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Microvascular function and oxygen consumption affect oxy-
gen homeostasis but have not been assessed in African children 
with malaria. Microvascular function in Tanzanian children 
with severe malaria (SM) or uncomplicated malaria were 39% 
and 72%, respectively, of controls (P  <  .001). Uncomplicated 
malaria (P = .04), not SM (P = .06), children had increased oxy-
gen consumption compared with controls.
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A major pathogenic mechanism in severe falciparum malaria is 
microcirculatory obstruction due to parasite sequestration [1]. 
However, several studies suggest that sequestration alone may 
not impair microcirculatory flow in malaria [1–3].

The normal microvasculature matches oxygen delivery and 
demand, with a major mediator being nitric oxide (NO) [2, 4]. 
In malaria, NO pathway dysregulation impairs host NO pro-
duction and bioavailability [5–8]. In Indonesian children, vas-
cular NO and microvascular function was decreased in severe 
and uncomplicated falciparum malaria [3]. Oxygen demand 
may exacerbate tissue hypoxia and was increased in Indonesian 
adults and children with malaria [2, 3]. However, microvas-
cular function and oxygen demand have not been assessed in 

African children, the group with the highest burden of malaria. 
We assessed skeletal muscle microvascular function and oxy-
gen consumption in Tanzanian children with severe malaria 
(SM) or uncomplicated malaria (UM) and compared these to 
controls.

METHODS

Study Sites and Participants

The study was approved by institutional review boards of the 
Hubert Kairuki Memorial Hospital, Republic of Tanzania 
National Medical Research Institute, University of Utah, and 
Duke University. Informed consent was obtained from parents 
or guardians of all children.

Children aged 4–12  years old were enrolled if they ful-
filled enrollment criteria for SM, UM, or healthy controls 
(HCs), as previously reported [8]. Younger children were not 
enrolled because near-infrared resonance spectroscopy (NIRS) 
(Inspectra 650; Hutchinson Technology, Hutchinson, MN) 
probes were too large to produce reliable results. Criteria for SM 
included the following: Plasmodium falciparum parasitemia 
and ≥1 World Health Organization (WHO)-modified criteria 
for severity, as described previously [9]. Uncomplicated malaria 
criteria were as follows: a clinical syndrome consistent with 
malaria and a documented fever (≥38°C) or fever history within 
48 hours of enrollment; parasitemia >2500 parasites/μL, pos-
itive P falciparum rapid diagnostic test ([RDT] Paracheck-Pf; 
Omega Diagnostics); and no WHO criteria for severe disease. 
Criteria for HCs included the following: (1) asymptomatic with 
no febrile illness within the previous 2 weeks and (2) negative P 
falciparum RDT. Exclusion criteria for the overall study were as 
follows: microscopic evidence of mixed Plasmodium infections; 
bacterial coinfection as evidenced by bacteremia or urinary 
tract infection; antimalarial therapy initiated >18 hours before 
enrollment; and hemoglobin <5  mg/dL, because transfusions 
were not readily available.

Clinical, Laboratory, and Physiological Assessments

History and physical examinations were documented on stand-
ardized case record forms. Parasitemia was determined by 
microscopy, and parasite biomass was determined by P falci-
parum histidine-rich protein 2 using enzyme-linked immu-
nosorbent assay [9]. Hemoglobin, biochemistry, acid-base 
parameters, and lactate levels were measured with a bedside 
i-STAT analyzer. The NIRS was performed at enrollment to 
assess skeletal muscle microvascular function and oxygen con-
sumption, as previously described [2]. In brief, a probe was 
applied to the thenar eminence, which measured tissue oxygen 
saturation ([StO2] expressed as ratio of oxyhemoglobin [O2Hb]/
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sum of oxyhemoglobin [O2Hb] and deoxyhemoglobin [HHb]) 
and tissue hemoglobin index ([THI] expressed as sum of rel-
ative O2Hb and HHb signals). Baseline measurements were 
recorded, after which an ischemic stress was induced by inflat-
ing a vascular cuff to 200 mm Hg for 5 minutes, and then rapidly 
deflating. We recorded the following: (1) baseline StO2 and THI; 
(2) StO2 and THI at the end of occlusion (StO2low and THIlow); 
(3) peak StO2 and THI after release of occlusion (StO2peak and 
THIpeak); (4) difference between StO2 peak and baseline StO2 
(StO2diff); (5) microvascular function or rate of skeletal muscle 
reoxygenation (StO2recov), defined as StO2 increase per second 
in the first 14 seconds after occlusion release [12]; and (6) skel-
etal muscle tissue oxygen consumption (VO2), defined as dif-
ference in tissue oxygen content (THI × 1.39 × StO2) before and 
after vascular occlusion, divided by the duration [12].

Statistical Methods

Between-group differences among SM, UM, and HCs were 
compared using an analysis of variance or Kruskal-Wallis test 
depending on distribution. A priori pairwise comparisons 
using the Sidak method were used to compare CM with UM, 
as well as CM with HCs, and UM with HCs. A 2-sided P value 
of <.05 was considered to be statistically significant. Pearson/
Spearman or partial correlation coefficients were determined 

as appropriate for the distribution. All analyses were performed 
on Stata version 12.

RESULTS

We enrolled 99 children (48 with SM, 15 with UM, and 36 HCs) 
with no deaths recorded. All SM and UM children received 
anti-malarial therapy according to Tanzanian national proto-
cols (intravenous quinine and artemisinin combination ther-
apy , respectively); 24 SM children also received intravenous 
antibiotics. Baseline demographic characteristics, clinical fea-
tures, hematological and biochemical results are summarized 
in Table 1.

Tissue Oxygen Saturation, Microvascular Reactivity, Oxygen 
Consumption, and Disease Severity

Physiological measurements were conducted for all children. 
Baseline StO2 and THI was higher in SM and UM children 
compared with HCs (Table 1). The difference between baseline 
and peak StO2 values after induction of the ischemic response 
were significantly lower in SM children compared with UM 
and HCs (Table  1). Microvascular function at enrollment in 
the SM and UM groups were 39% and 72% of the median val-
ues in HCs, respectively (P < .001) (Supplementary Figure 1a). 
However, there was no significant difference between SM and 

Table 1.  Baseline Demographics Characteristics, Clinical Features, Hematological, Biochemical, and Microvascular Tests Among Patient Groupsa

Clinical, Laboratory and Microvascular Parameters Healthy Control Group (n = 36) Uncomplicated Malaria (n = 15) Severe Malaria (n = 48) P Valueb

Age, years 8 (6–9) 4 (4–9) 5 (4–9) P < .001

Male sex, no. (%) 22 (61%) 11 (73%) 24 (50%) P = .2

Fever duration before admission (days) NA 3 (2–6) 3 (2–30) P = .5

Coma, no. (%) NA 0 (0%) 3 (6%) P = .3

Weight, kg 25 (8–39) 17 (13–23) 16 (11–25) P < .001

Blood Pressure, mm (Hg), Mean (range)

Systolic 90 (86–105) 90 (80–110) 90 (80–100) P = .05

Diastolic 60 (50–65) 52 (50–60) 57 (50–70) P < .001

Pulse rate, beats/min 87 (78–108) 110 (93–140) 108 (82–160) P < .001

Respiratory rate, breaths/min 24 (20–40) 30 (25–43) 30 (22–56) P < .001

White blood cell count, ×103 cells/µL, 7.1 (3.8–11.4) 7.4 (3.2–12.2) 8.9 (2.8–36.8) P = .02

Hemoglobin, g/dL, 12.2 (10.2–13.6) 8.8 (6.1–12,9) 8.5 (4.1–12.9) P < .001

Platelet count, ×109 platelets/L, 335 (142–731) 177 (24–720) 80 (8–393) P < .001

Creatinine level, mmol/L, 35.4 (26.5–53.0) 44.2 (26.5–61.8) 35.3 (17.7–70.7) P = .19

Lactate level, mmol/L 1.8 (0.74–2.9) 2.3 (1.4–11.5) 2.8 (1.3–6.6) P < .001

Parasite density, parasite/µL geometric mean (95% CI) NA 73 306 (48 152–111 600) 237 749 (189 711–297 950) P < .001

HRP2 concentration (ng/mL) NA 154.9 (1.2–1022) 234.0 (0.8–5896) P = .2

Tissue oxygen saturation, % at baseline 78 (63–93) 82 (75–94) 86 (67–96) P < .001

Tissue hemoglobin index, % at baseline 10.3 (5–14.9) 13.2 (5.5–17.29) 11.8 (4.8–19.6) P = .004

Tissue oxygen saturation, % at end of occlusion 34 (10–56) 39 (18–69) 51 (10–70) P < .001

Tissue hemoglobin index, % end of occlusion 6.7 (2.5–11.5) 7.7 (2.8–12.3) 8.8 (2.3–18.3) P = .01

Peak tissue oxygen saturation after release, % 91 (78–97) 94 (78–98) 93 (71–98) P = .6

Recovery StO2, % increase/min 249 (57–583) 179 (32–492) 98 (19–480) P < .001

Difference between peak and baseline tissue oxygen 
saturation, %

11.4 (2–19.4) 5.2 (2.78–12.4) 4.5 (−8.7 to −17) P < .001

Oxygen consumption, arbitrary units 145.5 (51.7–251.5) 167 (94–309.8) 165.5 (70–394.0) P = .09

Abbreviations: CI, confidence interval; HRPT2, histidine-rich protein 2; NA, not applicable; StO2, tissue oxygen saturation.
aAll results are median (range), unless otherwise specified.
bBy Kruskal-Wallis test, comparing the healthy control group, uncomplicated malaria group, and severe malaria group.
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UM patients for the difference between peak and baseline StO2 
(P  =  .2) and microvascular function (P  =  .3) (Supplementary 
Figure  1b). There was also no association between microvas-
cular function with peripheral parasitemia or parasite biomass.

Oxygen consumption differed among SMs, UM, and HCs 
children (P  =  .06) (Supplementary Figure  1c). On pairwise 
comparisons, UM children had increased oxygen consumption 
compared with HCs (P =  .04), but the difference between SM 
patients and HCs was not significant (P = .06). In all children 
with malaria and those with SM, there was a significant inverse 
association between oxygen consumption and peripheral par-
asitemia (r = −0.35 [P = .007] and r = −0.32 [P = .04], respec-
tively) after controlling for disease severity. However, this was 
not significant in UM patients (r = −0.30; P = .2). There was also 
no significant association between oxygen consumption and 
venous lactate or parasite biomass in all malaria patients or the 
SM and UM groups.

DISCUSSION

Tanzanian children with SM and UM had decreased microvas-
cular function compared with HCs. Uncomplicated malaria but 
not SM children also had increased skeletal muscle oxygen con-
sumption compared with controls. These findings are the first 
in African children and consistent with studies in Indonesian 
Papua, an area with unstable malaria transmission.

In Indonesian adults, we found that microvascular dys-
function was proportional to disease severity, with the most 
significant impairment in SM [2]. Microvascular function in 
Indonesian children was lower in SM and UM compared with 
controls, with no significant difference between the 2 disease 
groups [3]. In this study, both SM and UM children had median 
microvascular function values 39% and 72% of HC. However, 
similar to Indonesian children, microvascular function in SM 
and UM children were not significantly different. Microvascular 
function assesses the microcirculatory capacity to match oxy-
gen supply to demand [4]. In microvascular dysfunction, oxy-
gen delivery to normoxic areas are maintained or increased, 
with flow to hypoxic areas decreased, worsening tissue dysoxia 
[4]. Parasite sequestration impairs microcirculatory flow, but 
lack of significant difference between SM and UM children sug-
gests that additional mechanisms may be involved, because par-
asite biomass is higher in SM [10]. Capillary flow is regulated by 
precapillary arterioles, with a major mediator being NO [4]. In 
African children and Indonesian children and adults, systemic 
and vascular NO bioavailability are markedly reduced in SM 
and UM [3, 5, 11]. In Indonesian children with malaria, NO 
bioavailability was associated with microvascular function [3].

Our previous studies have shown increased oxygen con-
sumption in Indonesian adults and children with malaria [2, 
3]. A study of Kenyan children with malaria and severe anemia 
using a metabolic cart found a nonsignificant increase in oxy-
gen consumption, which increased with blood transfusion [12]. 

In our study, pairwise comparison showed a significant increase 
in oxygen consumption in UM compared with HCs, but not 
between SM and HCs. Accentuated oxygen consumption may 
exacerbate tissue hypoxia by increasing oxygen demand in the 
setting of impaired delivery. This may explain the higher lac-
tate levels seen in SM, reflecting tissue hypoxia. Microvascular 
dysfunction could contribute to heterogeneous tissue perfusion 
observed in falciparum malaria [1], with normal and deceased 
oxygen delivery to oxygenated and hypoxic regions, respectively. 
In malaria, decreased NO may increase mitochondrial activ-
ity because NO inhibits the electron transport chain [13]. The 
inverse association between peripheral parasitemia and oxygen 
consumption in all malaria and SM children suggests that the 
increased consumption may not be due to parasite metabo-
lism. In contrast, children with bacterial sepsis have decreased 
oxygen consumption in proportion to disease severity [14]. In 
malaria, there is an increased macrophage polarization towards 
an M2 phenotype [9], which is associated with oxidative metab-
olism compared with bacterial responses, which are polarized 
to an M1 phenotype associated with aerobic glycolysis [15]. Our 
present study had several limitations, and the major limitation 
was the exclusion of children <4 years old due to their inability 
to use the NIRS probe because of small hand sizes. In addition, 
the relatively small study size may not have allowed us to detect 
differences between the SM and UM groups.

CONCLUSIONS

In conclusion, microvascular function is decreased in Tanzanian 
children with UM and SM, and skeletal muscle oxygen con-
sumption increased in UM. These abnormalities could contrib-
ute to impaired oxygen delivery and tissue hypoxia in malaria. 
Therapies that attenuate or improve microvascular dysfunction 
may have potential roles as adjunctive therapies in the manage-
ment of malaria.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
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