Table 2. Independent benchmarking of global scoring with official CASP12 data.
| GDT_TS | LDDT | CAD(AA) | SG | |||
|---|---|---|---|---|---|---|
| Rank | Gr.Name | Gr.Model | AUC | AUC | AUC | AUC |
| 1 | ModFOLD6_rank | QA072_1 | 0.993 | 0.99 | 0.926 | 0.962 |
| 2 | ModFOLD6_cor | QA360_1 | 0.995 | 0.988 | 0.885 | 0.949 |
| 3 | ModFOLD6 | QA201_1 | 0.994 | 0.988 | 0.878 | 0.944 |
| 4 | qSVMQA | QA120_1 | 0.982 | 0.983 | 0.862 | 0.937 |
| 5 | ProQ3 | QA213_1 | 0.985 | 0.978 | 0.892 | 0.916 |
| 6 | ProQ3_1_diso | QA095_1 | 0.982 | 0.978 | 0.891 | 0.922 |
| 7 | ProQ3_1 | QA302_1 | 0.981 | 0.977 | 0.889 | 0.917 |
| 8 | ProQ2 | QA203_1 | 0.944 | 0.971 | 0.921 | 0.932 |
| 9 | MUfoldQA_S | QA334_1 | 0.977 | 0.968 | 0.898 | 0.913 |
| 10 | MULTICOM-CLUSTER | QA287_1 | 0.956 | 0.968 | 0.893 | 0.921 |
The ability of methods to separate good models (accuracy score ≥ 50) from bad (<50) according to GDT_TS, LDDT, CAD and SG scores is evaluated using the Areas Under the Curve (AUC) (see http://predictioncenter.org/casp12/doc/presentations/CASP12_QA_AK.pdf). Only the top 10 methods are shown and the table is sorted using LDDT scores. The scores are calculated over all models for all targets (QA stage 1–select 20). The table is sorted by the LDDT AUC score. Data are from http://predictioncenter.org/casp12/qa_aucmcc.cgi. See also Supplementary Tables S5–10.