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Abstract

Resistance to thyrotropin (RTSH) is broadly defined as reduced sensitivity of thyroid follicle cells 

to stimulation by biologically active TSH due to genetic defects. Affected individuals have 

elevated serum TSH in the absence of goiter, with the severity ranging from nongoitrous isolated 

hyperthyrotropinemia to severe congenital hypothyroidism with thyroid hypoplasia. Conceptually, 

defects leading to RTSH impair both aspects of TSH-mediated action, namely thyroid hormone 

synthesis and gland growth. These include inactivating mutations in the genes encoding the TSH 

receptor and the PAX8 transcription factor. A common third cause has been genetically mapped to 

a locus on chromosome 15, but the underlying pathophysiology has not yet been elucidated. This 

review provides a succinct overview of currently defined causes of nonsyndromic RTSH, their 

differential diagnoses (autoimmune; partial iodine organification defects; syndromic forms of 

RTSH) and implications for the clinical approach to patients with RTSH.
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1. Introduction

Thyroid-stimulating hormone (thyrotropin; TSH) is secreted by the specialized cells 

(thyrotrophs) residing in the anterior pituitary and acts on follicular thyroid cells via binding 

to its cognate receptor (TSHR) to stimulate hormone production and secretion as well as 

differentiation and growth of the thyroid gland. It is thereby integral part of the pituitary-

thyroid feedback control of thyroid function. Resistance to TSH (RTSH) is broadly defined 

as reduced sensitivity of thyroid follicle cells to stimulation by biologically active TSH due 

to genetic defects. This definition would exclude autoimmunity with TSHR-blocking 

antibodies mimicking the RTSH phenotype. Affected individuals have elevated serum TSH 
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levels with normal or low levels of thyroid hormones (triiodothyronine, T3 and thyroxine, 

T4) in the presence of a eutopic, hypoplastic or normal-sized thyroid glands. They are 

frequently identified at birth through TSH-based neonatal screening for congenital 

hypothyroidism (CH).

Conceptually, defects leading to RTSH impair both aspects of TSH-mediated action: thyroid 

hormone synthesis and thyroid gland growth, and can be envisioned to be caused by either 

1) inactivating mutations in the TSHR gene, 2) reduced quantity of TSHR secondary to 

defects in factors controlling TSHR expression, 3) postreceptor defects in signal 

transduction, e.g. defect in G proteins, and 4) defects in transcriptional master regulators 

required for both normal differentiated function and growth of thyroid cells.

2. RTSH due to loss-of-function mutations in TSHR

2.1. TSHR physiology

The TSHR is a G-protein coupled receptor expressed at the basolateral surface of thyroid 

follicle cells. It consists of a classical seven transmembrane domain (TMD) connected via a 

linker region (hinge region) to a large extracellular domain (ECD) principally composed of a 

sequence of several leucine-rich repeat regions (LRR) (Fig. 1). The latter assemble into a 

horseshow-like structure with the beta-strands of the LRRs forming a concave surface for 

ligand binding. The TMD consists of alpha helical transmembrane spanning segments 

connected by extracellular loops in contact with the liganded ECD, and intracellular loops 

involved in G-protein coupling.

Activation by TSH binding generates a complex structural rearrangement transmitted to the 

intracellular G-protein binding surface formed by TMD and intracellular loops (reviewed in 

[1]). TSHR can signal through both Gs and Gq G-proteins. Thus, in terms of second 

messenger, binding of TSH activates both the cAMP pathway (via Gsα) as wells as the 

phosphoinositol/calcium (IP/Ca2+; via Gq) signaling cascades. While the former is linked to 

iodide uptake, thyroid hormone secretion, and gland growth and differentiation, the IP/Ca2+ 

pathway is rate-limiting for hormone synthesis by stimulating iodide organification.

Another feature relevant for TSHR physiology and the manifestation of TSHR defects is the 

propensity of TSHR to form dimers and/or oligomers at the surface of thyroid cells. This 

phenomenon provides an explanation for the interference observed with some mutant 

receptors when coexpressed with the wild type and should be relevant for the observed 

dominant transmission of some heterozygous TSHR defects [2].

2.2. Inactivating mutations of TSHR

First described in 1995 [3], at least 68 distinct TSHR loss-of-function (LOF) mutations have 

now been reported in patients with RTSH phenotype (Fig. 1). Except for rare deletions [4–

6], the described mutations have been either point or small indel mutations in the coding 

sequence causing amino acid replacement (missense) or truncation (nonsense or frameshift) 

of the predicted protein [7–54]. TSHR LOF mutations are found throughout the receptor 

structure, in contrast to the gain-of-function mutations causing hyperthyroidism, which are 

located primarily in the TMD of the receptor. Decreased action of TSH results in reduced T4 

Grasberger and Refetoff Page 2

Best Pract Res Clin Endocrinol Metab. Author manuscript; available in PMC 2018 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and T3 synthesis and secretion, with compensatory increase in TSH secretion. The absence 

of goiter despite high serum level of biologically active TSH is compatible with the 

dominant role of TSHR-induced cAMP signaling on the growth of the thyroid gland. 

Although the majority of TSHR LOF mutations impair overall receptor expression level 

and/or ligand binding, some mutations have differential effects on the coupling of either Gs 

or Gq proteins. In a small number of patients, Gq-dominant mutations have been linked to 

an RTSH phenotype with paradoxically increased thyroidal iodine uptake, a feature 

associated with impaired iodine organification (“nonclasscial RTSH”) [16, 55]. Since TSHR 
LOF mutations have to date been rarely evaluated for both Gs and Gq coupling, it remains 

an open question whether there are clear clinical correlates to mutations with differential 

effects on dual G protein coupling.

The magnitude of functional impairment of TSHR correlates to some degree with the 

severity of the RTSH phenotype: complete loss of TSHR function due to biallelic complete 

LOF mutations produces severe CH [7]. In these cases, severe hypoplasia with absent 

radiotracer uptake can be mistaken for athyreosis, but serum thyroglobulin (TG) is always 

detectable (“apparent athyreosis”). Biallelic defects (compound heterozygous or 

homozygous) with residual receptor function allow for either partial compensation (mild 

hypothyroidism) or full compensation (isolated hyperthyrotropinemia, approximately one 

third of cases) by high serum TSH. The inheritance of RTSH due to TSHR defects is 

typically considered recessive, since monoallelic TSHR defects are not regularly detected in 

neonatal screening using TSH cut-off value >20 uU/ml [10, 52]. Heterozygous TSHR 
mutations do, however, play a more prominent role in the pathogenesis of isolated non-

autoimmune hyperthyrotropinemia (NAHT) diagnosed after the neonatal period. For 

instance, in the largest cohort of pediatric NAHT patients studied so far [10], about 12% of 

the patients carried potentially pathogenic heterozygous mutations (compared to a estimated 

frequency of <1% of heterozygous mutation carriers in the general population) [33, 52].

The mutational spectrum of TSHR mutations differs among different populations, in part 

due to the frequency of population-specific founder mutations. It is thus not surprising that 

the reported overall prevalence of TSHR mutations in patients with non-autoimmune 

hyperthyrotropinema varies widely between studies of different populations. In various East-

Asian cohorts with nonsyndromic congenital hyperthyrotropinemia (hypothyroidism), 

between 4.2% and 9.4% harbored mono- or biallelic TSHR mutations. About 75% of which 

were of the R450H variant that is found at a prevalence of about 0.5% in the corresponding 

general populations [33, 34, 46, 49]. TSHR LOF mutations are the most common cause of 

non-goitrous CH in consanguineous families [28] and specific founder mutations have been 

found in over half of patients with subclinical hypothyroidism in a consanguineous Arab-

Muslim population [31]. Genetic analysis of the TSHR gene should therefore especially be 

considered if there is parental consanguinity or a family history suggestive of autosomal 

recessive inheritance of the RTSH phenotype.
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3. RTSH due to loss-of-function mutations in PAX8

3.1. PAX physiology

PAX8 is a member of the paired box domain containing transcription factors that plays an 

essential role in the morphogenesis of the thyroid gland, the maintenance of a thyroid-

differentiated phenotype [56], and the survival of differentiated thyroid follicle cells [57, 58]. 

PAX8, together with the homeobox protein NKX2-1, is the earliest marker of thyroid cell 

specification in the median thyroid anlage of both human and mice. The essential role of 

PAX8 for thyroid development was first shown in Pax8 knockout mice, in which the thyroid 

is hypoplastic with residual tissue only containing C cells derived from the lateral thyroid 

anlage [59]. In synergy with NKX2-1, PAX8 expression promotes the differentiation of 

functional thyroid tissue from embryonic stem cells and with the aid of TSH regulates 

expression of terminal differentiation markers, including thyroglobulin (TG), thyroid 

peroxidase (TPO), and the sodium-iodide symporter (SLC5A5; NIS) producing a fully 

functional thyroid gland synthesizing T4 [60].

3.2. PAX8 mutations in RTSH

Although initially associated with thyroid dysgenesis [61], PAX8 mutations are not a 

relevant cause of sporadic thyroid ectopy or genuine agenesis [62–64] but found in a 

minority of cases (e.g. 1/28 German, 1/16 Chinese) within the normotopic hypoplasia 

subgroup [65–68]. More generally, heterozygous PAX8 LOF mutations have to be 

considered as another cause of RTSH that is clinically and by thyroid function tests 

indistinguishable from that caused by TSHR mutations. The clinical severity can thus range 

from subclinical hypothyroidism with normal-sized gland to overt hypothyroidism with 

severe thyroid gland hypoplasia. The most common mechanism involves mutations in the 

paired box domain disrupting binding to target sites, thereby leading to reduced expression 

of target genes (Fig. 2). The presence of RTSH-associated PAX8 promoter variants [69–71], 

the observation of a frameshift mutation with demonstrated protein instability [72], and the 

autoregulation of PAX8 by binding to its own promoter [73] are also consistent with a 

haploinsufficiency mechanism. A noteworthy mutational hotspot is the CpG dinucleotide at 

codon 31, for which frequent mutational events (R31H and R31C) have been reported [61, 

65, 67, 74–77]. For some of the reported mutations, the primary defect is the impaired 

synergism with other thyroid transcription factors (NKX2-1) or insufficient recruitment of 

coactivators (p300) without altering DNA binding [78–80].

Inheritance of PAX8 linked RTSH follows an autosomal dominant segregation pattern [81], 

but often shows highly variable expressivity within affected members of the same family 

[82]. Thus, there is no clear correlation between the activity of mutant PAX8 proteins in 

vitro and the severity of RTSH in patients. In addition, incomplete penetrance [83], parental 

mosaicism [84], and late-onset of RTSH phenotype due to insufficient postnatal thyroid 

growth [64, 77, 85, 86] have been shown to potentially mask the inherited nature of the 

condition.

PAX8 is also expressed during mammalian kidney development and, at least in mice, plays a 

redundant role with PAX2 in formation of the initial pronephros [87]. Thus, kidney 
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organogenesis in Pax8 mutant mice is generally normal [59]. Yet, several human carriers of 

PAX8 gene mutation were reported to have associated kidney and urogenital abnormalities 

[28, 77, 85, 88]. It is tempting to speculate that the PAX8 mutations may have contributed to 

these non-thyroidal developmental defects.

4. RTSH linked to a defect on the long arm of chromosome 15

Mutations in TSHR or PAX8 have only been found in a relatively small proportion of 

screened patients with RTSH phenotype suggesting that additional etiologies remain to be 

discovered. With expected locus heterogeneity in RTSH, one approach is to focus on large 

RTSH kindreds with sufficient statistical power for genome-wide linkage scans. Among six 

multigenerational families, in which non-syndromic RTSH segregated in autosomal 

dominant fashion with high penetrance, yet variable expressivity, only one harbored a 

mutation in the PAX8 candidate gene [78, 89]. In the remaining five families, the defect was 

mapped to a single, 2.9 Megabase interval on chromosome 15q25.3–26.1 (combined LOD 

score of 14.6) [90] (Fig. 3). Since there were no genealogical links or evidence for shared 

ancestral haplotypes, genetic defects in this locus are expected to be a rather prevalent event 

in RTSH. While none of the protein-coding genes in this interval appeared to be a plausible 

candidate gene, recent genome-wide association studies have found a significant association 

between common single nucleotide polymorphisms in the center of the linked region 

containing a micro-RNA cluster and TSH serum level in the general population [91, 92]. 

Thus, elucidating the precise genetic cause for this form of RTSH may shed light on a novel 

thyroid-specific expressed modulator of TSH-responsiveness.

5. RTSH as part of complex syndromes

Abnormal thyroid function consistent with RTSH is also found as a feature of complex 

syndromes that obligatorily involve other organs. In these patients, the non-thyroidal 

abnormalities dominate the clinical presentation and the underlying genetic defects should 

not be considered candidate genes for patients with isolated RTSH phenotype.

5.1. RTSH caused by mutations in GNAS1 (Albright hereditary osteodystrophy)

Heterozygous germline mutations in the gene encoding the alpha subunit of G stimulatory 

protein (Gsα, GNAS1) cause hypocalcemia and hyperphosphatemia due to impaired 

signaling transduction from the parathormone receptor (pseudohypoparathyroidism, PHP Ia) 

[93]. Haploinsufficiency for GNAS1 also explains the resistance to other hormones, 

specifically gonadotropins and TSH. Clinically this syndrome is referred to as Albright 

hereditary osteodystrophy characterized by typical physical features (short stature, short 

neck, round face, obesity, brachymetacarpy, subcutaneous ossification) and mental 

retardation.

5.2. RTSH caused by mutations in NKX2-1

NKX2-1 (also known as thyroid transcription factor 1, TITF1) is a homeobox transcription 

factor critical for the development of thyroid gland, basal ganglia and lung parenchyma. It is 

involved in maintaining the expression of thyroid-specific genes (TPO, TG, TSHR) in 
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apparent synergism with PAX8. Haploinsufficiency for NKX2-1, due to either chromosomal 

deletions encompassing the gene locus [94] or deleterious gene mutations ([95], [96], and 

recently reviewed in ref. [97]), produces a “brain-thyroid-lung” syndrome. The severity of 

the individual components of the syndrome is very variable, and includes: 1) RTSH (70% of 

patients), 2) “benign hereditary chorea” (90% of patients) manifesting as neonatal hypotonia 

preceding the development of juvenile choreoathetosis and ataxia, 3) respiratory distress 

(55% of patients) due to lung hypoplasia causing significantly increased mortality. 

Inheritance of the defect is autosomal dominant with variable penetrance, however, most of 

the reported mutations have apparently arisen de novo. The RTSH phenotype, if present, is 

in the majority of cases compensated (i.e., isolated hyperthyrotropinema) [98].

6. Organification defects presenting with hallmarks of RTSH

Defects in thyroid hormonogenesis due to impairment of the enzymatic machinery in iodine 

organification are classically associated with thyroid gland enlargement. However, in partial 

defects of iodine organification, goiter is frequently absent despite elevated serum TSH [99–

102]. These patients thus present with the hallmarks of mild RTSH (elevated TSH, low or 

normal T4, normal-sized gland). The common genetic defects in these patients are in 

DUOX2 and DUOXA2, which encode the heterodimeric dual oxidase enzyme complex that 

is rate limiting in the iodine organification [103]. For instance, only one out of twelve 

Korean CH patients with DUOX2 or DUOXA2 mutations was noted to have thyroid gland 

enlargement [101]. In contrast to genuine RTSH, whose postnatal course is either stable 

(TSHR, Chr15-associated) or tends to be progressive (PAX8) due to insufficient thyroid 

growth, partial defects in the DUOX2 system are often self-limiting only manifesting during 

the newborn period (transient CH) [100].

In this context the recent report on SLC26A4 (Pendrin) mutations in two patients with 

apparent RTSH and thyroid gland hypoplasia is noteworthy [104]. Biallelic SLC26A4 
mutations are a cause of sensorineural hearing loss with bilateral enlargement of the 

vestibular aqueduct in combination with goiter and/or CH (Pendred syndrome). In the 

follicular thyroid cells, SLC26A4 is localized to the apical membrane and mediates the 

iodine efflux into the follicular lumen where organification takes place. It is believed that 

reduced thyroid gland size in these patients is a consequence of severe iodide deficiency 

within the follicular lumen concomitant with upregulation of the H2O2-generating enzymes 

leading to oxidative stress and secondary epithelial atrophy [105].

7. Recommendations for treatment and genetic screening

Individuals with uncompensated RTSH should be treated with levothyroxine (L-T4), like any 

other patient with primary hypothyroidism. Since these subjects have normal responsiveness 

to thyroid hormone, the goal is to normalize their serum TSH concentration. Immediate 

initiation of replacement therapy with L-T4 is crucial in all infants diagnosed with CH by 

neonatal screening, if the elevated blood TSH is confirmed on a serum sample on day 3 or 6 

of life and is accompanied by low T4.
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In individuals with compensated RTSH (euthyroid hyperthyrotropinema), longitudinal 

studies of individuals with TSHR LOF mutation or with RTSH linked to Chr15 indicate that 

the elevated TSH concentrations stimulate an adequate production of thyroid hormones and 

L-T4 therapy should thus be dispensable [10, 42, 89, 106, 107]. In fact, compared to a 

patient cohort receiving L-T4 supplementation, untreated patients with compensated RTSH 

had no obvious signs of growth or neurological abnormalities [10]. There was also no 

evidence for tissue hypothyroidism or the development of pituitary hyperplasia as a 

consequence of chronic thyrotroph hyperstimulation [10].

In patients with TSHR LOF mutations and those in whom the defect has been linked to the 

chromosome 15q locus, the RTSH phenotype appears to be stable over time. In contrast, 

mutations in PAX8 have been repeatedly reported to manifest RTSH that progresses during 

postnatal growth of the thyroid gland indicating that the defect in growth and/or survival of 

follicular thyroid cells cannot be permanently compensated [64, 77, 85, 86]. Genetic 

analysis may therefore provide a diagnostic tool to guide therapy and follow-up of RTSH 

patients.
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PRACTICE POINTS

• RTSH should be considered in the differential diagnosis of all patients with 

non-autoimmune, nongoitrous hyperthyrotropinemia with or without low 

serum iodothyronines or clinical stigmata of hypothyroidism

• Genetic analysis has the potential to provide a definitive diagnosis with 

relevance for prognosis, follow-up and genetic counseling.

• Standard L-T4 replacement aiming to normalize serum TSH level is required 

in all hypothyroid patients, but the need of therapy is questionable in 

individuals with fully compensated RTSH and isolated hyperthyrotropinemia.
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RESEARCH AGENDA

• Elucidating the precise genetic cause for RTSH linked to the Chr15q locus 

may shed light on a novel modulator of TSH-responsiveness in health and 

disease.

• The role of Gq signaling in TSHR LOF mutations and its potential relevance 

for distinct clinical RTSH subtypes requires more systematic investigation.
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Fig. 1. 
Topology model of TSHR with location of confirmed or putative inactivating mutations 

identified in subjects with RTSH. Missense mutations are indicated in orange, nonsense 

mutations in red, insertions/deletions in the coding sequence in yellow, and intronic 

mutations in blue. Residues forming the beta strands of the leucine-rich repeats within the 

extracellular ligand-binding domain are marked by green arrows. SP, signal peptide 

sequence (removed in mature protein).
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Fig. 2. 
PAX8 gene mutations identified in patients with RTSH phenotype. The PAX8 structure 

comprises an N-terminal paired box (prd) DNA-binding domain and C-terminal region 

crucial for transactivation activity. Colored boxes indicate the relative positions of prd 

domain, conserved octapeptide sequence, (partial) homeodomain-homolog region, and of 

regions containing repressor or activator activity [108]. The expanded view of the prd 

domain reveals two subdomains (PAI and RED), each defined by trihelical helix-turn-helix 

motifs with independent DNA-binding activities. Missense mutations within the PAI 

subdomain interfering with the DNA-binding induced-fit of the helix-turn-helix motif are the 

most common mutational events in PAX8-associated RTSH.
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Fig. 3. 
Autosomal-dominant RTSH linked to a locus on the long arm of chromosome 15. A) 

Multipoint genetic linkage analysis of chromosome 15 in five extended families with 

dominant inherited RTSH. The analysis shown includes data from additional family 

members not available in the original publication [90]. B) Example of fine mapping of the 

critical recombinants in family 25 using short tandem repeat markers. The RTSH-associated 

haplotype can be narrowed to a 2.9 megabase interval containing sixteen positional 

candidate genes. Note that common single nucleotide polymorphisms within the central 

micro RNA cluster (mir7-2, mir1179) have recently been found to be significantly 
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associated with serum TSH level in the general population [91, 92]. Adapted from ref. [90] 

with permission.
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