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ABSTRACT

The secondary metabolism of bacteria, fungi and
plants yields a vast number of bioactive substances.
The constantly increasing amount of published ge-
nomic data provides the opportunity for an effi-
cient identification of gene clusters by genome min-
ing. Conversely, for many natural products with re-
solved structures, the encoding gene clusters have
not been identified yet. Even though genome mining
tools have become significantly more efficient in the
identification of biosynthetic gene clusters, struc-
tural elucidation of the actual secondary metabo-
lite is still challenging, especially due to as yet un-
predictable post-modifications. Here, we introduce
SeMPI, a web server providing a prediction and iden-
tification pipeline for natural products synthesized
by polyketide synthases of type I modular. In or-
der to limit the possible structures of PKS prod-
ucts and to include putative tailoring reactions, a
structural comparison with annotated natural prod-
ucts was introduced. Furthermore, a benchmark was
designed based on 40 gene clusters with annotated
PKS products. The web server of the pipeline (SeMPI)
is freely available at: http://www.pharmaceutical-
bioinformatics.de/sempi.

INTRODUCTION

Polyketide synthases (PKS) are well known for the great
variety of their bioactive products. They comprise numer-
ous important antibacterial, anticancer, antifungal, antivi-
ral, antiparasitic and several other significant substances in
clinical use (1). Even though polyketides (PK) are a very
diverse group of compounds, they are produced by similar
synthesis pathways. PKS are multifunctional enzymes that
can be divided into three types (2). While the products of

type-II and type-III PKS are synthesized in a single reaction
cavity, type-I PKS can be divided into structured modules
that are passed during product formation.

Each of them consists of a substrate specific ketosyn-
thase, possibly followed by a ketoreductase, dehydratase,
enoyl reductase and/or methyltransferase that modify the
newly attached PK-segment (3). This highly organized
structure allows for prediction of resulting PK-chains based
on genome clusters (4). However, the PK chain formation
is often ensued by cyclization and additional modifications
whose products are hardly predictable with currently avail-
able methods (5). The sustained scientific interest in these
compounds has led to a remarkable number of identified
PK, but also to an increasing rediscovery rate (6). With
rapidly decreasing costs, genomic screening has become an
important method in the search for new natural drugs. For
example, the identification and reactivation of silent gene
clusters has resulted in several new discoveries (7). However,
activating these clusters is an elaborate task, and predicting
the resulting products as precisely as possible supports the
determination of the most interesting candidates in advance
(8).

Based on sophisticated methods for identification of
known gene families and related clusters, the identifica-
tion of relevant genes for biosynthesis and even multigene
modules has significantly improved in recent years (9–11).
Even gene clusters of so far unknown classes can be pre-
dicted accurately by probabilistic approaches such as Clus-
terFinder (6). However, the prediction of the resulting sec-
ondary metabolites based on novel genomic sequences is
still a major challenge.

One of the best studied PKS synthesis routes is the modu-
lar type I subclass, due to its well-structured building-block
composition (12). The few available tools for secondary
structure prediction such as NP.searcher (13), PRISM (14)
and antiSMASH 3.0 (9) provide accurate results if the sub-
jected gene cluster has a significant sequence similarity to
annotated clusters with known products. However, predic-
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Figure 1. Flowchart of the SeMPI pipeline. (A) Data can be submitted as FASTA, GenBank files, or raw DNA code. (B) Gene cluster is identified with
antiSMASH 3.0. (C) Structure of the carbon chain is predicted. (D) Carbon chain is translated into the matrix annotation. (E) StreptomeDB 2.0 provides
the natural compounds for the path similarity search. (F) A set of matrices was computed for each compound. (G) The matrix from the prediction is
compared with each matrix set of the database. (H) The web server output displays the prediction and domain information as well as the 10 best matching
compounds.

tion quality decreases significantly if sequence similarity is
low.

SeMPI follows an ab-initio approach and predicts the cor-
rect order of the substrates which constitute the secondary
metabolite. The predicted PK-structure represents the ini-
tial PKS biosynthesis without any cyclization or further
post-modifications. In order to limit the possible structures

of PKS products, we developed an automated workflow
which compares the predicted polyketide chain to anno-
tated natural products in a large database of natural prod-
ucts (StreptomeDB 2.0 (1)). The pipeline reversely trans-
forms annotated metabolites to their initial biosynthesis
products without post-modifications. This allows for ade-
quate comparison of predicted PK-chain and reported com-
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Figure 2. The prediction algorithm preserves contiguous genes in the PKS
and collects them in blocks. These blocks are combined according to the
most favored interaction of their docking domains. The final domain ar-
rangement is translated into the PK-chain.

pounds. As a consequence, the determination of the prod-
uct structure based on genome information will be strongly
supported.

MATERIALS AND METHODS

Database pipeline

The prediction pipeline consists of two parts, the prediction
of the PK-chain (which is performed on the fly for a submit-
ted gene cluster), and the identification of putative molecule
scaffolds that fit to the predicted PK-chain. For the compar-
ison, possible paths through natural products annotated in
the StreptomeDB 2.0 have been pre-processed. The com-
parisons are scored according to the maximum common
sub-paths within each molecule. A flowchart of the pipeline
is shown in Figure 1.

Polyketide chain prediction

Initially, the submitted DNA sequence is screened for gene
clusters of PKS type I using antiSMASH 3.0 (9). Identified
gene clusters are screened for domain signatures of mod-
ular KS and lack of other types of PKS or NRPS signa-
tures. Exact starting and ending positions of the domains
in the gene cluster are then identified by a sequence similar-
ity search using Hidden Markov Model profiles specific for
modular PKS type I. HMM profiles were built from multi-
ple sequence alignments generated with Clustal Omega (15)
and processed with HMMER 3 (16). Sequences of exper-
imentally characterized domains were retrieved from Do-
BISCUIT (17) (Supplementary Table S1).

Based on this method, the following domains are clas-
sified: ketoacyl synthase (KS), acetyltransferase (AT), acyl
carrier protein (ACP), keto reductase (KR), dehydratase
(DH), enoylreductase (ER) and thioesterase (TE). KSQ do-
mains are distinguished from those KS domains in which
the reactive cysteine has been mutated to glutamine (3).

The different genes that a PKS may contain are pre-
dicted by using GeneMark (18). Domains are assigned to

the related genes based on their position in the sequence.
The start codon is selected from its distance to the initial
codon of the first KS domain, which is considered to be
30–40 residues, the length of the N-terminal docking do-
main (19). The arrangement of the genes is then predicted
by the following method: Contiguous genes are clustered
in blocks. The first block is characterized by the presence
of a KSQ domain or an AT-ACP loading module, and the
final block by containing a TE domain. The order of the
non-flanking blocks is determined by a pair of specific inter-
actions between the docking domains. N-terminal docking
domains are located between a start codon and the first KS
domain of a block, whereas C-terminal docking domains
are located between the last ACP domain of a block and
the stop codon. The residues involved in the interaction be-
tween two docking domains are derived from the molecular
structure of the docking domains of the modular PKS 6-
deoxyerythronolide B synthase (DEBS) (PDB: 1PZR (19)).
Interacting residues of homologous sequences are defined
by related positions in a sequence alignment performed with
Clustal Omega. All permutations of block arrangements are
calculated, and possible interactions between the docking
domains are classified as favorable, neutral, or unfavorable
according to the interacting residue pairs (5). The permu-
tation with the highest number of favorable interactions in-
dicates the predicted arrangement of the blocks. If multiple
combinations share the best score, the order of the genes
in the genome is favored. The domain arrangement is illus-
trated in Figure 2.

Substrate specificity of the AT domains is predicted based
on position probability matrices (PPMs) of substrate spe-
cific AT domains (Supplementary Formula S2). A PPM
has been calculated for each substrate (malonyl, methyl-
malonyl, ethylmalonyl and methoxymalonyl) from a mul-
tiple sequence alignment of experimentally characterized
substrate specific AT domains retrieved from DoBISCUIT.
The active site residues are defined by a sequence alignment
with a structurally resolved AT domain of DEBS (PDB:
2HG4 (20)). Five residues were considered as interacting
with the substrate: Q643, L671, Y742, S744 and L795. The
best scored substrate specific PPM for a subjected AT do-
main determines the selection of the next building-block in
the elongation of the PK chain.

The ß-keto group of the acyl-monomer is subsequently
modified to a hydroxyl, methine, or methylene according to
the presence of a KR, DH or ER domains in the following
module.

Generation of polyketide chains from described natural prod-
ucts

Whereas the initial biosynthesis steps of modular PKS
I metabolites are well predictable due to their modular
chain elongation pattern, post-modifications like cycliza-
tion, phosphorylation and glycosylation are difficult to de-
termine. However, the initially synthesized carbon chain is
normally conserved in the final metabolite (3,12). To iden-
tify this primary PK-chain in already described natural
products we developed a new algorithm. After the termi-
nation of the modular biosynthesis, the last link of the car-
bon chain is released from the thioesterase, leaving a car-
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Figure 3. PK-chain generation shown for reveromycin. (A) Possible starter units of the path are identified in the molecule. (B) Unique atom-chains are
calculated within the molecule (green), beginning with the starter units (blue). (C) The path are extracted and transformed into the matrix annotation. The
dotted lines show how each segment is translated.

boxylic group. In tailoring reactions, this group can be in-
volved in cyclization, methylation, amination or reduction
steps (21,22).

Acetyl-, carboxyl-, lactone- and amide-groups were iden-
tified with substructure searches, and used as starting units
for the path calculation. The longest possible paths to an
ending carbon were then calculated. These paths also in-
clude side chains up to the second atom to allow a more de-
tailed path comparison. Sulfur and oxygen atoms, as well
as peptide bonds lead to a termination of a path, as the
initially synthesized chain is not expected to include non-
carbon atoms in the main path. This approach automati-
cally cleaves glycosides, phosphates, amino acids and other
post-modifications.

All calculated paths of a molecule are stored in a format
referred as matrix, which allows uniform and fast compar-
ison. Within a matrix, each element of a path is numbered
beginning with the starter unit, and is described by atom,
bond to the next element, and neighbor atoms/bonds. A
scheme of the path generation is shown in Figure 3. Matrix
sets were calculated for all molecules in StreptomeDB 2.0
and stored in a database.

Path comparison

A matrix annotation of the predicted molecule is created
via the same algorithm as mentioned above. The matrices
of compounds from the database are step-wise compared
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Figure 4. ROC curve for a test dataset of 40 genome clusters with anno-
tated products. The AUC values for SeMPI and antiSMASH 3.0 are given
in the legend. The diagonal line would indicate a random ranking.

to the matrix of the prediction, assigning points for each
matching property. The scoring system is explained in de-
tail in Supplementary Table S3. Database compounds are
then ranked based on the achieved points using the stan-
dard competition ranking.

Website

The website allows the uploading of genomes or gene clus-
ters as FASTA (*.fna, *.fasta) or GenBank (*.gbk) files, but
also the pasting of raw sequence data. Results are gener-
ated for modular PKS type I clusters. An error report pro-
vides feedback if a cluster cannot be processed. The result
page for each cluster comprises the predicted PK-chain, in-
cluding information about module order within the PKS,
building blocks and reduction types. The 10 best matches
from the path comparison are listed below the predicted
PK-chain. The rank and total score are displayed. Sub-
scores give more details about the similarity with the pre-
dicted chain. A traffic light provides a quick visual evalua-
tion of the matches. A red light shows a score <50, yellow
50–100 and green >100. The corresponding natural com-
pounds from the database are shown next to their matched
path, including a link to their entry in StreptomeDB 2.0,
allowing for a more thorough investigation.

Implementation

The entire pipeline is written in python, including the web
framework, which is based on the Django package (https:
//djangoproject.com). Molecular operations are performed
using the rdkit module (http://www.rdkit.org), which allows
for very fast calculations due to its C++ core data structure.
The path algorithm is based on rdkit and is itself written as
a python module. By introducing new classes which focus
on PK specific molecular operations, this project provides
further functionalities, which can be easily extended due to
the object-oriented code. The algorithm for the path extrac-
tion can be downloaded from GitHub: (https://github.com/

paulzierep/flp). A PostgreSQL database is connected via the
psycopg2 wrapper for database access. The molecules in the
matrix database can be complemented with more collec-
tions of natural compounds from other sources, which will
give the SeMPI pipeline more comprehensiveness with fu-
ture updates.

Benchmark design

A test dataset of gene clusters with already annotated prod-
ucts was collected from MiBIG (23). In order to establish
a conclusive comparison with antiSMASH 3.0, the bench-
mark was adjusted accordingly. Certain predictions of an-
tiSMASH 3.0 did not contain a starting unit that could be
identified by the path algorithm. These molecules were ex-
cluded from the test dataset. Additionally, antiSMASH 3.0
can predict nitrogens as part of the main chain. This is not
the case for the SeMPI software, due to its focus on pure
PKS type I modules. In order to increase the comparability
of the results, we included nitrogen heteroatoms as a possi-
ble element of the path algorithm. The dataset comprised 40
PKSs type I modular. Their products were predicted using
SeMPI as well as antiSMASH 3.0. For each prediction, a
ranking was calculated using the above described path algo-
rithm. A modified competition ranking was applied, where
in the case of a set of equally ranked compounds, the worst
rank was assigned to all the compounds of the set. Based
on the ranking of the actual product of the gene cluster, the
true positive rates (TPRs) and false positive rates (FPRs)
were calculated and plotted in a receiver operating charac-
teristic curve (ROC-curve).

Additionally, the rankings were performed with all com-
pounds from StreptomeDB 2.0 to illustrate the individual
performances in a big dataset.

RESULTS AND DISCUSSION

The evaluation of structure prediction tools depends on
the algorithm used to measure structural similarity and the
minimal threshold which is required to consider a molecule
from the test dataset as putative match to a subjected gene
cluster. The evaluation by using a ROC curve based on
ranking has the advantage of being independent of specific
thresholds (24).

The structure prediction algorithm implemented in anti-
SMASH 3.0 was chosen as a tool for comparison to SeMPI,
as both applications predict exactly one carbon chain for
each submitted gene cluster as distinguished from PRISM,
that gives the choice between multiple possible predictions
or NP.searcher that supplies simulated tailoring reaction in
some cases.

Based on the 40 gene clusters from the test dataset,
SeMPI could reach an AUC-value of 0.85, opposed to an-
tiSMASH 3.0 with an AUC-value of 0.69 (Figure 4). Obvi-
ously, we could improve the predictive power for the prod-
ucts of modular PKS type I gene clusters significantly.

In the individual ranking of the gene cluster products
among natural products from the StreptomeDB 2.0, SeMPI
could rank 27 actual gene cluster products (antiSMASH
3.0: 5) within the first ten of 2839 possible ranks (Figure 5).
This demonstrates the efficiency of the algorithm to detect
the correct paths in a large number of molecules.

https://djangoproject.com
http://www.rdkit.org
https://github.com/paulzierep/flp
https://github.com/paulzierep/flp
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Figure 5. Bar chart representation of the individual ranking for the test dataset, matched with all the suitable compounds from the StreptomeDB 2.0
(2839).

In the case of a poor ranking we could work out two main
reasons. If the prediction was made for a gene cluster that
produces a compound with multiple tailoring reactions, the
path algorithm reaches its limitations. This explains for ex-
ample the very weak ranking of coelimycin, where at least 10
tailoring reactions are proposed after the modular biosyn-
thesis (25) (Figure 6A). Similar difficulties occur if the start-
ing unit for the path algorithm is wrongly identified, due to
an unexpected tailoring reaction of the unit. This could be
observed, for example, for tautomycin, where the starting
unit reacted to a ketone (26), which is currently not identi-
fied by the path algorithm (Figure 6B).

A ranking within the first 10 possible ranks would lead
to an entry in the shown SeMPI result page for the given
gene cluster. The rationale of presenting several molecules
is, that compounds having the same rank can in many cases
be explained with the occurrence of multiple derivatives of
the same natural product in the database. These derivatives
differ only slightly among themselves for example in their
stereochemistry or the type of glycosidic residue. It is de-
sired to rank those compounds on the same position, as this
allows a very detailed investigation of all possible products
of a submitted gene cluster.

Even though SeMPI does rank natural products for any
given prediction, the resulting ten predictions do not always

match, as was already shown by the benchmark. Especially
for novel gene clusters, the metabolite might not be anno-
tated in the database yet. In order to give the user a ba-
sic estimation of the quality of the shown molecules, the
traffic light was introduced. A green light indicates a very
good match. In this case, the chances are high that the pre-
dicted metabolite of the submitted gene cluster has at least
a scaffold that is very similar to the proposed molecules.
Molecules with a yellow traffic light can still lead to a ba-
sic understanding of the overall structure of the prediction,
especially when the 10 best matches show similar features.
But it is unlikely that the exact secondary metabolite was
identified in the resulting list. The interpretation of a red
traffic light, allows two possibilities. If the predicted carbon
chain is very short, there are only few distinctive features,
which restricts the comparison algorithm significantly. If a
long carbon chain is predicted, a red light would indicate
that this compound is comprised of a scaffold which is not
described in the database, but could also be the first hint for
a newly discovered PK.

In future, updates we will extend SeMPI by implement-
ing additional database search features, for example by in-
creasing the library of possible starting units for the path
algorithm. Another improvement will be the integration of
other databases for natural compounds in order to apply
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Figure 6. Examples for gene cluster products which were difficult to predict. (A) The initial polyketide chain of coelimycin is modified by multiple tailoring
reactions, resulting in a strongly modified scaffold. (B) The path algorithm identified the wrong starting unit for tautomycin, the correct starting unit is
circled in blue.

a maximum number of putative annotated molecules that
come into question for subjected gene clusters.

CONCLUSIONS

The SeMPI web server successfully combines and com-
plements available polyketide prediction methods with a
unique database matching algorithm. Whereas other tools
focus on the simulation of possible tailoring reaction in
order increase the information value about the predicted
metabolites (PRISM, NP.searcher), the SeMPI path algo-
rithm tries to identify putative patterns derived from al-
ready annotated secondary metabolites. Both approaches
do not completely overcome the difficulty in predicting
post-modifications based on genome cluster mining. How-
ever, the alternative approach of SeMPI provides a new in-
sights into putative molecule structures, and will help re-
searchers to understand the syntheses steps of the gene clus-
ters much better. With the increasing number of sequenced
genomes, SeMPI will enable researchers to identify promis-
ing gene clusters more efficiently, but also prevent them
from investing great efforts in structure determination of a
cluster product although it has already been described in
literature.
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