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Abstract

Adaptive prediction is a capability of diverse organisms, including microbes, to sense a cue and prepare in advance to deal with a

future environmental challenge. Here, we investigated the timeframe over which adaptive prediction emerges when an

organism encounters an environment with novel structure. We subjected yeast to laboratory evolution in a novel environment

with repetitive, coupled exposures to a neutral chemical cue (caffeine), followed by a sublethal dose of a toxin (5-FOA), with an

interspersed requirement for uracil prototrophy to counter-select mutants that gained constitutive 5-FOA resistance. We

demonstrate the remarkable ability of yeast to internalize a novel environmental pattern within 50–150 generations by

adaptively predicting 5-FOA stress upon sensing caffeine. We also demonstrate how novel environmental structure can be

internalized by coupling two unrelated response networks, such as the response to caffeine and signaling-mediated condi-

tional peroxisomal localization of proteins.
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Introduction

Diverse organisms including microbes have evolved mecha-

nisms to gain fitness advantage by sensing an environmental

cue to anticipate and prepare in advance for a future selective
pressure, a strategy known as adaptive prediction (AP)

(Tagkopoulos et al. 2008; Mitchell et al. 2009). AP is generally
beneficial to microbes as it can confer fitness advantage over

competitors, facilitate competition for resources, and help

with evasion of predators or host-defense systems (Woelfle
et al. 2004; Johnson et al. 2008; Calhoun and Kwon 2010;

Whitaker et al. 2010). However, AP can become disadvanta-
geous in poorly structured environments or those with unpre-

dictable patterns of change, especially when the advanced

preparedness is maladaptive (Mitchell and Pilpel 2011). In
fact, it takes just a few hundred generations in a novel

environment for Escherichia coli to lose its capability to predict

a downshift in oxygen upon sensing an upshift in temperature

(Tagkopoulos et al. 2008). While prior studies have demon-
strated the existence of AP and the rapidity with which it is

lost (Tagkopoulos et al. 2008; Mitchell et al. 2009), emer-
gence of this behavior has not previously been reported under

laboratory controlled conditions, making it challenging to elu-

cidate its evolutionary and mechanistic underpinnings.

Results and Discussion

Experimental Design of a Structured Environment to Probe
AP Emergence

We sought to investigate the time scale over which AP can

emerge in a microbial population subjected to laboratory
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evolution in a novel structured environment. In line with

Pavlov’s classical conditioning experimental design (Pavlov

1927), we subjected yeast over every �10 generations to a

30-min exposure to a low innocuous dose of 3 mM caffeine

(phase A) followed by a 3-h exposure to a sublethal dose

(3 mg ml�1) of 5-fluoroorotic acid (5-FOA, phase B) (fig. 1a).

Analogous to neutral stimuli used in classical conditioning

experiments (Pavlov 1927), while caffeine triggers a global,

pleiotropic response differentially regulating hundreds of

genes in yeast (Kuranda et al. 2006; Reinke et al. 2006;

Wanke et al. 2008; Rallis et al. 2013), it has no observable

growth effect at the concentration used in our experiments

(supplementary fig. S1, Supplementary Material online). The

use of a neutral environmental cue (here caffeine) is important

as it helps to differentiate AP from other evolutionary adap-

tations influenced by cross-protection (Dhar et al. 2013),

where resistance to one stress has components that confer

increased resistance to a second unrelated stress. 5-FOA is

converted by orotidine 50-phosphate decarboxylase (Ura3)

into 5-fluorouracil, which is toxic to the cell (Boeke et al.

1984) (supplementary fig. S2, Supplementary Material on-

line). Exposure to 5-FOA subsequent to caffeine represents

a novel pair of stimuli that has not been previously associated

by yeast. The conditional selection for 5-FOA resistance and

counter-selection against uracil auxotrophy (phase C) is an

important feature that we exploited to weed out cells that

might have acquired constitutive resistance through mecha-

nisms such as loss-of-function mutations in URA3. At intervals

of �50 generations, we performed survival assays to assess

whether conditioning with caffeine cued the population to

better withstand a sub-lethal dose of 5-FOA. Specifically, the

assays quantified changes in 5-FOA survival upon condition-

ing with caffeine, relative to survival without caffeine pre-

treatment, defined as conditioned fitness (CF) (fig. 1b); hence

FIG. 1.—Experimental design for investigating laboratory evolution of AP. (a) Yeast cultures were subjected to 30 cycles of laboratory evolution in a novel

structured environment, with 10 generations between cycles. Each cycle had three phases: in phase A, cultures were exposed to 3mM caffeine for 30min;

followed by 3-h exposure to 3mg/ml 5-FOA in phase B; thereafter, an aliquot of the culture was transferred to fresh medium for overnight growth without

uracil (phase C). To prevent temporal conditioning, short random intervals (<2 h) were introduced between cycles. (b) Conditioned fitness (CF), defined as

relative change in survival to 5-FOA given caffeine as a cue, was calculated using a culture aliquot that was exposed to caffeine or just growth medium

(control), prior to treatment with 5-FOA. Survival was assessed by sampling immediately before or after adding 5-FOA, by counting colony formation units

(CFUs) on five replicate plates (see Materials and Methods).
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CF> 0 is indicative of AP as it reflects survival increase be-

cause of pre-treatment with caffeine. Importantly, we also

ascertained that CF was time dependent on caffeine pre-

treatment for 30 min, and not present if caffeine and 5-FOA

were added simultaneously in the survival assay (supplemen-

tary fig. S3, Supplementary Material online).

Synthetic Engineered Circuit to Prime Emergence of AP

We first investigated whether AP could emerge through nat-

ural selection of mutations that internalize environmental

structure by rewiring the gene regulatory network of yeast,

linking the caffeine response to an unrelated process that

reduced 5-FOA toxicity. Our experimental strategy was moti-

vated by the observation that caffeine triggers a global pleio-

tropic response that modulates, among other pathways,

signaling by the target of rapamycin complex 1, TORC1

(Wanke et al. 2008; Rallis et al. 2013). TORC1 is a serine/

threonine kinase with a role in globally coordinating cell

growth and homeostasis in response to a diverse array of

environmental cues (Zhang et al. 2011; Laplante and

Sabatini 2012; Hughes Hallett et al. 2014). It is activated by

changes in oxygen levels, amino acid concentrations, energy

levels and growth factors and negatively regulated by stress

and certain chemicals including rapamycin and caffeine (Rallis

et al. 2013). Its homolog, TORC2, functions independently of

TORC1 to regulate metabolism, cytoskeletal organization, cell

survival, and protein translocation, and is insensitive to caf-

feine (Reinke et al. 2006; Jung et al. 2010). We engineered a

yeast strain to have the potential to acquire AP by exploiting

crosstalk between TORC1 and TORC2 to induce peroxisomal

translocation of Ura3 in response to caffeine exposure. This

translocation would provide a conditional increase of 5-FOA

resistance by virtue of the change in Ura3 compartmentaliza-

tion from the cytosol to peroxisomes. Specifically, we fused

URA3 (and GFP) to GPD1, which encodes a NADþ-dependent

glycerol 3-phosphate dehydrogenase with an N-terminal type

2 peroxisomal targeting signal (PTS2). Phosphorylation of

Gpd1 by the TORC2-pathway (Lee et al. 2012) triggers trans-

location of Gpd1 to the peroxisome (Jung et al. 2010) inde-

pendently of caffeine treatment. In this regard, the

engineered strain can be considered to be “one step remov-

ed” from acquiring AP, which could emerge through selec-

tion of a mutation(s) that linked the caffeine-responsive

TORC1 network to TORC2-mediated adaptive translocation

of Gpd1-EGFP-Ura3 to peroxisomes (fig. 2a). Importantly, this

approach enabled us to determine if AP emerged by quanti-

fying the effect of caffeine pre-treatment on the sub-cellular

distribution of GFP fluorescence. To facilitate evolution of AP,

we generated a mixed population of genotypes by introduc-

ing genetic variation through UV mutagenesis of the engi-

neered yeast strain (Holland et al. 2014) (see Materials and

Methods).

Six independent lines of the mutagenized, engineered

strain populations (heretofore referred as E# lines, where #

indicates identity of the replicate) were subjected to labora-

tory evolution, as described earlier. Remarkably, AP emerged

across all lines, appearing in one case within 50 generations

(E2, CF¼ 0.39, Mann–Whitney U test, P value< 0.05;

fig. 2b). A key question was whether any of the three lines

had acquired AP through selection of mutants that condition-

ally re-localized Gpd1-EGFP-Ura3 to peroxisomes, upon sens-

ing caffeine. At 50-generation intervals, we performed

fluorescence microscopy on three lines (E4, E5, and E6) before

and after 30 min of caffeine exposure, and used image anal-

ysis to quantify cytoplasmic and peroxisomal abundance of

Gpd1-EGFP-Ura3 (fig. 2c). Strikingly, we observed that emer-

gence of AP in one of the three lines (E4) correlated with

caffeine-dependent re-localization of Gpd1-EGFP-Ura3 to

peroxisomes. Interestingly, the ability of E4 to conditionally

translocate Gpd1-EGFP-Ura3 eventually disappeared by 250

generations, also correlating with loss of AP (fig. 2d).

To evaluate cue-specificity and whether AP can emerge

with other environmental cues, we repeated the laboratory

evolution experiment using identical design but with menadi-

one in place of caffeine. We chose menadione as an alterna-

tive chemical stimulus specifically because global gene

expression patterns are distinct when cells are treated with

menadione and caffeine, and menadione does not signifi-

cantly influence GDP1 expression (Jung et al. 2010). Again,

AP emerged over a similar time scale (50–200 generations),

confirming that laboratory evolution of AP is a generalizable

phenomenon, not restricted to a particular environmental cue

(supplementary fig. S4, Supplementary Material online).

Conclusively, our results demonstrate that AP emerges in re-

markably short time frames through laboratory evolution of

yeast when they experience an environment with novel tem-

poral and structured changes in two stimuli.

Emergence of AP from Natural Genotypes

The observation that only one of the engineered lines linked

caffeine-response with Gpd1-EGFP-Ura3 translocation to per-

oxisomes suggested that the mechanism for AP in the other

evolution lines were independent of Gpd1-EGFP-Ura3 trans-

location. To explore this, we repeated the laboratory evolution

experiment without the engineered GPD1-EGFP-URA3 con-

struct using 3 independent cell lines (M# lines) of a UV-

mutagenized S. cerevisiae BY4741 URA3 strain. Strikingly,

AP rapidly emerged across all M lines within 100–150 gener-

ations (CF¼ 0.090–0.213, Mann–Whitney U test, P val-

ue< 0.05; fig. 3a). The consistency of this and our previous

results motivated us to investigate whether genetic variation

via mutagenesis was necessary for the rapid emergence of AP.

We performed laboratory evolution with three lines (C# lines),

each derived from a single colony of an S. cerevisiae BY4741

URA3 strain. We observed that AP emerged transiently across
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two out of three replicate C lines and was sustained over

multiple generations in only one line (C1, CF¼ 0.103,

Mann–Whitney U test, P value< 0.05; fig. 3b).

Mechanistic Insights from Sequence and Transcriptome
Analysis

To better understand the mechanism for AP, we performed

whole genome re-sequencing on three engineered lines (E2,

E4 and E6), a mutagenized line (M1), and a clonal line (C1)

across different time points of the laboratory evolution (i.e., at

the start of the experiment, after AP emerged, and, in some

lines, after it was lost). After applying conservative filters (see

supplementary methods, Supplementary Material online), we

discovered that 305 mutations had accumulated at 114 loci

across the evolved lines, demonstrating that AP had emerged

through selection of mutations during laboratory evolution,

even in a C line that originated from single colony.

Importantly, the only consistent pattern across all lines was

the accumulation of mutations in two genes associated with

de novo biosynthesis of pyrimidines, URA2 and URA6. Ura2

catalyzes the first two enzymatic reactions in the formation of

the pyrimidine ring, while Ura6 catalyzes the phosphorylation

of pyrimidine nucleoside monophosphates at a later step of

the pathway. Notably, every mutation discovered in the two

genes resulted in nonsynonymous substitutions: E2, R1100L

(�¼ 0.40); E4, N930D (�¼ 1.0); E6, D2186N (�¼ 1.0); M1,

R2051C (�¼ 0.66) and R1100C (�¼ 0.28), all in Ura2; and

C1, R2051H in Ura2 (�¼ 1.0) and L22R in Ura6 (�¼ 0.26)

(supplementary file S1, Supplementary Material online).

While none of these mutations mapped to amino acid resi-

dues within active sites of the two enzymes, PROVEAN (Choi

et al. 2012; Choi and Chan 2015) predicted that mutations in

the ATCase domain (R2051H, R2051C and D2186N), and the

CPSase domain (R1100C, R1100L and N930D) have deleteri-

ous effects on the function of Ura2. The deleterious mutations

FIG. 2.—Rapid emergence of AP in an engineered yeast strain. (a) Schematic diagram for mechanistic model: caffeine induces a global pleiotropic

response in yeast bringing cells into a different state. A mutation(s) causing a network rewiring linking the caffeine-induced response and the signaling

network for peroxisomal localization of the engineered Gpd1-EGFP-Ura3 construct could potentially generate AP. (b) Laboratory evolution of AP in six

mutagenized, engineered yeast lines. Significant CF (Mann–Whitney U test, P value<0.05, indicated by asterisks) was observed in at least one time point in

each evolution cell line, reaching a maximum of CF¼0.390 (cell line E2, n¼190), which indicates that caffeine pre-treatment resulted in 39% increase in

5-FOA survival. Error bars indicate standard deviation. Symbols mark when transcriptomics, whole genome re-sequencing and image analysis were

performed (see key at the top for details). (c) Fluorescence in cytoplasm and peroxisomes was quantified from at least 50 cells in each condition.

Examples of representative segmented cells are shown (left) and each microscopy image was segmented and quantified (right, see supplementary methods,

Supplementary Material online, for details). (d) Bars represent changes in relative peroxisomal fluorescence signal before and after caffeine exposure,

asterisks indicate significance. Specifically to cell line E4, exposure to caffeine shifted Gpd1-EGFP-Ura3 to the peroxisome at generations n¼150 and

n¼200. Significant CF was observed also at n¼200. Both caffeine-conditioned phenotypes, increase in 5-FOA survival and peroxisomal translocation of

Gpd1-EGFP-Ura3, disappeared at n¼250.
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in Ura2 and Ura6 could potentially decrease levels of the

downstream product dihydroorotic acid (DHO), which has a

role in the transcriptional upregulation of URA3 during uracil

starvation (Flynn and Reece 1999). While these mutations do

not abolish uracil biosynthesis, they could lower DHO levels,

which in turn would downregulate URA3 expression to in-

crease 5-FOA resistance. However, decreased flux through

the de novo pyrimidine biosynthetic pathway by itself does

not explain AP, since CF is represented by the increase in

5-FOA survival because of caffeine pre-treatment. Lower

basal levels of URA3 resulting from Ura2 mutations could in

principle set a primed state for caffeine-induced downregula-

tion of URA3. Alternatively, we hypothesize that mutations at

other genomic loci act in combination with the URA2 and/or

URA6 mutations to conditionally increase 5-FOA resistance.

Notably, within each cell line, 41–100 mutations mapped to

genic and intergenic regulatory elements, affecting 25–55

genes including signal transduction genes, suggesting that

alterations in the underlying gene regulatory network archi-

tecture might have contributed to linking caffeine response to

increased capacity for dealing with 5-FOA (McGregor et al.

2012; Sorek et al. 2013). We performed transcriptome pro-

filing (see supplementary methods, Supplementary Material

online) on lines E1, E2 and E3 to investigate whether AP had

emerged from rewiring of the caffeine response regulatory

network (square symbols in fig. 2b). Comparative analysis of

caffeine response of each evolution line at n¼ 0 generations

and after AP had emerged demonstrated that this response

had changed in distinct ways across all lines, and in at least

one line it was rewired to a known mechanism for increasing

5-FOA resistance. Specifically, when AP emerged at genera-

tion n¼ 50, line E2 downregulated URA3 upon sensing

FIG. 3.—Rapid emergence of AP in mutagenized and clonal lines of yeast. (a) Laboratory evolution of AP in M cell lines. AP emerged within 100–150

generations, reaching a maximum CF of 0.213 (M1 at n¼200). AP was sustained over at least 50–100 generations and it consistently emerged in other cell

lines. (b) Sustained AP emerged only in C1 cell line and appeared in at least one time point in all cell lines. Asterisks indicate significant CF (Mann–Whitney U

test, P value<0.05), error bars indicate standard deviation. (c) Unique and shared caffeine-induced transcript changes before and after AP emerged in three

evolution lines. Novel caffeine-responsive transcript changes included downregulation of URA3 in line E2, and also downregulation of several transcription

factors in lines E1 and E3 (indicated in red font). (d) Distribution of CF values for clonal isolates before and after emergence of AP; lines C1–3 are isogenic

cultures derived from single colonies of BY4741 URA3; blue lines represent CF values from BY4741 GPD1-EGFP-URA3 mixed populations (as in fig. 2b).
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caffeine (log2 fold-change: �2.09; P value< 0.01, supple-

mentary file S2, Supplementary Material online) (fig. 3c).

Together with the caffeine-induced re-localization of GFP to

peroxisomes in line E4, the conditional down-regulation of

URA3 in line E2 provides evidence that AP had emerged in

these two lines via rewiring of two unrelated networks, one

for sensing caffeine and one for increasing 5-FOA resistance.

Clonal Isolates Recapitulate Population Phenotypes

In some evolved lines, AP appeared transiently and was cor-

related to an overall increase in 5-FOA resistance (supplemen-

tary fig. S5, Supplementary Material online). While it took

longer for a constitutive strategy to emerge (possibly due to

phase C counter-selection of simple loss-of-function muta-

tions in uracil biosynthesis, such as in URA3), it is not surprising

that once it emerged, this strategy quickly displaced AP. In

other words, AP appears to be a phenotypic trait attributable

to few cells in the population that were subsequently out-

competed by cells that gained constitutively higher resistance

to 5-FOA. While these cells might have acquired a novel strat-

egy for higher 5-FOA resistance without losing their uracil

biosynthesis capability, they could also be cheaters that are

uracil auxotrophic mutants (ura-) exploiting other cells to com-

plement their uracil need. In either case, the transience

appears to be a consequence of selection of constitutively

resistant or cheater mutants from a heterogeneous popula-

tion of cells with and without AP. We investigated whether

there was evidence for such population heterogeneity by

quantifying CF of 24 clonal isolates from mixed populations

of two lines—5 CFUs from line E2 at n¼ 50 generations, and

19 CFUs from line E1 at n¼ 300 generations. The distribution

of CF values of clonal isolates recapitulated well the overall

phenotype of each of the two lines, and demonstrated that

few clones had significantly higher CF while others had little

to no CF (fig. 3d). The high level of heterogeneity also sug-

gested that AP might emerge through interactions among

different variants within a mixed culture, with each variant

playing specialized roles vis-�a-vis uracil biosynthesis and

5-FOA resistance. This mixed population behavior is reminis-

cent of variegation in yeast populations mediated by epige-

netic phenomena (Allshire and Ekwall 2015; Norman et al.

2015). Regardless of the mechanism, transience of AP might

ultimately be a consequence of a change in population struc-

ture due to high frequency of coupled caffeine-5-FOA expo-

sures in our experimental design; future experiments could

investigate if longer periods of phase C or lower cell densities

might prevent displacement of strains that possess AP as an

individual or group-level trait.

Conclusions and Future Directions

We have demonstrated that laboratory evolution in a novel

structured environment can consistently generate AP in yeast

within a remarkably short timeframe. The whole genome se-

quence analysis suggested that reduced flux through the ura-

cil biosynthesis pathway in conjunction with a more complex

repertoire of mutations in regulatory genes contributes to

adaptively predicting 5-FOA toxicity upon sensing caffeine.

Additional experimentation will be required to characterize

which regulatory mutations are genomically linked and how

they mechanistically couple caffeine-sensing and conditionally

increasing 5-FOA resistance. Furthermore, the transience of

AP observed in some evolution lines may result from the in-

stability of the underlying mechanism or the emergence of

cheater sub-populations (King and Masel 2007; Beaumont

et al. 2009; Levy et al. 2012). We predict that periodicity,

strength and duration of stimulus, types of coupled environ-

mental changes and use of counter-selection all likely influ-

ence the dynamics of both emergence and duration of AP.

For all these reasons, a systems approach that cuts across

molecular, genome-wide, single-cell, population and tempo-

ral scales will be necessary to fully characterize the underlying

mechanisms for AP, how they emerge, and how they are lost.

The capability to evolve novel AP in the laboratory makes it

possible to conduct such multiscale systems analysis for dis-

secting and characterizing its molecular and mechanistic

underpinnings. This laboratory evolution framework also per-

mits investigation into ecological implications of AP with re-

gard to its role in enabling adaptation of an organism to new

environmental conditions.

Materials and Methods

Yeast Strains and Plasmids

Yeast strains used in this study were derived from the parental

strain Saccharomyces cerevisiae BY4741. BY4741 GPD1-

EGFP-URA3 strain was constructed by genomic integration

of a PCR fragment containing EGFP (enhanced green fluores-

cent protein) and URA3 (orotidine-50-phosphate decarboxyl-

ase gene) in-frame, amplified using the pYM27 and pRS426

plasmids, respectively. This PCR cassette contained 40 bp of

homology on each side to facilitate the integration into the

target downstream region of GPD1 open reading frame. The

PCR cassette was sequenced after genomic insertion and no

mutation was found from original sequences. For BY4741

URA3 strain, a PCR fragment containing URA3 gene was am-

plified from S. cerevisiae S288C with primers �200 bp from

upstream and downstream regions of URA3 ORF, and it was

transformed into the BY4741 strain.

Culture Conditions

Complete synthetic media (CSM) or CSM-uracil (ura) media

with 2% glucose were used as media for cell cultures. Cells

were grown at 30 �C on a rotator in a 2-ml volume. Cell

densities of liquid cultures were determined from absorbance

measurements at 600 nm using a BioPhotometer (Eppendorf).
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Serial dilution was performed by transferring an aliquot of

cultures into fresh media and adjusting optical density (OD)

to a final value of A600nm¼ 1.5 in 1 ml. Subsequently cells

were exposed to caffeine (phase A) and 5-FOA (phase B).

An aliquot of 200ll of culture was taken at the end of phase

B, washed twice and transferred into 2 ml of CSM-ura for

phase C. Mutagenesis was performed with UV light using

Stratalinker UV Crosslinker Model 2,400 at 9,300 mJ cm�2

such that we observed 20% cell survival.

Conditioned Fitness Measurements

Every �50 generations along the evolutionary experiment, a

culture aliquot was transferred into two different tubes and

diluted to a cell density of A600nm¼ 1.5 in 1ml volume. Each

sample was subsequently exposed to either phase A (with the

cue) or phase Acontrol (using media instead of the cue), and

subsequently both samples were subjected to 5-FOA in phase

B. Cell survival was assessed by sampling the cultures imme-

diately before and after phase B. Culture aliquots were ade-

quately diluted, plated onto five CSM agar plates, incubated at

30 �C, and colony formation units (CFUs) were counted. We

defined conditional fitness (CF) as the cue-specific effect on

survival, calculated as survival difference to phase B prior ex-

posure to caffeine (Sc) with respect to control (S0) as follows:

CF ¼ Sc � S0: (Eq. 1)

Survival (S) was then calculated as relative change of CFUs

after phase B as,

S ¼ �x after
�

�xbefore
; (Eq. 2)

where �xbefore and �xafter are average CFU counts before and

after phase B, respectively. Significance of survival differences

were assessed with Mann–Whitney U hypothesis tests.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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