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Magnetic resonance perfusion image features uncover 
an angiogenic subgroup of glioblastoma patients with 
poor survival and better response to antiangiogenic 
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Abstract
Background. In previous clinical trials, antiangiogenic therapies such as bevacizumab did not show efficacy in 
patients with newly diagnosed glioblastoma (GBM). This may be a result of the heterogeneity of GBM, which has 
a variety of imaging-based phenotypes and gene expression patterns. In this study, we sought to identify a phe-
notypic subtype of GBM patients who have distinct tumor-image features and molecular activities and who may 
benefit from antiangiogenic therapies.
Methods. Quantitative image features characterizing subregions of tumors and the whole tumor were extracted 
from preoperative and pretherapy perfusion magnetic resonance (MR) images of 117 GBM patients in 2 inde-
pendent cohorts. Unsupervised consensus clustering was performed to identify robust clusters of GBM in each 
cohort. Cox survival and gene set enrichment analyses were conducted to characterize the clinical significance and 
molecular pathway activities of the clusters. The differential treatment efficacy of antiangiogenic therapy between 
the clusters was evaluated.
Results. A subgroup of patients with elevated perfusion features was identified and was significantly associated 
with poor patient survival after accounting for other clinical covariates (P values <.01; hazard ratios > 3) consistently 
found in both cohorts. Angiogenesis and hypoxia pathways were enriched in this subgroup of patients, suggesting 
the potential efficacy of antiangiogenic therapy. Patients of the angiogenic subgroups pooled from both cohorts, 
who had chemotherapy information available, had significantly longer survival when treated with antiangiogenic 
therapy (log-rank P=.022).
Conclusions. Our findings suggest that an angiogenic subtype of GBM patients may benefit from antiangiogenic 
therapy with improved overall survival.
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Glioblastoma (GBM, World Health Organization [WHO] 
grade IV) is the most common and most aggressive brain 
cancer in adults. Despite multimodal therapy of surgical 
resection, radiation, and chemotherapy, the median sur-
vival of GBM in the last several decades has remained poor 
at less than 2 years.1 Studies show that GBM is a heteroge-
neous disease reflected by mixed genetic patterns, varied 
radiographic phenotypes, and disparate clinical outcomes. 
Thus, defining characteristic phenotypes of GBM that dis-
tinguish clinically relevant subgroups could enable tailor-
ing treatment to these subgroups.

Therapeutic drugs targeting tumor biological processes 
are being developed and evaluated for their efficacy in 
improving patient clinical outcomes.2 Recent advances 
in cancer immunotherapy in mouse models show prom-
ising results for potentially identifying peptides arising 
from tumor-specific mutations that may trigger a thera-
peutic immune response.3 Angiogenesis is a prominent 
pathophysiological process in GBM that is defined by the 
formation of new blood vessels to supply nutrients and 
oxygen to rapidly proliferating tumor cells via upregula-
tion of vascular endothelial growth factor A (VEGF-A).4 The 
antiangiogenic therapy bevacizumab, a humanized mono-
clonal antibody against VEGF-A to block angiogenesis, was 
approved for recurrent GBM patients.5,6 A subsequent clini-
cal trial evaluating bevacizumab in newly diagnosed GBM 
patients found no survival advantage for the treatment.7,8 
These patients were assessed as a uniform group with the 
same clinical diagnosis; however, the fact that GBM is a 
heterogeneous disease suggests the potential for stratify-
ing patients into subgroups and assessing subgroup-spe-
cific responses to antiangiogenic therapy.

Recent large-scale studies using The Cancer Genome 
Atlas9 (TCGA) database have provided a comprehen-
sive genomic, epigenetic, transcriptional, and protein-
level characterization of GBM,9,10 with the ultimate goal 
of translating this molecular understanding to inform 
clinical decisions. The integrated analysis of imaging 
and genomics data is establishing bridges that link our 
understanding of tissue-level features to molecular coun-
terparts that may help characterize new aspects of dis-
ease.11 A recent study has identified molecular signatures 
associated with prognostic clusters based on tumor mor-
phological features.12 Another study found that tumor 
location associated with poor survival has a distinct 
molecular profile.13

Magnetic resonance imaging (MRI) is used as the pri-
mary modality for the clinical diagnosis of GBM. Prominent 
imaging features of GBM include heterogeneous enhance-
ment with central necrotic regions on contrast-enhanced 
T1-weighted images.1 Dynamic susceptibility-weighted 
contrast-enhanced (DSC) perfusion MRI is an advanced MR 
technique that has increasingly become an integral part of 
the diagnostic workup for GBM.14 Whereas T1-weighted 
imaging shows morphological phenotypes of GBM, perfu-
sion-weighted imaging (PWI) detects functional and physi-
ological phenotypes of tumor vascular characteristics of 
cancers noninvasively, allowing indirect assessment of 
angiogenesis.14,15 Relative cerebral blood volume (rCBV) 
quantified from PWI enables voxel-based measurement 
across the contrast-enhancing lesion (CEL), thus show-
ing regional microvascular variation that can characterize 
GBM lesions.16,17

In this study, we sought to identify novel patient sub-
groups with newly diagnosed GBM using quantitative per-
fusion MRI to define their molecular profiles and assess 
the treatment response to antiangiogenic therapy in these 
patient subgroups.

Materials and Methods

Patient Cohorts

Health Insurance Portability and Accountability Act (HIPAA) 
compliant institutional review board approval was obtained 
with informed consent from all patients. Patients aged 18 
years or older with de novo GBM who underwent 3-dimen-
sional presurgical gadolinium-based contrast-enhanced 
T1-weighted and DSC T2*-weighted perfusion MRI exams 
were identified retrospectively from 2 independent patient 
cohorts. The first cohort comprised 68 cases in The Cancer 
Imaging Archive (TCIA) collected from 2 institutions. 
Patient-matched microarray gene expression data, gene 
expression-based subtypes previously defined by TCGA, 
clinical chemotherapy drug information, and overall sur-
vival were downloaded from The Cancer Genome Atlas 
(TCGA).9 A total of 20 cases were removed from the TCGA 
cohort due to several data quality issues (Supplementary 
Methods). The second cohort comprised 79 patients from 
the Stanford University Medical Center Medical Center 
(SUMC). A total of 10 patients were excluded from the 

Importance of the study
Our study shows that antiangiogenic therapies signifi-
cantly prolonged the overall survival of a subtype of 
glioblastoma (GBM) patients. Two recent large rand-
omized clinical trials published in New England Journal 
of Medicine reported that bevacizumab did not show 
efficacy in improving overall survival in newly diag-
nosed GBM patients. This result is consistent with our 
analysis of the pooled patient population. However, by 
leveraging magnetic resonance (MR) perfusion imag-
ing features, we found that a subtype of GBM patients 

were enriched for angiogenesis pathways and elevated 
intratumor perfusion features. In this image-based GBM 
subtype, patients treated with antiangiogenic therapies 
had significantly longer survival than those who were 
not treated (log-rank P=.022), with a median survival dif-
ference of more than 1 year. In contrast, antiangiogenic 
therapy did not show such efficacy in patients who were 
not in this subtype. Thus, the perfusion feature may 
potentially be used as an imaging biomarker to facilitate 
clinical decision-making for personalized treatment.
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SUMC cohort (Supplementary Methods). Thus, 48 patients 
in the TCGA cohort and 69 patients in the SUMC cohort 
were used in subsequent analyses.

Antiangiogenic chemotherapy as part of the therapeu-
tic regimen—regardless of being adjuvant or in progres-
sion—was annotated for both cohorts. Chemotherapy 
information was available for 25 and 30 patients in 
the TCGA and SUMC cohorts, respectively. For the 
TCGA cohort, antiangiogenic treatments included 
Angiocept, Avastin/bevacizumab, cilengitide, enzastau-
rin, sorafenib, thalidomide, and vandetanib.18 Among 
the 9 patients given antiangiogenic therapies in the 
TCGA cohort, 3 were treated both in their initial treat-
ment and at tumor progression, and the other 6 at pro-
gression or recurrence. In contrast, except for 1 patient 
treated with enzastaurin, Avastin was the only antian-
giogenic therapy given to patients in the SUMC cohort 
(Supplementary Methods). Among the 27 patients 
whose antiangiogenic treatment dates were available 
in the SUMC cohort, 2 patients were administered adju-
vant antiangiogenic treatment concurrent with temozo-
lomide as the first-line therapy, and 25 received Avastin 
at tumor recurrence.

DSC MR PWI Data Acquisition Protocol

The images data of the TCGA cohort were collected from 
2 institutions and downloaded from the Cancer Imaging 
Archive (http://cancerimagingarchive.net/).19 The PWI from 
both institutions in TCGA were obtained with T2*-weighted 
gradient-echo echo-planar imaging (EPI). The perfusion 
images from institution 1 (N=35) were acquired with a 
1.5T or 3T MR machine (TE: 40ms; TR: 1550ms or 1900ms; 
flip angle: 90°) with a section thickness of 5 or 6mm. The 
perfusion images from institution 2 (N=13) were collected 
with a 1.5T MR machine (TE: 54ms; TR: 1250ms or 2000ms; 
flip angle: 30°) with section thicknesses ranging from 3 to 
5mm. Perfusion images were acquired during passage 
of 0.1mmol/kg gadopentetate dimeglumine (Magnevist; 
Bayer healthCare, Berlin) administered at a rate of 5mL/
second for patients in both institutions in TCGA.20 Contrast 
bolus preload was not employed.

The T2*-weighted gradient-echo EPI perfusion images 
in the SUMC cohort (N=69) were acquired with a 1.5T MR 
machine (TE: 40ms; TR: 1800ms or 1113ms; flip angle: 60° 
or 90°) with a section thickness of 5mm during passage of 
0.1mmol/kg of gadopentetate dimeglumine (Magnevist; 
Bayer healthCare, Berlin) or gadobenate dimglumine 
(MultiHance, Bracco Imaging, Milan) administered at a rate 
of 4mL/second. Acquisition time was 2 minutes. Contrast 
bolus preload was not employed.

Image Processing Pipeline for Computation of 
PWI Features

We developed and applied an image analysis pipeline to 
generate quantitative voxel-based PWI features from the 
enhancing regions of the GBM tumors (Fig. 1), similar to 
that previously described (Supplementary Methods).13 
We generated relative cerebral blood volume (rCBV) 
maps using FDA-approved IB Neuro perfusion analysis 

software (v1.1; Imaging Biometrics, LLC, Elm Grove, WI, 
USA), a plugin integrated into the OsiriX platform. The 
perfusion values generated by IB Neuro were normal-
ized to the normal-appearing white matter in the hemi-
sphere contralateral to that of the tumor. The volumes 
of the transformed tumor ROI and the rCBV map were 
superimposed to extract voxel-based rCBV values in 
the enhancing region of the GBM tumor (implemented 
in a script in Matlab; www.mathworks.com/products/
matlab/).

Quantile Normalization of Pooled PWI Tumor 
Voxel Values Between 2 Cohorts

Due to variation arising from different scanners/vendors 
and different institutions in imaging data acquisition, there 
may be “batch effects” in perfusion voxel values between 
the 2 cohorts (Fig. S1). Batch effects are also commonly 
observed in molecular data, such as multiple batches of 
microarray experiments. Quantile normalization is widely 
used to correct for batch effects in molecular data.21 Here 
we quantile-normalized the PWI tumor voxel values pooled 
from all patients between the 2 cohorts. The voxel values 
of the TCGA cohort were used to quantile-normalize those 
of the SUMC cohort using the normalize.quantile.use.
target function in the “preprocessCore” bioconductor R 
package.21

Quantification of PWI Features

We sought to extract features that capture perfusion 
image phenotypes of both the whole tumor and tumor 
heterogeneity. After the quantitative image analysis pipe-
line, we quantified a total of 46 nonparametric voxel-
based PWI features in the CEL of each GBM tumor (Fig. 
1A), including 6 summary statistics describing the bulk 
tumor characteristics and 40 histogram-based features 
quantifying regional variation and intratumoral hetero-
geneity of PWI voxel values. The 6 summary statistics 
included mean, median, variance, maximum, skewness, 
and kurtosis.22 The histogram-based features consisted of 
20 histogram bins (rCBVbin) at an interval of 0.5 ranging 
from 0.5 to 10, and 20 features that measured elevated 
perfusion tumor burden (the fraction of the tumor with 
rCBV voxel values greater than a threshold [rCBVelevated]), 
where the same thresholds were used for generating his-
togram bins (Fig. 1B).

Discovery of PWI-based Subtypes

We performed hierarchical consensus clustering with 
agglomerative average linkage to discover PWI-based 
clusters in GBM patients23 (Supplementary Methods). The 
PWI features were normalized by mean-centering each 
feature. The resulting clusters were represented and visu-
alized using t-distributed stochastic neighbor embedding 
(T-SNE) implemented in R, with a pairwise distance metric 
of (1-r), where r is the Pearson’s correlation coefficient.24 
The maximum number of iterations was set to 2,000 to 
keep the cost (error) below 0.5.

http://cancerimagingarchive.net/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
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Identification of Important PWI Features 
Associated With Each Cluster

To validate the reproducibility of patient clusters, we built 
a random forest model25 using the TCGA cohort to pre-
dict cluster assignment of the SUMC cohort, which was 
compared to the clusters identified from unsupervised 
consensus clustering above. Similarly, we predicted the 
cluster assignment of the TCGA cohort using the SUMC 
cohort and reported the prediction accuracy. The impor-
tance of the PWI features was evaluated using the Gini 
index.25 Feature selection of a subset of PWI features that 
achieved the highest 10-fold cross validation accuracy 
was identified using a recursive feature elimination (RFE) 
algorithm implemented in an R package caret.26

Survival Analysis

We performed Kaplan-Meier survival analysis with the 
log-rank test on categorical clinical variables, includ-
ing age > 60 years, sex, solitary or multicentric tumor 
phenotype, gene expression-based subtypes, and the 
discovered PWI-based groups. These variables were 
also used to construct a multivariate Cox proportional 
hazards survival regression model to assess the clini-
cal significance of PWI-based groups in association with 

overall survival after accounting for other clinical prog-
nostic covariates.

We ran Kaplan-Meier survival analysis to assess the 
prognostic value of antiangiogenic treatment in cluster II 
patients, who were predicted to respond to antiangiogenic 
therapy. The overall survival of patients stratified by PWI-
based group and gene expression-based subtype was 
visualized using a boxplot. All statistical analyses were per-
formed using R (version 3.3).

Molecular Pathway Analysis

Gene set enrichment analysis (GSEA, http://www.
broad.mit.edu/gsea) was performed to identify upregu-
lated gene sets and pathways in the PWI-based clusters 
(Supplementary Methods).

Results

Characterization of Patient Cohorts

The median age in the TCGA and SUMC cohorts was 61 
years (range, 30y– 84y) and 60.5 years (range, 21y–91y), 
respectively. Table 1 shows survival analysis of clinical 
variables, where known prognostic variables such as KPS 

Fig. 1 Perfusion image-processing pipeline for generating quantitative perfusion-weighted imaging (PWI) features. (A) The enhancing tumor 
region (excluding central necrosis) was segmented on T1 images. Relative cerebral blood volume (rCBV) maps were derived from perfusion 
images. The T1 images and segmented tumor masks were registered to the perfusion images. Perfusion voxel values in the enhancing tumor 
region were extracted and then used to compute quantitative PWI features. (B) An illustration of computation of an imaging feature, rCBVelevated_3.5 
that measures the percentage of the tumor with voxel rCBV values >3.5. The red histogram bins >3.5 correspond to the tumor voxels colored in red 
in the inset.

http://www.broad.mit.edu/gsea
http://www.broad.mit.edu/gsea
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and multicentric tumor phenotype are significantly associ-
ated with survival in both cohorts, consistent with previous 
reports.9,10

Unsupervised Clustering Using PWI Features 
Identifies 2 Prognostic Patient Subgroups

Unsupervised consensus clustering using the 46 PWI fea-
tures produced 2 clusters in both the TCGA and the SUMC 
cohorts (Fig. 2A, B). We then computed the overall average 
silhouette width27 for the 2 clusters to evaluate the valid-
ity of the number of clusters. The average silhouette widths 
for the 2 cohorts were 0.59 and 0.66, providing support-
ive evidence that the 2 clusters are robust (Figs. S2, S3). 
Cluster II formed a distinct cluster from cluster I, as visual-
ized by the T-SNE plots of both cohorts (Fig. 2C, D).

Kaplan-Meier survival analysis showed that cluster II 
patients had significantly worse survival than cluster I 
patients in both the TCGA (log-rank P=.0092; HR=2.30) (Fig. 
3A) and SUMC (log-rank P=.0041; HR=2.58) cohorts (Fig. 
3B). Multivariate Cox analysis showed that this survival dif-
ference for cluster II in TCGA remained significant (log-rank 
P=.0033; HR=4.39) after accounting for other clinical vari-
ables, including age > 60 years, CEL volume, multicentric 
tumor phenotype, and KPS (Table 1). Similarly, the SUMC 
cohort confirmed that group II patients had significantly 
worse survival (log-rank P=.0010; HR=3.49), independent of 
other clinical covariates (Table 1). These results suggested 
that leveraging a comprehensive set of PWI features charac-
terizing both the bulk tumor and intratumoral heterogeneity 
enabled us to identify robust clinically relevant subgroups.

Corroborating with the result obtained from all patients, 
the PWI-based cluster II was associated with worse survival 

than cluster I  consistently across different gene expres-
sion-based subtypes, most prominently in the neural, 
classical, and mesenchymal subtypes (Fig.  3C). Also, the 
non-G-CIMP, proneural subtype (log-rank P=.0053, HR=4.6) 
was significantly correlated with worse survival than the 
other subtypes (Table S3). The multivariate Cox analysis 
showed that both the PWI-based cluster II and the gene 
expression-based non-G-CIMP proneural subtype were 
significant indicators of poor prognosis (Tables S3, S4).

Cluster II Patients Are Associated With High 
Intratumoral PWI Features

Extracted from the whole enhancing tumor, the 6 summary 
PWI features alone were not consistently associated with 
the discovered clusters in the 2 cohorts, confirming previ-
ous reports20 (Supplementary Results). In contrast, intra-
tumoral PWI features were more informative for detecting 
patient subgroups than the summary features. Heatmaps of 
the PWI features revealed the difference between the 2 clus-
ters of patients, with most histogram-based regional PWI 
features in cluster II being larger than those in cluster I (Fig. 
4). As shown in the example images of 3 PWI features in 
the 2 clusters (Fig. 4), cluster II in TCGA was positively asso-
ciated with a larger number of voxels at a low-to-medium 
cutoff (eg, such as rCBVelevated_3 and rCBVelevated_4) corre-
sponding to a large fraction of voxels with values greater 
than the cutoff (colored in red for visualization) (Fig. 4). A 
random forest trained on the TCGA cohort confirmed that 
rCBVelevated features at low to medium cutoffs were predic-
tive of the 2 clusters (Fig. S8A). These PWI feature patterns, 
which are characteristics of the 2 clusters, were similarly 
observed in the SUMC cohort (Fig. S8B). Since many of 

Table 1 Clinical variables and the perfusion-weighted imaging (PWI)-based subgroup as covariates in the survival analysis of glioblastoma (GBM) 
patients. Univariate and multivariate Cox proportional hazard models show that PWI-based subgroups are significantly associated with survival after 
accounting for the other clinical variables in both The Cancer Genome Atlas (TCGA) and the Stanford University Medical Center (SUMC) cohorts. 
Contrast enhancing lesion (CEL) tumor volume was dichotomized by the median. KPS is available for N=34 patients in TCGA. Statistically significant 
values are shown in bold.

Clinical variable TCGA SUMC cohort

Univariate Cox Multivariate Cox Univariate Cox Multivariate Cox

HR
(95% CI)

P value HR
(95% CI)

P value HR
(95% CI)

P value HR
(95% CI)

P value

Age at initial diagnosis > 60 y 1.2
[0.7, 2.3]

.48 1.5
[0.6, 3.8]

.35 2.7
[1.4, 5.3]

.0044 3.4
[1.6, 7.4]

.0016

Sex=male 0.7
[0.4, 1.4]

.39 - - 1.9
[0.9, 3.8]

.074 - -

Large CEL volume (cm3) 1.3
[0.7, 2.5]

.35 1.4
[0.6, 3.3]

.47 1.2
[0.6, 2.3]

.64 1.3
[0.7, 2.6]

.39

Multicentric tumor phenotype 3.0
[1.2, 7.5]

.019 0.5
[0.07, 3.3]

.45 2.1
[1.0, 4.4]

.048 1.9
[0.8, 4.3]

.12

KPS < 80 3.1
[1.4, 6.8]

.0043 3.9
[1.4, 10.7]

.0078 2.8
[1.5, 5.4]

.0017 3.0
[1.5, 6.2]

.0026

PWI-based subgroup=2 2.3
[1.2, 4.4]

.0092 4.4
[1.6, 11.8]

.0033 2.6
[1.3, 5.1]

.0041 3.5
[1.7, 7.4]

.0010

Abbreviations: CEL, contrast-enhancing lesion; CI, confidence interval; HR, hazard ratio; SUMC, Stanford University Medical Center; PWI, 
perfusion-weighted imaging; TCGA, The Cancer Genome Atlas
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these PWI features are highly correlated (redundant) (Fig. 
S9), the recursive feature elimination algorithm selected a 
handful of features that are predictive the 2 clusters, includ-
ing rCBVelevated_2.5 and rCBVelevated_3 for the TCGA cohort and 
rCBVelevated_2.5 and rCBVmedian for the SUMC cohort (Fig. S8).

To validate the generalizability of the significant PWI fea-
tures associated with the clusters to unseen cases, we used 
the random forest classifier constructed using the SUMC 
cohort to classify patients of the TCGA cohort into 2 groups. 
When comparing the classifier-based stratification with the 
unsupervised clustering approach above, the accuracy of 
predicting the TCGA cohort using a model trained on all 
PWI features in the SUMC cohort was 95.8% (46/48), and 
the model trained on the selected subset of features was 
97.9% (47/48). The classifier-based stratification trained on 

the SUMC cohort remained significantly associated with 
survival in TCGA (log-rank P=.030; HR=1.98). Similarly, the 
classification accuracy was 92.8% (64/69) for training on all 
features in TCGA and predicting on the SUMC cohort, and 
was 94.2% (65/69) for training on the selected subset of 
features in TCGA. The classifier-based stratification of the 
SUMC cohort trained on TCGA was significant in correlat-
ing with survival (log-rank P=.012; HR=2.26).

PWI-based Cluster II Patients Are Enriched for 
Angiogenesis

We ran gene set enrichment analysis (GSEA)28 to identify 
molecular activities that are different between the 2 clusters. 
A total of 13 gene sets, including angiogenesis-signaling 

Fig. 2 Unsupervised clustering in both cohorts. Consensus clustering of patients based on perfusion-weighted imaging (PWI) features in (A) the 
Stanford University Medical Center (SUMC) and (B) The Cancer Genome Atlas (TCGA) cohorts consistently identified 2 clusters that were well 
separated, as shown by the t-distributed stochastic neighbor embedding (T-SNE) plots of (C) the SUMC and (D) TCGA cohorts. In the consensus 
matrices in (A) and (B), solid blue indicates the 2 samples that always cluster together in one group, whereas white indicates those that never 
cluster together.
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pathway, vasculature development, and response to 
hypoxia, were found to be significantly enriched in cluster II 
compared with cluster I (FDR P<.05) (Table S1). Shared genes 
contributing to the core enrichment of both the hypoxia sign-
aling and the angiogenesis pathways consisted of angio-
genin (ANG), VEGF-A, and transforming growth factor beta 
2 (TGFB2, also called glioblastoma-derived T-cell suppressor 
factor). Upregulation of angiogenesis pathways found in 
cluster II suggests the potential for treatment efficacy using 
antiangiogenic therapy in this subgroup of patients.

PWI-based Cluster II Patients Given 
Antiangiogenic Treatment Have Better Survival

We next evaluated whether the PWI-based quantitative 
imaging features can be used as biomarkers for predicting 

treatment response to antiangiogenic therapy in GBM 
patients based on identifying the cluster in which they 
belong. Because chemotherapy treatment information 
was only available for a subset of patients in both of our 
cohorts (Fig. S10), we combined patients with chemother-
apy information from both cohorts to increase statistical 
power. Antiangiogenic treatment did not prolong overall 
survival in all patients as a single group (log-rank P=.15; 
HR=0.59), consistent with results reported in a recent 
large-scale clinical trial.7 In the cluster II patients who were 
predicted to respond to antiangiogenic treatment from 
both cohorts, those treated with antiangiogenic therapies 
(median survival: 552.5 d) had significantly longer survival 
than those who were not given the antiangiogenic ther-
apy (median survival: 178 d) (log-rank P=.022; HR=0.28) 
(Fig.  5), with a median survival difference >1 year (374.5 
d). In contrast, antiangiogenic treatment (N=26/37) did not 

Fig. 3 Kaplan-Meier curves of patients dichotomized into clusters (clusters I and II) in both cohorts revealed that patients in cluster II had sig-
nificantly worse survival than those in cluster I. (A) Kaplan-Meier curve for the 2 clusters in the The Cancer Genome Atlas (TCGA) cohort (log-rank 
P=.0092; HR=2.30). (B) Kaplan-Meier curve for the 2 clusters in the Stanford University Medical Center (SUMC) cohort (log-rank P=.0041; HR=2.58). 
Three patients in cluster I were removed due to missing overall survival information. (C) Box plot of patients’ overall survival stratified by gene 
expression-based subgroup and perfusion-weighted imaging (PWI)-based subtype. Right-censored patients were included in the subtype visuali-
zation because the overall survival of each right-censored patient was above the median survival of its corresponding subtype.



 1004 Liu et al. Antiangiogenic drugs show efficacy in a GBM subtype

confer survival advantage in the cluster I patients (log-rank 
P=.77; HR=0.86), as might be predicted from the differen-
tial PWI feature and molecular analyses. More specifically, 
the median survival for patients treated with and without 
antiangiogenic therapy in cluster I was 439 and 546 days, 
respectively.

Discussion

We identified an angiogenic subtype of patients with newly 
diagnosed GBM who could potentially benefit from antian-
giogenic therapy as part of their treatment regimen, with 
improved clinical outcome (survival). This subtype, which 
is distinguished by elevated PWI features, is characterized 
by worse overall survival, enrichment of angiogenesis 
and hypoxia pathways, and significantly better survival in 
patients treated with antiangiogenic therapy than those 
who were not treated. The results were consistently repro-
duced in 2 independent cohorts.

Recent large phase 3 randomized clinical trials of beva-
cizumab therapy in newly diagnosed GBM reported that 
bevacizumab therapy did not show efficacy in improv-
ing overall survival,7,8,29 consistent with our analysis of 

the pooled patient population that is not subdivided by 
subtype (log-rank P=.15). Poor treatment efficacy across 
all patients may result from heterogeneous patterns in 
genetic profile, imaging phenotype, and clinical out-
come across GBM patients.18 To improve the current one-
treatment-fits-all approach, there is a need to identify 
biomarkers that stratify patients into clinically relevant 
subgroups. In this study, our results showed that antian-
giogenic therapy significantly improved overall survival 
in a distinct subgroup of GBM patients identified by quan-
titative PWI features (log-rank P=.022; HR=0.28) (Fig.  5) 
that may be useful as clinically actionable biomarkers 
for making treatment decisions. In corroboration, our 
molecular analysis provided molecular insight showing 
the subgroup enriched with proangiogenic factor VEGF-A, 
which is the target for antiangiogenic drugs such as beva-
cizumab. Thus, perfusion imaging may provide a prom-
ising noninvasive biomarker predictive of response to 
antiangiogenic therapy.

While we sought to overcome disease heterogene-
ity by clustering patients into subgroups, intratumoral 
 heterogeneity—which arises from multiple tumor sub-
clones and leads to treatment failure and drug resist-
ance—also needs to be addressed to ultimately enable 
personalized treatment.30,31 Quantitative voxel-based 

Fig. 4 Two clusters of glioblastoma (GBM) patients with distinct perfusion-weighted imaging (PWI) features as illustrated by 3  example features 
observed on representative image slices (the analysis was performed in 3D). Left: matrix of patients (columns) and the quantitative image features 
of glioblastoma (GBM) contrast-enhancing lesion (CEL) regions (rows). Right: Colored perfusion maps superimposed on the aligned anatomical T1 
images show example images of 3 linked PWI features in the 2 clusters with their actual values specified on the top. In the 2 example images for 
relative cerebral blood volume (rCBV)bin_1, yellow indicates the percentage of voxel with values ≥0.5 and <1, and purple indicates voxel values ≥1 
or <0.5. In the example images for rCBVelevated_3 and rCBVelevated_4, red represents voxels above the threshold, and those below are colored in blue. 
Thus, the rCBVelevated feature is the proportion of the red area of the whole tumor.
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perfusion MR image analysis provides a volumetric char-
acterization of the tumor that allows us to examine spatial 
variation in tumor rCBV. In addition to statistics summa-
rizing characteristics of the whole tumor, we comprehen-
sively captured intratumoral heterogeneity by quantifying 
histogram bins and elevated features at 20 uniform thresh-
olds from 0.5 to 10 (Fig. 1). Our analysis revealed that poor 
prognosis was associated with a large fraction of high 
rCBV voxels measured by rCBVelevated, suggesting that the 
extent of highly vascular subregions in the tumor may be 
correlated with the level of aggressiveness in the heteroge-
neous tumor. Previous perfusion studies using summary 
features were limited by the small number of features and 
only dichotomized patients by the feature median, which 
were often unable to uncover novel patient subtypes when 
the underlying subgroups were not balanced.20 Here we 
leveraged PWI features quantifying intratumoral heteroge-
neity to identify subtypes associated with overall survival 
in presurgical, newly diagnosed GBM patients. Except for 
manual segmentation of the tumor region, our computa-
tional approach for identifying patients who would ben-
efit from antiangiogenic treatment is fully automated and 
could be incorporated into the clinical workflow.

The patient clusters associated with survival were con-
sistently reproducible across the 2 cohorts (Figs. 2, 3). We 
also validated the generalization of our clustering analy-
sis by training on one cohort and testing on the other 
cohort. We trained a random forest classifier using the 
SUMC cohort to predict 2 subgroups in TCGA. The pre-
dicted subgroups remained significantly associated with 
survival (log-rank P=.030), and 95.8% (46/48) of patients in 
TCGA were assigned to the same clusters as those by the 

unsupervised consensus clustering approach. When swap-
ping the training and testing cohorts, the predicted SUMC 
subgroups were significant in correlating with survival 
(log-rank P=.012), and the predicted cluster assignments of 
92.8% (64/69) of patients were consistent with those from 
the unsupervised clustering approach. After feature selec-
tion, the prediction accuracies improved further (97.9% 
[47/48] and 94.2% [65/69]) when predicting TCGA using 
selected features of the SUMC cohort, and vice versa. This 
indicated that the selected features are predictive of the 
clusters and are robust when generalizing to unseen data.

There are several limitations in our study. First, our analy-
sis was limited by the small number of patients with com-
plete treatment information because many patients in the 
SUMC cohort had surgery at the Stanford Medical Center and 
were then transferred to local hospitals for follow-up treat-
ments. Thus, these patients without complete clinical neuro-
oncology notes had to be removed in the treatment analysis. 
A second limitation is potential “batch effects” between the 2 
cohorts due to variability in perfusion imaging technique. We 
corrected the batch effects by quantile normalization of the 
SUMC cohort based on the TCGA cohort, and the prediction 
accuracies improved substantially (Supplementary results). 
There could possibly be remaining residual “batch effects,” 
and thus future studies with larger cohorts of patients under-
going the same perfusion imaging protocol could be helpful 
for effectively removing this variability.

A third limitation of our study was the variability in 
antiangiogenic treatments administered. Because this is a 
retrospective study, the administration of antiangiogenic 
treatment was heterogeneous across patients in both 
cohorts depending on the clinical presentation of disease 
recurrence and various other factors (Supplementary 
methods). There may be potential confounding variables in 
determining which patients received antiangiogenic treat-
ment. For example, if there were clinical presentations cor-
related with the PWI-based cluster II that led to the decision 
of the antiangiogenic treatment administration (eg, neo-
vascularization on subsequent MR images), the difference 
in survival between the 2 PWI-based clusters would be 
reduced by the effect of salvage therapies. The fact that we 
nonetheless observed the differential survival between the 
2 PWI-based clusters (Fig. 3) suggests that this difference 
is substantial. We did not observe a significant association 
between antiangiogenic treatment administration and PWI-
based cluster II (Fig. 10S), indicating that any potential vari-
able correlated with the perfusion-based stratification has 
not previously been used systematically in the decision-
making of administering antiangiogenic therapies in clin-
ics. Moreover, the heterogeneous timing of treatments may 
affect the overall survival. However, this heterogeneity is 
present in both PWI-based clusters; factors such as the tim-
ing and duration of antiangiogenic therapies did not vary 
between the 2 PWI-based clusters. The key finding of our 
study is that antiangiogenic therapies showed efficacy in 
PWI-based cluster II but not in cluster I. Within the patients 
of PWI-based cluster II, those treated with antiangiogenic 
therapies had significantly longer overall survival than 
those who were not treated. One could argue that if the 
antiangiogenic therapies were given earlier, these patients 
may have had even longer overall survival. In contrast, 
this survival benefit from antiangiogenic therapy was not 

Fig. 5 Antiangiogenic treatment significantly improves overall 
survival of patients in cluster II. In the subgroup of patients who 
were predicted to respond to antiangiogenic treatment based on 
perfusion-weighted imaging (PWI) features (cluster II), patients 
treated with antiangiogenic therapies were significantly associ-
ated with longer survival than those who were not given the antian-
giogenic therapy (log-rank P=.022).
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observed in patients of the PWI-based cluster I. In fact, the 
median overall survival of patients who were treated with 
antiangiogenic therapy (439 days) was slightly worse than 
that of patients who were not treated (546 days) in cluster I.

Our study provides a first approach leveraging PWI fea-
tures as potential imaging biomarkers to stratify patients 
for personalized antiangiogenic treatment. Future large-
cohort prospective studies evaluating treatment effective-
ness of antiangiogenic treatment in the subtype of patients 
having elevated PWI features would be helpful to confirm 
our results.

In conclusion, we determined that an angiogenic sub-
group of patients with worse overall outcome and high 
intratumoral quantitative PWI features has better response 
to antiangiogenic therapy than patients who lack these 
imaging features. Our analysis approach using quantita-
tive PWI features as a discriminative, predictive pheno-
type could potentially be used in future clinical practice to 
evaluate GBM tumors and assist with therapeutic decision-
making for targeted, personalized treatment.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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