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Biomarker-driven studies, in which experimental agents 
are tested within specific genomic or molecular subpopula-
tions, offer a promising approach to trial design to improve 

efficiency and deliver precision medicine.1 There are many dif-
ferent ways to design such trials—from tumor-specific trials like 
the biomarker-selected, randomized, controlled Lung Master 
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Abstract
Background.  Biomarkers can improve clinical trial efficiency, but designing and interpreting biomarker-driven trials 
require knowledge of relationships among biomarkers, clinical covariates, and endpoints. We investigated these 
relationships across genomic subgroups of glioblastoma (GBM) within our institution (DF/BWCC), validated results 
in The Cancer Genome Atlas (TCGA), and demonstrated potential impacts on clinical trial design and interpretation.
Methods. We identified genotyped patients at DF/BWCC, and clinical associations across 4 common GBM genomic 
biomarker groups were compared along with overall survival (OS), progression-free survival (PFS), and survival 
post-progression (SPP). Significant associations were validated in TCGA. Biomarker-based clinical trials were simu-
lated using various assumptions.
Results.  Epidermal growth factor receptor (EGFR)(+) and p53(−) subgroups were more likely isocitrate dehydroge-
nase (IDH) wild-type. Phosphatidylinositol-3 kinase (PI3K)(+) patients were older, and patients with O6-DNA meth-
ylguanine-methyltransferase (MGMT)–promoter methylation were more often female. OS, PFS, and SPP were all 
longer for IDH mutant and MGMT methylated patients, but there was no independent prognostic value for other 
genomic subgroups. PI3K(+) patients had shorter PFS among IDH wild-type tumors, however, and no DF/BWCC 
long-term survivors were either EGFR(+) (0% vs 7%, P = .014) or p53(−) (0% vs 10%, P = .005). The degree of bio-
marker overlap impacted the efficiency of Bayesian-adaptive clinical trials, while PFS and OS distribution variation 
had less impact. Biomarker frequency was proportionally associated with sample size in all designs.
Conclusions. We identified several associations between GBM genomic subgroups and clinical or molecular prog-
nostic covariates and validated known prognostic factors in all survival periods. These results are important for 
biomarker-based trial design and interpretation of biomarker-only and nonrandomized trials.

Neuro-Oncology
19(7), 908–917, 2017 | doi:10.1093/neuonc/now312 | Advance Access date 20 February 2017

mailto:bmalexander@lroc.harvard.edu?subject=
mailto:keith_ligon@dfci.harvard.edu?subject=


909Tanguturi et al. Genomic biomarker data for trial design in glioblastoma
N

eu
ro-

O
n

colog
y

Protocol (LUNG-MAP) in squamous cell lung cancer2 and 
the adaptively randomized I-SPY 2 trial in breast cancer,3to 
the National Cancer Institute’s cross-tumor “basket” trial 
Molecular Analysis for Therapy Choice (NCI-MATCH).4 
The design and interpretation of such trials benefit from 
biomarker-specific data regarding the relative frequency 
and degree of overlap between biomarker subgroups, a 
priori prognostic capacity of subgroups, and the relation-
ship between endpoints for each subgroup. These data can 
impact decisions regarding eligibility criteria, endpoints, 
accrual estimates, and selection of appropriate controls. 
Additionally, this information is essential to generate 
assumptions for simulations of Bayesian clinical trials to 
elucidate operating characteristics. The potential to abstract 
foundational data for biomarker-driven clinical trial design 
is an underappreciated value of large clinically annotated 
datasets such as The Cancer Genome Atlas (TCGA),5 as the 
relative frequency and natural history of genetically defined 
subgroups with respect to various trial endpoints may not be 
well characterized.

Despite over 1400 published trials and an increasing 
number of potential therapies, glioblastoma (GBM) con-
tinues to confer poor outcomes with limited therapeu-
tic progress. Work by TCGA and others has identified 3 
canonical pathways with recurrent aberrations, includ-
ing receptor tyrosine kinase signaling and the p53 and 
retinoblastoma tumor suppressor pathways.5–7 There 
is much interest in targeting these pathways and the 
ability to screen for multiple biomarkers with genomic 
sequencing makes platform trials that test multiple ther-
apies under one master protocol attractive. In fact, the 
NCI’s Brain Malignancy Steering Committee Targeted 
Therapies Working Group recommended the develop-
ment of a multi-arm adaptively randomized clinical 
trial to efficiently test targeted agents with associated 
genomic biomarkers,8 and such a trial has recently 
opened in response: the INdividualized Screening 
trial for Innovative Glioblastoma Therapy (INSIGhT; 
NCT02977780). Additionally, there are other biomarker-
selected trials that match therapies to tumors with spe-
cific aberrations in nonrandomized, uncontrolled studies. 
Designing biomarker-driven trials in general and interpre-
tation of uncontrolled, single-arm trials, however, may 
be complicated by the association of specific biomarker 
subgroup tumor biology and natural history.8,9 This 
may impact overall survival (OS) and progression-free 

survival (PFS) times or influence the association between 
endpoints. The relationship between PFS and OS may 
differ between therapeutic classes,10 and this potential 
may exist among biomarker-defined classes.11 To better 
inform our design choices and simulations for INSIGhT 
and create a resource to interpret single-arm biomarker-
based trial results, we collected and analyzed clinical and 
genomic data from patients with newly diagnosed GBM 
from Dana-Farber/Brigham and Women’s Cancer Center 
(DF/BWCC) for associations with relevant clinical covari-
ates, known molecular prognostic factors, and potential 
clinical trial endpoints and validated significant asso-
ciations in GBM data from TCGA. Relevant biomarker 
categories were prospectively hypothesized based on 
potential interactions with intended agents targeted to 
epidermal growth factor receptor (EGFR), phosphati-
dylinositol-3 kinase (PI3K), p53, and cyclin-dependent 
kinase (CDK) pathways. Furthermore, we characterized 
the frequency and degree of overlap between biomarker 
categories to be included on INSIGhT and demonstrated 
how variations in those factors and survival times would 
impact clinical trial design through simulation.

Materials and Methods

Datasets and Genomic Assays

The DF/BWCC cohort consisted of patients ≥18 years old 
with a newly diagnosed GBM and clinical molecular pro-
filing.12 Each patient underwent at least 1 of 3 genotyping 
assays for genomic profiling: OncoCopy,13 a multiplexed 
copy number assay based on whole genome array com-
parative genomic hybridization; OncoMap,14 a targeted 
and multiplexed mass spectrometry–based mutation gen-
otyping (Sequenom) covering 471 mutations from 41 can-
cer genes (version 4); and OncoPanel,15 a targeted exome 
sequencing platform covering 275 cancer genes and 91 
select introns across 30 genes to detect somatic muta-
tions, copy number alterations, and structural rearrange-
ments. We disregarded mutations with low (<5%) allelic 
fraction, with <20 reads of mutant allele on OncoPanel, 
previously unreported in the COSMIC database, and pre-
viously known to be single nucleotide polymorphisms to 
reduce classification error. OncoCopy data from clinical 
testing reports were obtained from the medical record 

Importance of the study
GBM and other cancers frequently have genetic aberra-
tions in canonical signaling pathways that are currently 
being targeted in clinical trials. Genomic biomarkers 
offer the potential for personalized medicine by iden-
tifying patient populations that may be more likely to 
respond to a therapeutic agent targeting an associated 
pathway. Effective design and interpretation of bio-
marker-driven clinical trials require an understanding 
of the frequency of biomarker subgroups, their overlap, 
and the intrinsic association with various clinical trial 

endpoints, however. Here we demonstrate the value of 
large-scale genomic/clinical data correlation and iden-
tify several associations between genomic subgroups 
in GBM and clinical and molecular prognostic factors 
that will be useful for clinical trial design and interpre-
tation. We then show how the data pertaining to bio-
marker frequency, overlap, and endpoint relationships 
impact the design and simulation of Bayesian clinical 
trials and discuss the impact on non-adaptive clinical 
trial design.
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under consented and waiver of consent research proto-
cols approved by the Dana-Farber Harvard Cancer Center 
(DF/HCC) institutional review board (IRB). Somatic muta-
tional profiling was performed with consent for DF/BWCC 
Profile clinical research studies approved by the DF/HCC 
IRB. All tests were performed within the Cytogenetics 
Division (OncoCopy) and Molecular Diagnostics 
(OncoMap) Divisions of the Brigham and Women’s 
Hospital Center for Advanced Molecular Diagnostics, a 
Clinical Laboratory Improvement Amendment (CLIA)–cer-
tified laboratory environment. Central histopathologic 
review was performed on all genotyped tumor specimens 
at DF/BWCC using standard World Health Organization 
criteria.16 O6-DNA methylguanine-methyltransferase 
(MGMT)–promoter methylation status in this cohort was 
generally assessed using methylation-specific polymer-
ase chain reaction (MS-PCR). Clinical, demographic, path-
ologic, and follow-up data were collected retrospectively 
from the medical record following approval from the DF/
HCC IRB.

Significant findings from our institutional cohort were 
validated in data generated by TCGA Research Network 
available on the TCGA website5,17 and cBioPortal.18 The pro-
visional TCGA GBM dataset was queried for levels 1 and 
2 clinical and genomic data related to DNA copy number 
(HG-CGH-244A), whole-genome next-generation sequenc-
ing (Illumina®), conventional sequencing (Sanger), 
and DNA methylation arrays (Illumina Infinium Human 
Methylation-27 [HM-27] and HM-450), as previously 
described.17 Clinically relevant MGMT-promoter meth-
ylation status was estimated from cytosine-phosphate-
guanine islands using a logistic regression of 2 clinically 
relevant methylation probes, as previously described.19

Biomarker Subgroups

We prespecified biomarker categories on the basis of 
genetic aberrations for subsequent analyses based on the 
Targeted Therapies Working Group recommendations:

1.	 EGFR: (+) defined as patients with EGFR amplification or 
mutation;

2.	 PI3K: (+) defined as patients with PIK3CA mutation/
amplification, PIK3R1 mutation, AKT3 amplification, 
PIK3C2B >1 copy gain, or PTEN dual loss through either 
homozygous deletion or deletion plus mutation;

3.	 p53: (+) defined as patients with TP53 mutation;
4.	 CDK: (+) defined as patients with RB1 wild-type (WT) and 

CDK4 amplification, CDK6 amplification, or CDKN2A >1 
copy loss.

Assignment to biomarker categories was contingent on suf-
ficient data from available molecular analyses. For example, 
p53(+) could be assessed with either OncoPanel or OncoMap 
if a relevant mutation was present. P53(−) could only be reli-
ably determined from OncoPanel, since the entire coding 
region was sequenced, however. Similarly, PI3K(+) could be 
determined based on OncoMap or OncoPanel if an activat-
ing mutation was present, but positivity determined based on 
copy number and mutation required overlap with OncoCopy.

Statistical Analysis

Patients with isocitrate dehydrogenase (IDH)1 and 2 
mutations and/or 1p/19q codeletions were excluded from 
biomarker subgroup analyses based on the intended 
eligibility criteria of INSIGhT.8 We evaluated associa-
tions between clinical factors and biomarker subgroups 
using Fisher’s exact test for categorical variables and the 
Wilcoxon rank sum test for continuous variables. Survival 
outcomes, including PFS, survival post-progression (SPP), 
and OS, were estimated for the genomic biomarker, 
MGMT, and IDH subgroups using the Kaplan–Meier 
method and compared using the log-rank test. PFS/OS 
ratio was calculated for patients who had a progression 
and death. SPP was calculated from time of progression 
for those patients who had a progression prior to death 
and censored identically to OS. Progression was defined 
independently by TCGA and retrospectively by the DF/
BWCC cohort through clinical note assessments inte-
grating imaging and clinical status. Pearson correlation 
coefficients were used to characterize the relationship 
between PFS, an auxiliary endpoint, and OS to assess for 
differences in the natural history of disease across bio-
marker groups among patients who achieved death and 
progression.

Univariable and multivariable Cox regressions were 
used to identify clinical factors independently predicting 
for OS. We then created new models for each biomarker 
category with significant clinical variables to assess 
whether biomarker groups independently predicted for 
OS. All P-values are 2-sided, and analyses were performed 
using RStudio (version 0.98.1028) running R (version 
3.1.0)20 with the survival package.21

To assess the impact of pre-trial genomic biomarker data 
on clinical trial planning, we assumed various scenarios 
related to biomarker frequency, overlap, and endpoint dis-
tributions into early clinical trial simulations for INSIGhT, 
a multi-arm, Bayesian adaptively randomized clinical trial 
currently in development. For the purposes of these com-
parisons, we assumed the 3 experimental arms above 
compared against a control arm, with 1 arm showing sur-
vival benefit compared with control.

Results

Baseline Patient Characteristics and Frequency 
of Biomarkers

The DF/BWCC cohort consisted of 265 patients with 
a median follow-up of 15.4  months overall and 
16.8  months among survivors (range: 0.2–197.3 mo). 
OncoMap data were available for 78 patients, OncoPanel 
for an additional 157 (no overlap), and OncoCopy for 157 
patients (90 patient overlaps with OncoPanel, 37 patient 
overlaps with OncoMap). Median age was 60 years, 54% 
were male, and median KPS was 80. MGMT-promoter 
status was methylated in 95 patients (36%), unmethyl-
ated in 82 (31%), and untested in 88 (33%). IDH1/2 were 
WT in 234 (88%), mutant in 28 (11%), and untested in 
3 (1%).
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The provisional TCGA dataset consisted of 549 patients 
with primary GBM diagnosed between 1988 and 2013 with 
a median follow up of 11.1 months overall and 6.7 months 
among survivors (range: 0.1–127.5 mo). Overall, median 
age was 60 years, 61% were male, and median KPS was 
80. MGMT-promoter status was methylated in 170 patients 
(31%), unmethylated in 200 (36%), and unknown in 179 
(33%). IDH1/2 were WT in 526 (96%), mutant in 23 (4%).

Fig. 1 illustrates the distribution of biomarker signatures 
based on IDH1/2 mutation, MGMT-promoter methylation, 
EGFR, PI3K, p53, and CDK group statuses. Among trial-eli-
gible patients, considered as those without IDH1/2 muta-
tion, p53(+) subclass occurred least commonly, although 
the 4 primary biomarker groups were otherwise fairly 
balanced in size. EGFR(+) and CDK(+) seldom occurred in 
isolation and were more often accompanied by inclusion 
in other biomarker(+) groups. Specifically, among trial-
eligible patients in the DF/BWCC cohort, 33% of patients 
were EGFR(+) (n = 76), 31% were PI3K(+) (n = 73), 21% were 
p53(+) (n = 50), and 28% were CDK(+) (n = 66); in TCGA, 
48% were EGFR(+) (n = 255), 56% were PI3K(+) (n = 293), 
11% were p53(+) (n = 60), and 79% were CDK(+) (n = 413).

Patients with tumors harboring MGMT-promoter meth-
ylation were more often female than their unmethylated 
counterparts in our cohort (54% vs 35%, P = .02) and in that 
of TCGA (49% vs 34%, P = .005). MGMT-promoter methyl-
ated tumors were also more likely to be “multifocal” by 
imaging report in our dataset (20% vs 8%; P  =  .04), but 
this parameter was not available in the dataset of TCGA in 
order to validate the finding.

Association with Biomarker Subgroups with 
Known Prognostic Molecular Markers

EGFR(+) (odds ratio [OR]  =  7.8, P < .001) and p53(−) 
(OR = 5.5, P = .002) subgroups were more likely to be IDH 
WT, and these associations were validated in the TCGA 
cohort (EGFR OR = 20.1, P < .001; p53 OR = 8.4, P < .001). 
There were no associations between the genetic biomarker 
groups and MGMT-promoter methylation status.

Association of Biomarker Subgroups with Clinical 
Covariates

Overall clinical and prognostic factors and significant 
associations with biomarker groups are shown in Table 1, 
excluding patients with IDH1/2 mutations or 1p/19q code-
letions. With respect to clinical covariates, patients in 
the PI3K(+) subgroup were older (median 64.3 y vs 59.7 
y, P = .015) and this was also validated in TCGA (median 
62.3 y vs 58.8 y, P =  .002). P53(+) had smaller contrast-
enhancing tumors than the p53(−) group (median 3.8 cm 
in largest dimension vs 4.2 cm, P = .029) but this could not 
be validated in TCGA due to data limitations in that data-
set. Patients with PI3K(+) tumors also had lower KPS in 
our cohort (P = .014), but this was not found in the dataset 
of TCGA. It should be noted, however, that in our dataset 
the KPS was consistently measured just prior to adjuvant 
chemoradiotherapy, while the timing of KPS measure-
ments in TCGA was highly variable, limiting the utility.

Fig. 1  Biomarker status by individual in the DF/BWCC cohorts and TCGA cohorts. Status of IDH, MGMT, EGFR, PI3K, p53, and CDK biomarker 
groups for each individual patient are arranged in columns in both the DF/BWCC and TCGA cohorts. Trial-eligible GBM patients include those 
without IDH mutation or 1p/19q codeletion.



 912 Tanguturi et al. Genomic biomarker data for trial design in glioblastoma

Association Between Biomarkers and Endpoints

IDH mutant and MGMT-promoter methylated patients 
demonstrated increased OS, PFS, and SPP in both our 
cohort and the dataset of TCGA (Table 2, Fig. 2). PI3K(+) 
patients had shorter PFS in both our cohort (HR 1.42 [95% 
CI: 1.001–2.00] P  =  .049) and TCGA’s (HR 1.28 [95% CI: 
1.07–1.55], P = .009). EGFR(+) patients were less likely to 
live 5 years (0% vs 7%, P = .014) as were p53(−) patients 
(0% vs 10%) in our cohort, but these results could not be 
recapitulated in TCGA, potentially due to the extremely 
low rate of 5-year survivors in that dataset (1%). Age, 
KPS, MGMT-promoter methylation, and the use of temo-
zolomide were all independently associated with OS on 
multivariate analysis in the DF/BWCC (Table  3). After 
controlling for these factors, there were no independ-
ent associations of genetic biomarker subgroups with 
survival (Table  4) or with PFS (Supplementary Tables 1 
and 3). Notably, the association between PI3K and PFS 
was no longer significant after correcting for any clinical 
prognostic factors.

Clinical Trial Simulations Using Biomarker Data

There were 3 major areas for which our genomic biomarker 
analysis on retrospective cohorts was applicable to the 

design and simulations for INSIGhT—the overall frequen-
cies for different biomarker groups, the overlap of various 
biomarker categories, and the relationship of endpoints 
within given biomarker subgroups. To illustrate the poten-
tial impact of these data on design elements of the trial, 
we first assumed disparate scenarios for each area (fre-
quency, overlap, endpoint) to have a robust comparison 
of scope and then compared operating characteristics. Our 
simulations showed the sensitivity of the power (log-rank 
test) in detecting positive treatment effects for biomarker 
subgroups and the sensitivity of the resulting biomarker-
specific treatment effect confidence intervals.

Independently of the biomarker correlations with each 
other and the randomization assignment algorithm 
(Bayesian adaptive, non-adaptive), we observed direct 
proportionality of the minimum sample size requirements 
to achieve (60%, 80%, or 90%) power with treatment haz-
ard ratios (HRs) (0.7 and 0.5) in all of our simulations. In 
these power analyses, the sample size requirement varied 
between 191 and 920 patients, and the maximal deviation 
from direct proportionality (sample size = constant/preva-
lence) with fixed biomarker correlations, treatment effects, 
and power thresholds that we observed was equal to 13 
patients.

We then conducted simulations to compare operat-
ing characteristics under varying assumptions of bio-
marker correlation. The goal of these simulations was 

Table 1  Baseline clinical characteristics and associations with biomarker groups in DF/BWCC

Patient Cohort DF/BWCC

Biomarker Association*

Total 233

Age , y Median (IQR) 60.1 (53.2–67.7) PI3K: (+)64.3 vs (−)59.7; P = .015

Gender Male 126 (54%) MGMT: Male (M)46% vs (U)65%; P = .02

Female 107 (46%)

KPS PI3K(+) PI3K(-); P = .014

<60 11 (5%) 2 (3%) 4 (4%)

60–80 105 (45%) 46 (65%) 41 (42%)

90–100 97 (41%) 23 (32%) 52 (54%)

Multifocal (%) No 199 (85%)

Yes 34 (15%) MGMT: (M)20% vs (U)8%; P = .04

Size (cm) Median (IQR) 4.2 (3.1–5.3) p53: (+)3.8 vs (−)4.2; P = .029

Resection (%) Biopsy 17 (7%)

STR/GTR 207 (88%)

Temozolomide (%) Received 214 (92%)

Not received 12 (5%)

Alive at 5 y (%) No 223 (96%)

Yes 10 (4%) EGFR: (+)0% vs (−)7%; P = .014;  
p53: (+)10% vs (−)0%; P = .005

OS (mo) Median (IQR) 20.8 (11.4–50.8) MGMT: (M)20.0 vs (U)12.8; P = .036

PFS (mo) Median (IQR) 9.7 (5.7–18.1) MGMT: (M)11.6 vs (U)6.9; P = .022;
PI3K: (+)9.3 vs (−)10.4; P = .049

Abbreviations: IQR, interquartile range; STR, subtotal resection; GTR, gross total resection, M, methylated; U, unmethylated.
*Empty values under biomarker associations indicate no significant clinical associations for any biomarker group.
Note: Table includes only patients with wild-type IDH-1/2 and without 1p/19q codeletion.
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complementary to those described for biomarker fre-
quency in the previous paragraph. In this instance, 
however, we fixed the biomarker prevalence (25% or 
50%) and specified scenarios with different correla-
tions between −0.7 and +0.7. The goal was to evaluate 
the robustness of Bayesian adaptive designs to the bio-
marker subgroup overlap. In this case, we observed that 
Bayesian adaptive randomization was sensitive to dif-
ferences in the degree of biomarker overlap, with power 
variations up to 6%, demonstrating the importance of 
appropriate biomarker overlap estimates for design pur-
poses of such trials.

In the last set of simulations, we used the Dana-Farber 
Cancer Institute biomarker prevalence estimates and 
defined a set of sensitivity scenarios with different PFS and 
OS baseline distributions for the control arm, with positive 
and negative scale variations up to 40% for both PFS times 
and SPP times. We also included variations limited to sin-
gle biomarker subgroups. The operating characteristics of 
the Bayesian adaptive design with fixed treatment effects, 
obtained using identical time-scale multiplicative con-
stants for control and treatment arms, was not very sensi-
tive to PFS/OS variations. By multiplying PFS and OS by 

scale factors equal to 40%, we obtained power reductions 
at most equal to 3%.

Discussion

A growing interest in precision medicine and the availabil-
ity of targeted agents has heightened interest in genomic 
biomarker-based clinical trials. Our findings of biomarker 
category associations with relevant prognostic covariates 
have some implications for design and interpretation of 
clinical trials. We found an association of PI3K(+) patients 
with older age and lower performance status, older age 
being validated in TCGA. Since age is an independent 
prognostic factor for adult patients with GBM, single-arm 
bucket trials using PI3K definitions as eligibility may be 
erroneously interpreted as poorly performing compared 
with historical controls if this is not taken into account. 
PI3K(+) in fact had worse PFS on univariate analysis in our 
dataset. P53(−) and EGFR(+) genomic subgroups were also 
associated with being IDH WT. If a single-arm phase II trial 
designed with a PFS or OS endpoint for agents targeted at 
these genomic subgroups were conducted and compared 

Table 2  Survival and auxiliary endpoints by biomarker group in the DF/BWCC

Biomarker OS, mo [IQR] PFS, mo [IQR] PFS/OS [IQR] SPP, mo [IQR]

IDH^   N 262 262 118 188

  Mut 74.9 [34.8–NA] 15.5 [7.8–38.3] 0.65 [0.42–0.82] 67.34 [12.8-NA]

  WT 20.1 [11.1–50.8] 9.5 [5.6–18.1] 0.59 [0.42–0.70] 10.75 [4.6–82.6]

   P-value 0.001 0.032 0.59 0.017

MGMT*   N 156 156 73 109

  M 20.9 [11.4–NA] 11.6 [6.8–21.8] 0.67 [0.48–0.75] 12.8 [5.3–NA]

  U 16.0 [9.1–28.7] 6.9 [5.0–12.5] 0.61 [0.52–0.75] 7.7 [2.7–25.8]

  P-value 0.036 0.022 0.61 0.089

EGFR*   N 198 198 97 142

  (+) 21.3 [12.6–30.5] 10.0 [6.0–15.3] 0.59 [0.53–0.69] 12.8 [6.2–NA]

  (−) 19.0 [9.8–103.4] 10.0 [5.8–18.0] 0.61 [0.50–0.72] 8.9 [3.4–82.6]

   P-value 0.74 0.42 0.816 0.3

PI3K*   N 177 177 89 132

  (+) 17.0 [10.2–31.3] 9.3 [6.4–13.4] 0.66 [0.60–0.70] 8.0 [3.4–NA]

  (−) 21.0 [12.8–75.0] 10.4 [5.8–19.2] 0.57 [0.40–0.73] 11.5 [5.3–82.6]

   P-value 0.14 0.049 0.082 0.53

p53*   N 142 142 70 105

  (+) 20.1 [11.4-NA] 10.1 [6.0–15.4] 0.64 [0.50–0.69] 11.5 [4.2–NA]

  (−) 19.9 [10.9–29.9] 10.1 [5.6–14.9] 0.60 [0.52–0.71] 10.2 [4.8–NA]

   P-value 0.44 0.19 0.77 0.61

CDK*   N 134 134 61 98

  (+) 21.3 [11.4–29.9] 10.8 [5.6–14.5] 0.61 [0.55–0.66] 12.8 [5.6–NA]

  (−) 19.0 [10.8–75.0] 10.1 [6.4–18.5] 0.64 [0.52–0.74] 7.9 [3.6–NA]

   P-value 0.77 0.25 0.39 0.30

Abbreviations: IQR, interquartile range, M, methylated; U, unmethylated
^IDH survival analyses include all patients with primary GBM.
*MGMT, EGFR, PI3K, p53, and CDK survival analyses include only patients with wild-type IDH-1/2 and without 1p/19q codeletion.
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with unselected historical controls, we might errone-
ously conclude a negative result, as the historical control 
may have included IDH mutant tumors while our genetic 
selection effectively excluded them without our knowl-
edge. Also of note, both cohorts showed MGMT-promoter 
methylation to be associated with female gender, which is 
a novel association to our knowledge that should be vali-
dated in future studies.

But while genomics is presumed to be a key determinant 
of the biology and behavior of tumor growth, we found no 
independent associations of genomic biomarkers and sur-
vival-based endpoints. This suggests that there may be few 
confounding molecular variables in clinical trials outside 
of the known factors of IDH mutation, MGMT-promoter 
methylation, and 1p/19q status. Therefore, while control 
groups should always be used when evaluating survival 
endpoints such as PFS and OS, comparison to unselected 
historical controls in genomic biomarker-selected studies 
may not have any additional confounding factors based 
on the biomarker selection as long as clinical covariates 
and known molecular prognostic factors are considered. 
Furthermore, should an uncontrolled single-arm study of a 
targeted agent show a strong prognostic signal related to a 
genomic biomarker previously shown to have no prognos-
tic value, this may suggest that the biomarker is behaving 
in a predictive capacity given the new therapeutic context 
and suggest hypotheses for further testing.

Some studies have identified genomic alterations in 
EGFR, TP53, PTEN, and CDK4 as negative prognostic bio-
markers,22–24 but this has not been consistently replicated 
or systematically evaluated in other studies.22 Controlling 
for known clinical covariates is also important when report-
ing such data. For example, a recently published analysis of 
TCGA’s glioblastoma and lower-grade glioma datasets identi-
fied PI3K mutations to be negatively prognostic for survival.25 

Fig. 2  Hazard ratios for OS, PFS, and SPP by biomarker subgroups in TCGA and DF/BWCC patient cohorts. *Outcomes across IDH subgroups 
were compared across the entire cohort. Outcomes across remaining biomarker subgroups were compared across only trial-eligible GBM-
patients (IDH WT). Hazard ratios are displayed for positive biomarker status relative to negative status as the baseline, with HR <1 representing a 
favorable endpoint. Point estimates for the HR are displayed by a square box, scaled to the representative sample size of biomarker (+) patients, 
with 95% CIs displayed in horizontal bars.

Table 3  Univariate and multivariate analyses for clinical predictors  
of overall survival in DF/BWCC

DF/BWCC

Univariate Multivariate

HR
[95% CI]

P-value AHR  
[95% CI]

P-value

Age 1.05 [1.03–1.07] <.001 1.04 [1.01–1.07] .003

Gender

  Male 1

  Female 0.96 [0.95–1.17] .28

KPS 0.96 [0.95–0.98] <.001 0.97 [0.95–0.99] .009

Multifocal

  No 1 1

  Yes 1.85 [1.17–2.91] .008 1.75 [0.95–3.21] .071

Size 0.98 [0.87–1.09] .69

Resection

  STR/GTR 1 1

  Bx 1.98 [1.06–3.68] .032 1.47 [0.44–4.90] .53

Temozolomide

  Yes 1 1

  No 5.17 [2.73–9.79] <.001 2.55 [1.05–6.19] .038

MGMT

  Unmethylated 1 1

  Methylated 0.63 [0.41–0.97] .037 0.53 [0.33–0.85] .009

Abbreviations: AHR, adjusted hazard ratio; STR, subtotal resection; 
GTR, gross total resection; Bx, biopsy.
Note: Table includes only patients with wild-type IDH-1/2 and without 
1p/19q codeletion.
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Similarly, our study demonstrated an association between 
PI3K(+) tumors and poorer PFS on univariate analysis of 
both cohorts. However, significant associations were also 
seen between PI3K(+) tumors and lower KPS in our cohort 
and older age in both cohorts, and after controlling for clini-
cal prognostic covariates PI3K was no longer associated with 
OS or PFS. These findings underscore the need for combined 
assessment of clinical and biomarker prognostic information.

The prognostic value of any given biomarker may addi-
tionally depend on the precise characteristics of its diag-
nostic assay. For illustration, in the DF/BWCC cohort, 
MGMT-promoter methylation was assessed primarily by 
MS-PCR and demonstrated significant associations with 
female gender, tumor multifocality, and improved PFS 
and OS. After multivariate adjustment for prognostic clini-
cal factors, MGMT status remained highly prognostic for 
OS and PFS. In the validation set of TCGA, MGMT status 
showed similar univariate associations with gender, PFS, 
and OS; however, survival associations were not sig-
nificant after multivariate adjustment. This may be due to 
the use by TCGA of methylation arrays (Illumina HM27K 
and HM450K) and the potentially imperfect concord-
ance between these assays and the MGMT-STP27 logis-
tic regression model used to categorize MGMT-promoter 
methylation status,19 a point of importance given that 
many pathology laboratories are considering adoption of 
methylation arrays and replacement of MS-PCR MGMT-
based assays. More validation and comparison data of 
these 2 methods are likely needed based on our results. 
In addition, it is possible that MGMT status was less prog-
nostic overall in TCGA, as fewer patients were treated with 
temozolomide in TCGA versus the DF/BWCC cohort (52% 
vs 92%). Finally, the prognostic signal from MGMT may 
have been overshadowed by more heterogeneous annota-
tion of clinical prognostic factors in TCGA.

Designing clinical trials using an auxiliary endpoint 
requires knowledge of the relationship between that aux-
iliary endpoint and more clinically relevant ones, as these 
relationships may differ according to molecular subtype. 
Perhaps the best example of this is the relationship between 
pathologic complete response rate (pCR) and recurrence-
free survival in breast cancer where the predictive capability 

of pCR varies by biologic subtype,26 the knowledge of which 
was helpful when designing I-SPY 2.3 Having knowledge of 
the relationships between biomarker-defined subgroups and 
various clinical trial endpoints would significantly aid clini-
cal trial design by informing specific design choices (such as 
endpoints or the need for control groups) and by providing 
biomarker-specific data for operating characteristic analy-
sis such as power and sample size. Past studies and meta-
analyses have illustrated correlation between PFS effects 
and OS effects in GBM,27–29 largely driven by the results from 
the European Organisation for Research and Treatment of 
Cancer/National Cancer Institute of Canada CE.3 study.10,30 
But this relationship did not hold in trials of bevacizumab in 
which effect on progression was not associated with effect 
on survival.31,32 Our study identified no significant differ-
ences in the relationship between PFS/OS ratios or SPP 
across genomic biomarker subgroups. Additionally, our 
trial simulations determined that variations in PFS and SPP 
times would have only a small impact on INSIGhT, and our 
data could be helpful to support using PFS or a longitudinal 
model incorporating PFS as an endpoint to inform randomi-
zation.33 In contrast, we observed significantly better OS, 
PFS, and SPP among IDH mutant patients in both cohorts 
and among MGMT-promoter methylated patients in TCGA. 
The longer SPP suggests that the prognostic capacity of IDH 
mutation and MGMT-promoter methylation is retained fol-
lowing recurrence, a result that is particularly relevant for 
interpreting results of basket trials in patients with recurrent 
GBM such as NCI-MATCH.4 Furthermore, the lack of evidence 
supporting differential relationships of endpoints among the 
subclasses is important for the interpretation of nonrand-
omized trials with newly diagnosed patients using PFS as a 
primary endpoint like the Neuro Master Match (N2M2) trial.34

Finally, the relative frequency of biomarker subgroups 
and their degree of overlap is important for clinical trial 
design and planning. For non-adaptive studies, knowledge 
of biomarker frequency is important to estimate accrual 
rate of specific genomic subgroups, and the frequency 
and degree of overlap of biomarker categories inform 
choices with regard to treatment-arm assignment rules. 
For example, if biomarker groups are relatively frequent 
and mutually exclusive, assignment rules may simply be 

Table 4  Multivariate analyses for overall survival with biomarker groups in DF/BWCC

Multivariate EGFR (+) PI3K (+) p53 (+) CDK (+)

Biomarker AHR [95% CI] 1.02 [0.64–1.61] 0.98 [0.59–1.64] 1.04 [0.54–2.01] 0.87 [0.47–1.61]

P-value .94 .95 .91 .65

Age AHR [95% CI] 1.04 [1.02–1.07] 1.04 [1.01–1.06] 1.04 [1.01–1.08] 1.05 [1.01–1.08]

P-value .001 .008 .007 .007

KPS AHR [95% CI] 0.97 [0.95–0.99] 0.97 [0.95–0.99] 0.96 [0.93–0.99] 0.97 [0.94–0.99]

P-value .003 .005 .003 .01

TMZ AHR [95% CI] 2.19 [0.92–5.20] 1.25 [0.41–3.82] 1.18 [0.37–3.73] 1.18 [0.37–3.77]

P-value 0.076 0.69 0.78 0.78

MGMT AHR [95% CI] 0.57 [0.35–0.91] 0.52 [0.31–0.86] 0.61 [0.33–1.13] 0.52 [0.28–0.99]

P-value .02 .01 .12 .048

Abbreviations: AHR, adjusted hazard ratio; TMZ, temozolomide chemotherapy received.
Note: Table includes only patients with wild-type IDH-1/2 and without 1p/19q codeletion.
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to match biomarker groups with agents targeting those 
aberrations. Conversely, if there is substantial overlapping 
of subgroups and some that are relatively rare, algorithms 
to prioritize or randomize specific treatment arms may be 
needed. For Bayesian adaptively randomized trials like 
INSIGhT, the frequency and overlap between biomarker 
categories directly impact the results of clinical trial simu-
lations that illustrate operating characteristics and how the 
trial might proceed in the real world. For example, GBM 
genomic subgroup categories as defined in this study and 
for INSIGhT are relatively frequent, enabling our preferred 
design of equal randomization across treatment arms, 
independent of biomarker subgrouping. This would not 
be logistically possible if biomarker subgroup frequencies 
were too low, as randomization to control or a nontargeted 
treatment arm of a patient with a rare biomarker would 
make completing the trial for that subgroup challenging. 
Aside from that design choice, knowledge of biomarker 
frequency would be used similarly to non-adaptive stud-
ies—in both cases the sample size and power are directly 
related to the biomarker frequency. Furthermore, Bayesian 
adaptive trial designs such as INSIGhT are impacted by the 
degree of biomarker overlap, as we found significant varia-
tions in power depending on the hypothesized correlations 
between subgroups. In this manner, the data abstracted 
from our current study are directly applicable in determin-
ing operating characteristics of INSIGhT.

Several limitations exist for this study. First, there are 
limited preclinical data with targeted agents in GBM to sug-
gest the ideal biomarker categorizations, a priori, and our 
pathway model may oversimplify the elaborate intercon-
nections and cross-regulation of these pathways in GBM. 
Additionally, potential differences in the 2 study popula-
tions may limit comparison and combined analysis across 
the sets of TCGA and DF/BWCC. Clinical and molecular 
factors were also not uniformly defined across our cohort 
and the validation set of TCGA; for example, in TCGA, KPS 
could have been defined at multiple time points, while the 
DF/BWCC cohort uniformly defined KPS postoperatively 
and prior to radiation therapy. Similarly, inconsistencies in 
the assessment of MGMT-promoter methylation were dis-
cussed above. Progression endpoint identification was also 
not standardized in either cohort. Nonetheless, these data-
sets are highly complementary to one another, and the large 
TCGA dataset was useful for validating our initial findings. 
Finally, it should be noted that the biomarker subgroupings 
that were of interest in the current study were not intended 
to be globally applicable to agents that might target alter-
native pathways. If there were other biomarkers that were 
of interest, however, we feel that the general approach and 
implications of retrospective biomarker analysis for pro-
spective trial planning still hold and should be applied.

In summary, we identified relevant associations between 
4 a priori defined genetic subgroups of GBM and known 
clinical and molecular prognostic factors. After controlling 
for these factors, there was no association between the 
genomic biomarker groups and OS, although the PI3K(+) 
group may have shorter PFS on univariate analysis. Both 
IDH and MGMT status were not only found to be prognos-
tic initially, but also associated with longer SPP, illustrat-
ing a potential differential relationship between endpoints. 
Clinical trial simulations of both balanced and Bayesian 

adaptively randomized trials showed the impact of bio-
marker frequency, overlap, and endpoint relationships on 
design and operating characteristics. These data repre-
sent a foundation to plan and develop innovative genomic 
biomarker-driven clinical trial designs to accelerate dis-
covery in GBM (currently being used in the development 
of INSIGhT), and to help interpret findings from genomic 
biomarker-based basket studies.
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online.
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