{SP2,2} - J_{H1}$		$D_{FL16,1} - J_{H2}$		
pHC8	4.1			$D_{SP2} - J_{H1}$		
pHC9	5.0		D _{SP2}			
pHC11	4.0	$D_{SP2 67} - J_{H2}$		$D_{SP2.9} - J_{H3}$		
pHC13	1.2	0121011 112	ψD_1			
pHC14	4.1		-	$D_{SP2} - J_{H1}$		
pHC16	4.6	$D_{SP2,1,5} - J_{H1}$		$D_{FL16,1} - J_{H3}$		
pHC17	1.1	$\psi D_2 - J_{H3}$		$D_{SP2.9} - J_{H4}$		
pHC18	4.6		D _{SP2}			
pHC19	4.6		D _{SP2}			
pHC20	4.6	$D_{SP2.1.5} - J_{H3}$		$D_{FL16.1} - J_{H4}$		
pHC21	1.2		ψD_1			
pHC22	4.6		D _{SP2}			
pHC23	5.2		D _{SP2}			
pHC24	5.1	$D_{SP2.8} - J_{H2}$		$D_{SP2} - J_{H3}$		
pHC25	5.2		D _{SP2}			
pHC26	5.4			$D_{SP2} - J_{H4}$		
pHC27	4.1			$D_{SP2} - J_{H1}$		
pHC28	4.6		D _{SP2}			
pHC29	5.0		D _{SP2}			
pHC30	4.6		D _{SP2}			
pHC31	1.2		ψD_1			
pHC32	4.3	$D_{SP2.8} - J_{H1}$		$D_{FL16.1} - J_{H2}$		

 D_{SP2} probe-positive phage clones were recloned into plasmid vector pUC19 or pHSG399 and the sequences were determined using the specific primers of D_{SP2} and J_{H2-4} or the universal M13 primers for ψD_1 clones. Fragment lengths were measured using the references of *Sry*I digests of λ DNA. Fragment lengths 7.0, 5.2, 5.0 and 4.6 kb may correspond to the germline *Eco*RI fragments, 6.7, 5.4, 5.2 and 5.0 kb (Kurosawa and Tonegawa, 1982) respectively.

(a)					
GL DSP2	TTGGCAGG <u>GATTTTTGT</u> CAA-9bp-T	<u>actgtg^ccta&tatg&t</u> Aac∾	CACAGTG-9bp-GC	A <u>ACAAAAACC</u> CAGTATGCCCA	
рНС7 рНС16 рНС32	I I I I	ACTGTGTCTACTATGATT ACTGTGTCTACTATGGTAACTAC ACTGTGCCTAGTATGGTAACTAC	TGGG CCCTT GTAGGA	TGTCT GTACTTCGATGTCT GGTACTTCGATGTCT	RF1 RF1 RF3
GL J1	GGTGTCCTAAGGCAGGATGTGGAGAG	<u>agttttagt</u> ataggaacagaggc	AGAACAGA <u>GACTGT(</u>	CTACTGGTACTTCGATGTCT	
GL DSP2	TTGGCAGG <u>GATTTTTGT</u> CAA-9bp-T	<u>астото</u> ста&тато&тфасфас <u>;</u>	CACAGTG-9bp-GC	A <u>ACAAAAACC</u> CAGTATGCCCA	
MSI-N5 MSI-N7 pHC11 pHC24		ACTGTGTCTACTATGGTTACGAC ACTGTGTCTACTATGGTTACG ACTGTGCCTACTAT ACTGTGCCTAGTATGGTAACTA	GCGCGC AGGTACGACCCGT AGGT	GACTACTGGGGC GGGGC ACTACTTTGACTACTGGGGC ACTACTTTGACTACTGGGGC	RF1 RF1 RF1 RF3
GL J2	CATTGTTAGGCTACATGGGTAGATGG	GTTTTTGTACACCCACTAAAGGG	STCTATGA <u>TAGTGT(</u>	SACTACTTTGACTACTGGGGC	
GL DSP2	TTGGCAGG <u>GATTTTTGT</u> CAA-9bp-T	<u>астото</u> ста&тато&тАас&ас!	CACAGTG-9bp-GCI	A <u>ACAAAAACO</u> CAGTATGCCCA	
pHC20	I	ACTGTGTCTACTATGGTAACTAC	GGTTTTT	CCTGGTTTGCTTACTGGGGC	RF1
GL J3	AATCCTGGAGCCCTAGCCAAGGATCA	TTTATTGTCAGGGGTCTAATCAT	IGTTGTCA <u>CAATGT(</u>	CCTGGTTTGCTTACTGGGGC	
GL Ψ D1	GAATTCAGACAGCTAGCCTCTGCAGT	GCCACAACC <u>CACAATG</u> TGTTGTG	ACCTT <u>ACAAGAAGG</u> T	TCTTATCTCAGCAGAGAAAA	
pHC17	GAATTCAGGCAGCTAGTCTCTGCAGT	GCCACAA AAA	GCTTAC	CTGGGGCCAAGGGACTCTGGT	
GL J3	AGCCAAGGATC <u>ATTTATTGT</u> CAGGGG	TCTAATCATTGTTGTCA <u>CAATGT</u>	<u>CCTGGTTTGCTTA</u>	CTGGGGCCAAGGGACTCTGGT	
(b)					
GL DSP2	ggcagg <u>gatttttgt</u> caagg <mark>g</mark> at	стас <u>тастстс</u> ста статс ^а та	c _T ac <u>cacagtg</u> atat	ATCCAGCAACAAAAACCCAGTA	TGC
pHC8 pHC14 pHC27	TGTGGAGAGA <u>GTTTTAGT</u> ATAGO TGTGGAGAGA <u>GTTTTAGT</u> ATAGO TGTGGAGAGA <u>GATTTTAGT</u> ATAGO	SAACAGAGGCAGAACAGA <u>GACTGTG</u> SAACAGAGGCAGAACAGA <u>GACTGTG</u> SAACAGAGGCAGAACAGA <u>GACTGTG</u>	CACAGTGATAT GT <u>CACAGTG</u> ATAT <u>CACAGTG</u> ATAT	"ATCCAGCA <u>ACAAAAACC</u> CAGTA "ATCCAGCA <u>ACAAAAACC</u> CAGTA "ATCCAGCA <u>ACAAAAACC</u> CAGTA	TGC TGC TGC
GL JH1	tgtggagag <u>agttttagt</u> atagg	AACAGAGGCAGAACAGA <u>GACTGTG</u>	CTACTGGTACTTCGA	TGTCTGGGGCGCAGGGACCACG	GTC
GL DFL16.	1 GCTTTTTGTGAAGGGATCTACTA	CTGTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CTAC <u>CACAGTG</u> CTAT	ATCCATCA <u>GCAAAAACC</u> CATTG	TGC
pHC7 pHC32	ggtagatg <u>ggtttttgt</u> acacco ggtagatg <u>ggtttttgt</u> acacco	ACTAAAGGGGTCTATGA <u>TAGTGTG</u> ACTAAAGGGGTCTATGA <u>TAGTGTG</u>	CACAGTGCTAT ACAGTGCTAT	TATCCATCA <u>GCAAAAACC</u> CATTG TATCCATCA <u>GCAAAAACC</u> CATTG	TGC
GL JH2	GGTAGATG <u>GGTTTTTGT</u> ACACCC	actaaaggggtctatga <u>tagtgtg</u>	ACTACTTTGACTACI	GGGGCCAAGGCACCACTCTCAC	AGT
GL DSP2	ggcagg <u>gatttttgt</u> caagg ^g at	ctac <u>tactgtg</u> cta&tatg ^a ta	c ^g ac <u>cacagtg</u> atat	ATCCAGCAACAAAAACCCAGTA	TGC
MSI-48	GGTAGATG <u>GGTTTTTGT</u> ACACCC	ACTAAAGGGGTCTATGA <u>TAGTGTG</u>	CACAGTGATAT	TATCCAGCA <u>ACAAAAACC</u> CAGTA	TGC
GL JH2	GGTAGATG <u>GGTTTTTGT</u> ACACCC	ACTAAAGGGGTCTATGA <u>TAGTGTG</u>	ACTACTTTGACTACI	GGGGCCAAGGCACCACTCTCAC	AGT
GL DFL16.	1 <u>GCTTTTTGT</u> GAAGGGATCTAC <u>TA</u>	<u>CTGTG</u> TTTATTACTACGGTAGTAG	CTAC <u>CACAGTG</u> CTAT	TATCCATCA <u>GCAAAAACC</u> CATTG	TGC
MSI-N5 MSI-N7 DHC16	CAAGGATC <u>ATTTATTGT</u> CAGGGG CAAGGATC <u>ATTTATTGT</u> CAGGGG CAAGGATCATTTATTGTCAGGGG	TCTAATCATTGTTGTCA <u>CAATGTG</u> TCTAATCATTGTTGTCA <u>CAATGTG</u> TCTAATCATTGTTGTCACAATGTG	CACAGTGCTAT CACAGTGCTAT CACAGTGCTAT	FATCCATCA <u>GCAAAAACC</u> CATTG FATCCATCA <u>GCAAAAACC</u> CATTG FATCCATCAGCAAAAACCCATTG	TGC TGC TGC
GL JH3	CAAGGATC <u>ATTTATTGT</u> CAGGGG	TCTAATCATTGTTGTCA <u>CAATGTG</u>	CCTGGTTTGCTTACT	IGGGGCCAAGGGACTCTGGTCAC	TGT
GL DSP2.9	GGCAGG <u>GATTTTTGT</u> CAAGGGAT	CTAC <u>TACTGTG</u> TCTATGATGGTTA	CTAC <u>CACAGTG</u> ATA1	TATCCAGCT <u>ACAAAAACC</u> CAGTA	TGC
pHC11	CAAGGATC <u>ATTTATTGT</u> CAGGGG	TCTAATCATTGTTGTCA <u>CAATGTG</u>	CACAGTGATAT	TATCCAGCT <u>ACAAAAACC</u> CAGTA	TGC
GL JH3	CAAGGATC <u>ATTTATTGT</u> CAGGGG	TCTAATCATTGTTGTCA <u>CAATGTG</u>	CCTGGTTTGCTTAC	GGGGCCAAGGGACTCTGGTCAC	TGT
GL DSP2	GGCAGG <u>GATTTTTGT</u> CAAGG _T AT	стас <u>тастстс</u> тста _с татс ^с т ^т а	CTAC <u>CACAGTG</u> ATAT	TATCCAGCAACAAAAACCCAGTA	TGC
pHC24	CAAGGATC <u>ATTTATTGT</u> CAGGGG	TCTAATCATTGTTGTCA <u>CAATGTG</u>	CACAGTGATA	TATCCAGCA <u>ACAAAAACC</u> CAGTA	TGC
GL JH3	CAAGGATCATTIATTGICAGGGG	STCTAATCATTGTTGTCA <u>CAATGTG</u>	CUTGGTTTGCTTACI	GGGGCCAAGGGACTCTGGTCAC	IGI
GL DFL16.	1 <u>GCTTTTTGT</u> GAAGGGATCTAC <u>T</u>	ACTGTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CTAC <u>CACAGTG</u> CTAI	TATCCATCA <u>GCAAAAACC</u> CATTG	TGC
pHC20	AGACTCTGG <u>GGTTTTTGT</u> CGGGT	TATAGAGGAAAAATCCAC <u>TATTGTG</u>	CACAGTGCTAT	TATCCATCA <u>GCAAAAACC</u> CATTG	TGC
GL JH4	agactctgg <u>ggtttttgt</u> CGGG1	alagaggaaaaaCCCAC <u>TATTGTG</u>	ATTACTATGCTATGC	JACTACTGGGGTCAAGGAACCTC	AGT
GL DSP2	ggcagg <u>gatttttgt</u> caaggfat	ctac <u>tactgtgt</u> cta&tatg <mark>A</mark> ta	.c _t ac <u>cacagtg</u> atat	ATCCAGCAACAAAAACCCAGTA	TGC
pHC26	AGACTCTGG <u>GGTTTTTGT</u> CGGGT	TATAGAGGAAAAATCCAC <u>TATTGTG</u>	A <u>CACAGTG</u> ATAT	TATCCAGCA <u>ACAAAAACC</u> CAGTA	TGC
GL JH4	AGACTCTGG <u>GGTTTTTGT</u> CGGGT	ACAGAGGAAAAACCCAC <u>TATTGTG</u>	ATTACTATGCTATGC	GACTACTGGGGTCAAGGAA CCTC	AGT
GL DSP2.9	GGCAGG <u>GATTTTTGT</u> CAAGGGAT	CTAC <u>TACTGTG</u> TCTATGATGGTTA	.CTAC <u>CACAGTG</u> ATA1	ATCCAGCT <u>ACAAAAACC</u> CAGTA	TGC
pHC17	AGACTCTGG <u>GGTTTTTGT</u> CGGGT	ATAGAGGAAAAATCCAC <u>TATTGTG</u>	CACAGTGATAT	ATCCAGCT <u>ACAAAAACC</u> CAGTA	TGC
GL JH4	AGACTCTGG <u>GGTTTTTGT</u> CGGG1	ACAGAGGAAAAACCCAC <u>TATTGTG</u>	ATTACTATGCTATGC	ACTACTGGGGTCAAGGAACCTC	AGT

Fig. 1. Nucleotide sequences of D-J coding joint (a) and signal joint (b) of circular DNA clones. The recombinant sequences including the previous sequence, MSI-48, N5 and N7 (Toda *et al.*, 1989) are compared with the corresponding germline sequences of D_{SP2} , $D_{FL16.1}$ (Kurosawa and Tonegawa, 1982), $D_{SP2.9}$ (this work, database accession number D13199), J_H (Sakano *et al.*, 1980) and ψD_1 (Lennon and Perry, 1989). Two strain-specific polymorphic base changes are observed in the J_{H4} spacer sequence. Each reading frame is shown at the right. The signal sequences are underlined and the terminal *Eco*RI site is overlined. The sense and antisense sequence primers for D_{SP2} are overlined and underlined with an arrow, respectively.

recovered from chromosomal DNA of adult spleen and liver cells. These results demonstrated the presence of circular DNA excised by V_H to DJ_H joining and disproved the inverted orientation of all V_H loci. The amplified DNAs were digested by *Eco*RI and *Bam*HI, and cloned into the plasmid vector pHSG399. Southern blot analysis of undigested PCR products amplified from the circular DNA of adult splenocytes and hybridized with the mixed DNAs of V_{H81X}/D_{SP2} PCR clones revealed a fragment close to 93 bp which is expected from a precise signal joint of $V_H - D_H$ joining (data not shown).

For sequence determination, we selected 10 clones amplified by $3'V_{H81X}$ and $5'D_{SP2}$ primers (Figure 2a) and eight clones by $3'V_{HJ558}$ and $5'D_{SP2}$ primers (Figure 2b). Every clone carried the V_H to DJ_H signal joint. Unexpectedly, N-insertions were found at every $V_{H81X}-D_{SP2}$ signal joint of 10 clones and at seven of eight $V_{HJ558}-D_{SP2}$ signal joints. In clone pHC122, one base was lost from the 3' signal heptamer of V_{HJ558} . To confirm the V gene replacement circles identified in the cell line (Usuda *et al.*, 1992), circular DNAs from adult splenocytes were amplified using PCR primers, $5'V_{H81X}$ and $3'V_{HJ558}$. However, no PCR products were recovered. The specified V_H sequence to be replaced may be rare if not totally absent in the mixed cell population.

Discussion

Circular DNA preparations

(a)

Since extrachromosomal circular DNAs in eukaryotic cells form only a small fraction of total DNA (Rush and Misra, 1985), various preparation procedures have been developed. Stanfield and Helinski (1976) prepared a cleared lysate with detergent, partially purified extrachromosomal DNAs by banding in CsCl-EtBr gradients and then finally purified by a combination of denaturation-renaturation and nitrocellulose chromatography. To minimize the loss of

VH81X sense

nicked open circles, we introduced the treatment of ATPdependent DNase, which acts only upon linear DNA molecules, in place of denaturation – renaturation (Yamagishi et al., 1983). We successfully purified circular DNAs of a large size up to 150-200 kb as measured by electron microscopy (Fujimoto and Yamagishi, 1987; Iwasato et al., 1990, 1992). This method allowed the isolation of the relatively small sized excision products of $D_H - J_H$ rearrangement in high purity but failed to isolate larger circular DNAs of $V_H - DJ_H$ rearrangement products. However, isolation of circular DNA by alkaline lysis and phase separation without pelleting the chromosomal DNA (Griffin et al., 1981; Carroll et al., 1987) in combination with PCR technology was useful to identify the presence of excision products of V_H to DJ_H rearrangements. This isolation method is indispensable for analyzing the large circular DNA of several thousand kb in length as estimated from the human $V_{\rm H}$ region locus (~3000 kb) (Matsuda et al., 1988). However, the purity obtained by this method is limited compared with the cleared lysate and ATPdependent DNase method.

Defective D elements

The D_{SP2} probe we used also contained the sequence homologous to ψD_1 gene (Lennon and Perry, 1989). Accordingly, we found new pseudo D elements, ψD_2 and ψD_3 among circular DNA clones. Although these entire germline sequences are truncated by an *Eco*RI cloning site, the ψD_2 element is 94% homologous to the 33 bp sequence downstream of the ψD_1 *Eco*RI site (Figure 1a) and ψD_3 is 93% homologous to the 394 bp sequence upstream of the ψD_1 *Eco*RI site (database accession number D13198). While ψD_1 is located upstream of $D_{SP2.8}$ (Gerondakis *et al.*, 1988; Lennon and Perry, 1989). New pseudogenes ψD_2 and ψD_3 located between ψD_1 and ψD_{ST4} suggest that many other ψD elements are also scattered in D locus. Since

1-7	VH81X Sense		antionna
GL VH81X	(GCGAATTC) CTGTACCTGCAAATGAGCAG-26bp-ATTACTGTG	CAAGAC	And Isense A <u>CACAATG</u> AGCAAAAGTTACTGTGAGCTCAA <u>ACTAAAACC</u> T (GGATCCG
pHC107	GAATTC) TGGCAGG <u>GATTTTTGT</u> CAAGGGATCTAC <u>TACTGTG</u>	GC	CACAGTGAGTGAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
pHC108	GAATTC) TGGCAGG <u>GATTTTTGT</u> CAAGGGATCTAC <u>TACTGTG</u>	GA	CACAATGAGGAAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
pHC109	GAATTC) TGGCAGG <u>GATTTTTGT</u> CAAGGGATCTAC <u>TACTGTG</u>	CC	CACAATGAGGAAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
pHC110	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	CC	CACAATGAGGAAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
pHC111	GAATTC) TGGCAGG <u>GATTTTTGT</u> CAAGGGATCTAC <u>TACTGTG</u>	CC	CACAATGAGGAAATGTTATTGTGAGCTCAAACTAAAACCT (GGATCC
HC112	GAATTC) TGGCAGG <u>GATTTTTGT</u> CAAGGGATCTAC <u>TACTGTG</u>	GGGTC	CACAATGAGGAAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
HC113	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	т	CACAGTGAGGGAATATTATTGTGAGCTCAAACTAAAACCT (GGATCC
HC114	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	cc	CACAGTGAGTGAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
HC115	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	CC	CACAATGAGGAAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
HC116	GAATTC) TGGCAGGGATTTTTGTCAAGGTATCTACTACTGTG	TAGC	CACAATGAGGAAATGTTACTGTGAGCTCAAACTAAAACCT (GGATCC
	DSP2 sense		
GL DSP2	(CCGAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	ÇCTAÇT	ATGATAACGACCACAGTGATATATCCAGCAACAAAAACCCAGTATGCC
'h)			
27			VHJ558 antisense
GL VHJ55	8 GACTCTGCAGTCTATTAC	IGCAAG	ACACAGTGTTG CAACCACATCCTGAGAGTGTCAGA (GGATCCGG)
	0 11		
HC117	GAATTC) TGGCAGG <u>GATTTTTGT</u> CAAGGGATCTAC <u>TACTGTG</u>	CC	CACAGTGTTGTAACCACATCCTGAGTGTGT <u>CAGA</u> (GGATCC
HC118	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	т	CACAGTGATACAACCACATCCTGAGTGTGTCAGA (GGATCC
HC119	GAATTC) TGGCAGGATTTTTGTCAAGGGATCTACTACTGTG	AG	CACAGTGTTGCAACCACATCCTGAGAGTGT <u>CAGA</u> (GGATCC
HC120	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	cc	CACAGTGTTGCAACCACATCCTGAGAGTGTCAGA (GGATCC
HC121	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	GG	CACAGTGTTGTAACCACATCCTGAGTGTGTCAGA (GGATCC
HC122	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	GAT	ACAGTGTTGTGACCACATCCTGAGTGTGTCAGA (GGATCC
HC123	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	cc	CACAGTGTTGTAACCACATCCTGAGAGTGTCAGA (GGATCC
HC124	GAATTC) TGGCAGGGATTTTTGTCAAGGGATCTACTACTGTG	-	CACAGTGCTACAACCACATCCTGAGTGTGTCAGA (GGATCC
T. DSP2	(CCGAATTC) TEECAGEATTTTTETCAASEGATCTACTACTETE	CTAST	ATGAT AAC GACCACAGTGATATATCCAGCAACAAAAACCCAG

Fig. 2. Nucleotide sequences of $V_H - DJ_H$ signal joints of DNA clones isolated by PCR amplification of circular DNA preparations. The sense and antisense PCR primers are overlined and underlined with an arrow, respectively. Cloning site sequences of *Eco*RI and *Bam*HI at the 5' end of primers are shown in brackets. A pair of the V_{H81X} (V_{H7183} family) sense primer and the V_{HJ558} antisense primer was used to amplify the possible V gene replacement products.

it is suggested that D_H gene families are diverged from a primordial gene by repeated duplication (Ichihara *et al.*, 1989), the primordial D gene may have contained a set of D_{SP2} and ψD which multiplicated during evolution. Both pseudogenes ψD_1 and ψD_{ST4} possess a functional 3' recombination signal, but no 5' signal. However, any rearranged ψDJ_H allele may not produce the D_{μ} protein because every reading frame for the pseudo D elements contains a stop codon.

Reading frames of the $D_H - J_H$ complex of circular DNA

The first step of rearrangements during the development of B-lineage cells is the joining of D and J_{H} . This is followed by either the replacement of existing DJ_H rearrangement by joining an upstream D segment to a downstream $J_{\rm H}$ segment, or the attachment of a V_{H} segment to the DJ_{H} complex. These two types of rearrangement occur at approximately equal frequencies (Reth et al., 1986). Although $D-J_H$ joining generates all three reading frames of $D-J_H$ complex, a strong bias for the expression of one particular reading frame (RF1) has been noticed in murine antibodies (Kaartinen and Mäkelä, 1985; Ichihara et al., 1989). Gu et al. (1991) explained the selection of D_{H} reading frames by the molecular properties of the D_{H} elements in the germline and the joining process itself. According to this model, RF1 usage is promoted by short sequence homologies between D and J_H elements (Gu et al., 1990), RF3 is counterselected on the basis of stop codons, and $D_H - J_H$ joints in RF2 are expressed as a membrane protein (D_{μ} protein) (Gu et al., 1991; Tsubata et al., 1991) which may prevent $V_H - DJ_H$ recombination through a mechanism analogous to allelic exclusion so that the majority of cells die. Thus, biased reading frames found in the excision products of DJ_H rearrangements (Figure 1a) support the current model of D_H RF selection. As shown in Figure 1a, the absence of RF2 in D_H-J_H coding joints replaced by secondary $D_H - J_H$ joining indicates that the membrane-bound D_{μ} protein may inhibit further $D_H - J_H$ replacements as well as V_H-DJ_H rearrangements. Both $D_H - J_H$ and $V_H - DJ_H$ joining processes may be subject to allelic exclusion mediated by the D_{μ} protein.

Differential N-insertion at signal joints

Two separate controls operate in D-J and V to DJ rearrangements of the TCR β locus and probably also in the IgH locus (Ferrier et al., 1990). A dominant cis-acting enhancer element activated in both pre-T and pre-B cells initiates D-J rearrangements, while a second cell type specific element controls V to DJ rearrangements. In adult B cells, N region diversity is generally greater at the V_{H} to D_H coding joint than at the D_H to J_H coding joint (Gu et al., 1990). This could be accounted for by the level of TdT expression at the two types of rearrangement. However, the striking difference in N-insertions at signal joints between the D-J and V-DJ joints was unexpected. This indicates that N-insertions in the signal joint may not only be correlated with the TdT activity in lymphocytes but also with the local differences in chromatin structure or in 'accessibility' of TdT to chromatin. Since most $D_{\rm H}$ segments carry their own 5' transcriptional promoter element and also produce a D_u messenger RNA (Reth and Alt, 1984), the chromatin structure of the D_H to J_H region may be opened for

recombinase 'accessibility' by transcriptional activation as previously suggested (Yancopoulos and Alt, 1986). Such full recombinase accessibility may compete with the TdT activity for the signal ends and generate no N-insertions at the $D_H - J_H$ signal joint. However, signal ends in $V_H - DJ_H$ recombination may be long-lived enough to interact with the TdT. In this way N-insertions may depend on the unequal access of the recombinase and TdT to signal and coding ends.

Materials and methods

Preparation of circular DNA

Lymphocytes were obtained by teasing the tissues on a wire-mesh from spleens of 4 week old and 7 week old BALB/c mice or from fetal liver of C57BL/6 mice at 18 days gestation. Circular DNAs were enriched from the 'cleared lysate' (Stanfield and Helinski, 1976) or from the 'alkaline lysate' (Carroll *et al.*, 1987) of lymphocytes. Circular DNAs of the 'cleared lysate' were purified by banding in a CsCl-EtBr gradient and ATP-dependent DNase treatment as described (Yamagishi *et al.*, 1983; Harada and Yamagishi, 1991). Circular DNAs of the 'alkaline lysate' were purified by hase separation after extraction with phenol and chloroform, followed by ATP-dependent DNase treatment. However, digestion of linear DNA fragments was incomplete, due to the presence of single-stranded DNA. Residual linear DNA fragments were separated by banding in a CsCl-EtBr gradient.

Circular DNA clone libraries

Circular DNAs were digested by restriction enzymes and cloned in the *Eco*RI site of λ gt10 or λ gt11 phage vector, or in the *Bam*HI site of Charon 27 phage vector. The recombinant DNA was packaged *in vitro*. Phage titers per μ g of vector DNA were $10^5 - 10^6$. Plaque hybridization was performed according to the method of Maniatis *et al.* (1982). The D_{SP2} probe (pHC100) was a 0.8 kb *Hind*III–*Eco*RI fragment subcloned into plasmid pSP65, originally derived from a phage DNA clone provided by Dr Y.Kurosawa (Kurosawa and Tonegawa, 1982). V_H probes were a mixture of 260 bp *Pst1*–*Hinf*I fragment of V_{HNP} (V_{HJ558}), 180 bp *Bam*HI–*Hae*III fragment of V_{HA} (V_{H36-60}), 285 bp *Hinf*1–*Hha*I fragment of V_{HT15} (V_{HS107}), 250 bp *Sin1*–*Bst*EII fragment of V_{HS9} (N_{HQ52}) and 240 bp *Eco*RI–*Hae*III fragment of V_{HC5} (V_{H7183}) (Nakanishi *et al.*, 1982; Neuberger, 1983; Yaoita *et al.*, 1983, 1988). All V_H probes contained only the coding region of the respective V_H gene. The mitochondrial DNA probe was a 0.2 kb and a 2.0 kb *Eco*RI fragment of BALB/c mouse mitochondrial DNA.

PCR amplification

Polymerase chain reaction (PCR) amplification was performed using *Th* DNA polymerase (Toyobo Co. Ltd) and the *Eco*RI digested circular DNA or chromosomal DNA as described by Saiki *et al.* (1988). After 4 min preincubation at 94°C, 30 cycles of PCR amplification were run for 1 min at 94°C, 2 min at 56°C and 3 min at 72°C, and followed by 7 min incubation at 72°C. The 20mer sequences of the sense primer for V_{H81X} (V_{H7183} family, Yancopoulos *et al.*, 1984) and for D_{SP2} (Kurosawa and Tonegawa, 1982), and those of the antisense primer for V_{H81X} and for V_{H1558} [consensus germline sequence of 23 members registered in the database, MUSIGHV(A,B,I1,I2,K2,L,M2,R), MUSIGHW(A,C,D,E,F,G,H,O,T, U,VX,W) and MUSIGHX(M,N,O)] are shown in Figure 2. *Eco*RI and *Bam*HI cloning sites were joined to the 5′ end of PCR primers so as to facilitate cloning of PCR products. PCR products were confirmed by Southern blot hybridizations (Maniatis *et al.*, 1982).

DNA sequence analysis

For sequence determinations, recombinant phage clones were recloned into plasmid vectors, pUC19 or pHSG399. Nucleotide sequences were determined by the dideoxy chain termination method (Sanger, 1981) using the universal M13 primer M4, reverse primer RV, the sense primers upstream of J_{H2}, GAGGCAGTCAGAGGCTAGCT; J_{H3}, GGCCTCCATCTGAGATAAT-C; J_{H4}, CTGCACAGGCAGGGAACAGA (Sakano *et al.*, 1980), or appropriate specific primers for D_{SP2} as shown in Figure 1.

Acknowledgements

We thank Dr Y.Kurosawa for a phage clone of D_{SP2} probe, Drs H.Tashiro and T.Honjo for V_H probes and Drs E.M.Stone, F.Hochstenbach and

T.Tsubata for critical reading of the manuscript. This work was supported by Grants-in-Aid for Science Research from the Ministry of Education, Science and Culture of Japan.

References

- Asarnow, D.M., Kuziel, W.A., Bonyhadi, M., Tigelaar, R.E., Tucker, P.W. and Allison, J.P. (1988) Cell, 55, 837-847.
- Bangs, C.A., Sanz, I.E. and Teale, J.M. (1991) J. Immunol., 146, 1996-2004.
- Bogue, M., Candeias, S., Benoist, C. and Mathis, D. (1991) *EMBO J.*, 10, 3647-3654.
- Brodeur, P.H., Osman, G.E., Mackle, J.J. and Lalor, T.M. (1988) J. Exp. Med., 168, 2261-2278.
- Carroll,S.M., Gaudray,P., DeRose,M.L., Emery,J.F., Meinkoth,J.L., Nakkim,E., Subler,M., VonHoff,D.D. and Wahl,G.M. (1987) Mol. Cell. Biol., 7, 1740-1750.
- Elliott, J.F., Rock, E.P., Patten, P., Davis, M.M. and Chien, Y. (1988) *Nature*, **331**, 627–631.
- Feeney, A.J. (1990) J. Exp. Med., 172, 1377-1390.
- Ferrier, P., Krippl, B., Blackwell, T.K., Furley, A.J.W., Suh, H., Winoto, A., Cook, W.D., Hood, L., Constantini, F. and Alt, F.W. (1990) *EMBO J.*, 9, 117-125.
- Fujimoto, S. and Yamagishi, H. (1987) Nature, 327, 242-243.
- Gerondakis, K.E., Bernard, O., Cory, S. and Adams, J.M. (1988) Immunogenetics, 28, 255-259.
- Gregoire, K.E., Goldschneider, I., Barton, R.W. and Bollum, F.J. (1979) J. Immunol., 123, 1347-1352.
- Griffin, B.F., Bjorck, E., Bjursell, G. and Lindahl, T. (1981) J. Virol., 40, 11-19.
- Gu,H., Forster,I. and Rajewsky,K. (1990) EMBO J., 9, 2133-2140.
- Gu,H., Kitamura,D. and Rajewsky,K. (1991) Cell, 65, 47-54.
- Harada, K. and Yamagishi, H. (1991) J. Exp. Med., 173, 409-415.
- Ichihara, Y., Hayashida, H., Miyazawa, S. and Kurosawa, Y. (1989) Eur. J. Immunol., 19, 1849-1854.
- Iwasato, T. and Yamagishi, H. (1992) Eur. J. Immunol., 22, 101-106. Iwasato, T., Shimizu, A., Honjo, T. and Yamagishi, H. (1990) Cell, 62,
- 143 149.
- Iwasato, T., Arakawa, H., Shimizu, A., Honjo, T. and Yamagishi, H. (1992) J. Exp. Med., 175, 1539-1546.
- Kaartinen, M. and Mäkelä, O. (1985) Immunol. Today, 6, 324-327.
- Kurosawa, Y. and Tonegawa, S. (1982) J. Exp. Med., 155, 201-218.
- Lafaille, J.J., DeCloux, A., Bonneville, M., Takagaki, Y. and Tonegawa, S. (1989) *Cell*, **59**, 859-870.
- Lawler, A.M., Lin, P.S. and Gearhart, P.J. (1987) Proc. Natl. Acad. Sci. USA, 84, 2454-2458.
- Lennon, G.G. and Perry, R.P. (1989) Immunogenetics, 30, 383-386.
- Lieber, M.R., Hesse, J.E., Mizuuchi, K. and Gellert, M. (1988) Proc. Natl. Acad. Sci. USA, 85, 8588-8592.
- Livant, D., Blatt, C. and Hood, L. (1986) Cell, 47, 461-470.
- Malynn, B.A., Yancopoulos, G.D., Barth, J.E., Bona, C.A. and Alt, F.W. (1990) J. Exp. Med., 171, 843-859.
- Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. and Honjo, T. (1988) EMBO J., 7, 1047-1051.
- Meek,K. (1990) Science, 250, 820–823. Nakanishi,K., Sugimura,K., Yaoita,Y., Maeda,K., Kashiwamura,S.,
- Honjo, T. and Kishimoto, T. (1982) Proc. Natl. Acad. Sci. USA, 79, 6984-6988.
- Nelson,K.J., Haimovich,J. and Perry,R.P. (1983) Mol. Cell. Biol., 3, 1317-1332.
- Neuberger, M.S. (1983) EMBO J., 2, 1373-1378.
- Opstelten, D., Deenen, G.J., Rozing, J. and Hunt, S.V. (1986) J. Immunol., 137, 76-84.
- Pardoll, D.M., Fowlkes, B.J., Bluestone, J.A., Kruisbeek, A., Maloy, W.L., Coligan, J.E. and Schwartz, R.H. (1987) Nature, 326, 79-81.
- Rathbun,G., Berman,J., Yancopoulos,G. and Alt,F.W. (1989) In Honjo T., Alt,F.W. and Rabbitts,T.H. (eds), *Immunoglobulin Genes*. Academic Press, pp. 63-90.
- Reth, M.G. and Alt, F.W. (1984) Nature, 312, 418-423.
- Reth, M.G., Jackson, S. and Alt, F.W. (1986) EMBO J., 5, 2131-2138.
- Rolink, A. and Melchers, F. (1991) Cell, 66, 1081-1094.
- Rothenberg, E. and Triglia, D. (1983) J. Immunol., 130, 1627-1633.
- Rush, M. and Misra, R. (1985) Plasmid, 14, 177-191.

- Saiki,R.K., Gelfand,D.H., Stoffel,S., Sharf,S.J., Higuchi,R., Horn,G.T., Mullis,K.B. and Ehrlich,H.A. (1988) Science, 239, 487-491.
- Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S. (1980) Nature, 286, 676-683.
- Sanger, F. (1981) Science, 214, 1205-1210.
- Stanfield, S. and Helinski, D.R. (1976) Cell, 9, 333-345.
- Takeshita, S., Toda, M. and Yamagishi, H. (1989) EMBO J., 8, 3261-3270.
- Toda, M., Hirama, T., Takeshita, S. and Yamagishi, H. (1989) *Immunol. Lett.*, 21, 311-316.
- Tonegawa, S. (1983) Nature, 314, 575-581.
- Tsubata, T., Tsubata, R. and Reth, M. (1991) Eur. J. Immunol., 21, 1359-1363.
- Usuda, S., Takemori, T., Matsuoka, M., Shirasawa, T., Yoshida, K., Mori, A., Ishizaka, K. and Sakano, H. (1992) *EMBO J.*, 11, 611-618.
- Yamagishi, H., Tsuda, T., Fujimoto, S., Toda, M., Kato, K., Maekawa, Y., Umeno, M. and Anai, M. (1983) *Gene*, **26**, 317-321.
- Yancopoulos, G.D., Desiderio, S.V., Paskind, M., Kearney, J.F., Baltimore, D. and Alt, F.W. (1984) Nature, **311**, 727-733.
- Yancopoulos, G.D. and Alt, F.W. (1986) Annu. Rev. Immunol., 4, 339-368.
- Yaoita, Y., Matsunami, N., Choi, C.Y., Sugiyama, T., Kishimoto, T. and Honjo, T. (1983) Nucleic Acids Res., 11, 7303-7316.
- Yaoita, Y., Takahashi, M., Azuma, C., Kanai, Y. and Honjo, T. (1988) J. Biochem., 104, 337-343.
- Received on July 20, 1992; revised on September 15, 1992