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Abstract

While innate behaviors are conserved throughout the animal kingdom, it is unknown whether

common signaling pathways regulate the development of neuronal populations mediating

these behaviors in diverse organisms. Here, we demonstrate that the Wnt/ß-catenin effector

Lef1 is required for the differentiation of anxiolytic hypothalamic neurons in zebrafish and

mice, although the identity of Lef1-dependent genes and neurons differ between these 2 spe-

cies. We further show that zebrafish and Drosophila have common Lef1-dependent gene

expression in their respective neuroendocrine organs, consistent with a conserved pathway

that has diverged in the mouse. Finally, orthologs of Lef1-dependent genes from both zebra-

fish and mouse show highly correlated hypothalamic expression in marmosets and humans,

suggesting co-regulation of 2 parallel anxiolytic pathways in primates. These findings demon-

strate that during evolution, a transcription factor can act through multiple mechanisms to

generate a common behavioral output, and that Lef1 regulates circuit development that is

fundamentally important for mediating anxiety in a wide variety of animal species.

Author summary

Humans, mice, fish, and even flies exhibit anxiety-like behavior despite the fact that their

brain anatomy varies widely. This study reveals another common thread that runs through

these diverse animals: the molecular origins of their shared behavior. Gene knockout experi-

ments in mouse and zebrafish show that the molecular signal Wnt acts through the tran-

scription factor Lef1 to inhibit anxiety in both species. The pathway is required for formation
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of anxiolytic neurons in a highly conserved brain region, the hypothalamus. From there,

however, the process diverges. In the fish, the pathway triggers genes including corticotropin-
releasing hormone binding protein (crhbp), but in mice the same pathway calls into action a

different gene, Pro-melanin concentrating hormone (Pmch). By comparison, the fruit fly Dro-
sophila activates crhbp, similar to zebrafish. Furthermore, CRHBP and PMCH show extraor-

dinarily coordinated expression in the primate hypothalamus, indicating that they may act

together downstream of Wnt and Lef1 to regulate human behavior. This work reveals the

surprising finding that conserved signaling pathways can regulate common behavioral out-

puts through diverse brain circuits during evolution.

Introduction

Recent work has demonstrated that innate behaviors can be highly conserved across diverse

animal models [1]. Individual neuronal populations that mediate these behaviors are specified

during embryogenesis by transcription factors that can also be conserved across species [2].

However, molecular signaling pathways that regulate the development of common behavioral

circuits have not been identified. As brain anatomy and connectivity change through evolu-

tion, it is possible that a single pathway could act through diverse molecular and cellular targets

to establish a single behavioral output, which is the ultimate constraint on gene function.

Wnt/ß-catenin signaling plays important evolutionarily conserved roles in brain develop-

ment, and thus represents an ideal candidate pathway to link gene regulation with the evolu-

tion of behavioral circuits. The Wnt pathway acts through Tcf/Lef transcription factors [3],

and both Wnt signaling and Lef1 are required for neurogenesis in the zebrafish hypothalamus

[4], an evolutionarily ancient brain structure that regulates innate behaviors [5]. However, the

identity and behavioral function of Lef1-dependent hypothalamic neurons, and their degree of

evolutionary conservation, are unknown. Here, we show that Lef1 is required for the differen-

tiation of hypothalamic neurons that inhibit anxiety in both zebrafish and mice, but through

divergent molecular and cellular mechanisms in the 2 species. Generation of neurons express-

ing corticotropin-releasing hormone binding protein (crhbp) requires Lef1 in zebrafish but not

in mice, whereas neurons expressing Pro-melanin concentrating hormone (Pmch) are Lef1-de-

pendent in mice but not in zebrafish. Furthermore, zebrafish and Drosophila have common

Lef1-dependent crhbp expression in their respective neuroendocrine organs, consistent with

an ancient conserved pathway that has diverged in mammals. Finally, the Genotype-Tissue

Expression (GTEx) project [6] reveals a top-ranked positive correlation between CRHBP and

PMCH in the human hypothalamus, suggesting co-expression and/or co-regulation. Both

genes are also correlated with LEF1 expression in humans, and are expressed in the same

region of the marmoset hypothalamus, consistent with a conserved regulatory pathway in pri-

mates. These findings suggest that the gene expression network regulated by a transcription

factor can change during evolution while still generating a common behavioral output. Our

data also suggest an anxiolytic role for Wnt signaling in the human hypothalamus, with poten-

tial implications for the etiology and treatment of anxiety disorders.

Results

Lef1 is required for the differentiation of hypothalamic neurons in

zebrafish

We sought to first characterize the earliest cellular defect in lef1 null zebrafish mutants [4], so

that we could perform a transcriptome analysis at that stage to identify Lef1-dependent genes.

Lef1 regulates hypothalamic anxiolytic neurons
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Despite grossly normal morphology, mass, and brain size, lef1 mutants have a smaller caudal

hypothalamus (Hc) at 15 days post-fertilization (dpf) [4], and we found that the size reduction

occurred at as early as 3–4 dpf (Fig 1A and S1A and S1B Fig). At 3 dpf the tissue already con-

tained fewer Wnt-responsive cells [7] (Fig 1B), as well as fewer serotonergic cells and ventricu-

lar GABAergic HuC/D+ neurons (Fig 1C and S1C Fig). However, th2:GFP+ dopaminergic

neurons [8] were unaffected (S1D Fig), indicating that not all neuronal subtypes are Lef1-de-

pendent. In addition, the number of BLBP+ cells was increased (S1E Fig), confirming an

inhibitory role of Wnt signaling in the formation of hypothalamic radial glia [4,9].

To determine the cellular mechanism underlying the decreased populations in lef1 mutants,

we measured apoptosis and proliferation. We observed an increase in p53-dependent apo-

ptosis within the Hc at 3 dpf (Fig 1D), but no change in proliferation at 3 dpf and beyond (Fig

1E and S1F–S1H Fig). Rescue of apoptosis by loss of p53 (Fig 1D) did not restore HuC/D

Fig 1. Lef1 promotes neurogenesis in the zebrafish caudal hypothalamus (Hc). (A) Estimation of Hc size in

control and lef1 mutants. See S1B Fig for method. (B-F) Immunostaining and quantification in 3 days post-

fertilization (dpf) Hc. Representative immunostaining images of Wnt-responsive Tg(top:GFP)+ (B), 5-HT+ and

HuC/D+ (C), and mitotic phospho-histone H3-positive (pH3+) cells (E) in control and lef1 mutants are shown on the

left and quantified on the right (B1, C1, C2 and E1). Quantification of apoptotic active Caspase3+ (Cas3+) cells on

the p53 mutant background is shown in (D), and representative immunostaining images of HuC/D+ cells are shown

in (F). (G) Transplantation (schematic on the left) followed by HuC/D immunostaining at 5 dpf. All yellow rectangles

depict the region with ventricular HuC/D+ cells normally present in wild-type (wt) fish, and magnified images in (G).

All images show ventral views of whole-mounted brain with anterior on top. Data are mean ± SEM, except

mean ± SD in (A). ***P < 0.001, **P < 0.01, *P < 0.05, ns. P > 0.05 by unpaired Student t tests. Scale bars: 25 μm.

See S1 Table for description of confocal imaging, quantification and experimental n. Raw data can be found in S1

Data.

https://doi.org/10.1371/journal.pbio.2002257.g001
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expression in lef1 mutants (Fig 1F), consistent with a primary defect in progenitor differentia-

tion. To confirm a failure in neurogenesis, we performed BrdU pulse-chase experiments, and

observed fewer newly born serotonergic and ventricular HuC/D+ cells in lef1 mutants (S1I

Fig). To test whether Lef1 functions cell-autonomously, we transplanted cells from lef1+/-
donors into the hypothalamic anlage of lef1 mutant hosts during gastrulation, and observed

rescue of ventricular HuC/D expression only in donor cells (Fig 1G). Together these data sug-

gest that Lef1 functions cell-autonomously to promote hypothalamic neurogenesis; in lef1
mutants, neural progenitors fail to differentiate and subsequently undergo cell death, leading

to a smaller Hc. Our data also justified 3 dpf as the optimal time point to perform a transcrip-

tome analysis.

Lef1-dependent genes in the zebrafish hypothalamus are associated

with anxiety

To identify Lef1-dependent genes, we next performed RNA sequencing (RNA-seq) analysis of

whole hypothalami dissected from 3 dpf control and lef1 mutant zebrafish embryos, and found

144 genes with an adjusted P value (AdjP) <0.1, among which 53 genes had a fold change>2

(Fig 2A, S2 Table). Most of these genes had reduced expression in lef1 mutants (Fig 2A), con-

sistent with Lef1 functioning as a Wnt transcriptional activator [10]. Surprisingly, Ingenuity

Pathway Analysis (IPA) identified Lef1-dependent genes as being most highly associated with

anxiety and depressive disorder (Fig 2B and S3 and S4 Tables). In contrast, genes associated

with other hypothalamus-mediated behaviors, such as feeding (neuropeptide Y [npy], agouti-
related protein [agrp], and proopiomelanocortin [pomc]) or sleep (hypocretin [hcrt]), were unaf-

fected (S2 Table). We performed in situ hybridization on 3 dpf offspring of lef1+/- incrosses

and confirmed that all Lef1-dependent genes with specific detectable hypothalamic expression

showed predicted changes in approximately 25% of embryos, consistent with Mendelian segre-

gation (Fig 2C and 2D and S2A–S2C Fig). These included several known Wnt targets such as

sp5a and sp5l [11] (Fig 2C), and anxiety-related genes identified from IPA (Fig 2B and 2D).

Expression of neuronal markers such as crhbp and 5-hydroxytryptamine receptor 1A b (htr1ab),

was lost specifically in the Hc of lef1 mutants while remaining intact in the rostral hypothala-

mus (Fig 2D), resulting in their relatively small fold change in whole hypothalamus RNA-seq

analysis (S2 Table). In contrast, expression of other genes, such as 2 phosphodiesterase 9a
(pde9a) paralogs, was lost in the rostral hypothalamus and Hc of lef1 mutants (Fig 2D and S2A

Fig), consistent with lef1 expression in both regions (Fig 2C). We also observed expression of

Lef1-dependent genes in the Hc of wild-type (wt) adult zebrafish (S2D Fig), suggesting the

presence of Wnt activity and Lef1-dependent neuronal populations throughout life. Together

these results suggested that lef1 mutants might have an anxiety-related behavioral phenotype.

Zebrafish lef1 mutants exhibit increased anxiety

lef1 mutants raised with siblings had decreased survival and size (S3A and S3C Fig). When

separated at 15 dpf, mutants survived normally (S3B and S3C Fig), but were still smaller than

control siblings at culture densities that maximized their growth (Fig 3A and S3D Fig), a phe-

notype potentially due to enhanced anxiety [12]. We then performed a novel tank diving test

to measure anxiety-related behavior [13]. We found that lef1 mutant larvae had a longer

latency to enter the upper half of a novel tank and spent less overall time in this zone during

the initial exploration phase (Fig 3B and 3C and S1 Video), consistent with elevated anxiety.

Notably, lef1 mutants travelled less distance during this phase, partially due to more frequent

freezing behavior as indicated by increased time in immobility (Fig 3D and 3E and S1 Video),

and again consistent with elevated anxiety. Importantly, lef1 mutants no longer displayed

Lef1 regulates hypothalamic anxiolytic neurons
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Fig 2. Lef1 activates expression of zebrafish hypothalamic genes associated with anxiety. (A) Volcano

plot of zebrafish RNA sequencing (RNA-seq) shows differentially expressed genes in the 3 days post-fertilization

(dpf) hypothalamus of lef1 mutants compared to control. Only genes with adjusted P value (AdjP) <0.1 (green

line) are shown. Genes with an absolute value of log2 ratio >1 (blue lines) are shown in red; others are shown in

black. Node size represents the averaged fragments per kilobase of transcript per million mapped reads of a

gene in the control. (B) Ingenuity Pathway Analysis (IPA) for zebrafish hypothalamic Lef1-dependent genes

revealed 20 genes associated with anxiety and depressive disorder, listed in the table. (C and D) Representative

images of whole mount in situ hybridization on 3 dpf control and lef1 mutant embryos for known Wnt targets (C)

and genes associated with anxiety and depressive disorder (D). Red and yellow arrows indicate expression in

Lef1 regulates hypothalamic anxiolytic neurons
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anxiety-related behavior after the exploration phase (Fig 3F). The body growth and anxiety

phenotypes in lef1 mutants could be explained by reduced expression of multiple hypotha-

lamic genes including crhbp (Fig 2D), which encodes a corticotropin-releasing hormone

(CRH) inhibitor [14]. However, pleiotropic phenotypes in zebrafish lef1 mutants [4,15] could

also contribute to defects in growth or motor behavior. Therefore, we sought to create a tissue-

specific mouse knockout model to examine the hypothalamic function of Lef1, and to deter-

mine whether it is evolutionarily conserved.

Hypothalamic Lef1 inhibits anxiety in mice

Lef1 is expressed in the mouse Hc from embryonic day (E) 10.5 to adulthood [16,17], and

while previously characterized Lef1 null mutants exhibit postnatal lethality and a smaller body

size, no hypothalamic phenotypes were reported [18,19]. We created a mouse hypothalamus

knockout model using Nkx2-1Cre and Lef1flox alleles [20,21]. We also introduced the Cre

reporter RosatdTomato [22] to create the conditional knockout allele Nkx2-1Cre/+;Lef1flox/flox;
RosatdTomato/+ (herein referred to as Lef1CKO) and control littermates Nkx2-1Cre/+;Lef1flox/+;
RosatdTomato/+ (herein referred to as Lef1CON), which were used for all experiments. We con-

firmed successful recombination by tdTomato expression (S5A Fig), and loss of hypothalamic

Lef1 and Wnt reporter [23] expression in Lef1CKO mice (S5B and S5C Fig), which were viable,

caudal and rostral hypothalamus, respectively. Lateral (axin2, dkk1b, lef1, notum1a, crhbp, and grin2cb) or

ventral (other genes) views were selected for optimal expression visualization. Scale bar: 100 μm.

https://doi.org/10.1371/journal.pbio.2002257.g002

Fig 3. Lef1 regulates growth and anxiety in zebrafish. (A) Size of 30 days post-fertilization (dpf) fish when

raised at 5 fish per tank separated by genotype. n = 25, 30 for control and mutant, respectively. (B-F) Novel

tank diving test. Sixteen dpf larvae were analyzed between 1–3 minutes (C-E) or 4–6 minutes (F) after

entering a novel tank. n = 9 for both controls and mutants. Data are mean ± SEM. *P < 0.05, **P < 0.01,

***P < 0.001, ns. P > 0.05 by unpaired Student t tests. Raw data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.2002257.g003
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fertile, and morphologically indistinguishable from Lef1CON littermates. However, both male

and female Lef1CKO mice gained weight more slowly after weaning (Fig 4A), similar to the phe-

notype we observed in zebrafish lef1 mutants (Fig 3A), and again consistent with elevated anxi-

ety [12].

Fig 4. Hypothalamic Lef1 regulates growth and anxiety in mice. (A) Body weight of male Lef1CKO

(CKO-M, n = 27) and female Lef1CKO (CKO-F, n = 26) compared to controls (CON-M, n = 27; CON-F, n = 26).

(B) Elevated plus maze (EPM). (C) Open field test (OFT). In (B) and (C), n = 12, 9 for male CON, CKO. In (B),

n = 11, 11 for female CON, CKO in estrus; n = 12, 11 for female CON, CKO in diestrus. In (C), n = 12, 6 for

female CON, CKO in estrus; n = 11, 16 for female CON, CKO in diestrus. Data are mean ± 95% CI (A) or SEM

(B and C). ***P < 0.001, **P < 0.01, *P < 0.05, ns. P > 0.05 by 2-way ANOVA with repeated measures (A,

F(1, 26) = 22.2 for male and F(1, 25) = 8.842 for female) and unpaired Student t tests (B and C). Outliers depicted

in black (C) were excluded using the Grubbs’ test (P < 0.05). Raw data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.2002257.g004
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To directly measure anxiety-related behavior, we used an elevated plus maze (EPM) test

and found that male Lef1CKO mice spent significantly less time in the open arms and more

time in the closed arms (Fig 4B) despite normal mobility (S4A Fig). In an open field test

(OFT), male Lef1CKO mice spent significantly less time in the center zone (Fig 4C) despite nor-

mal mobility (S4B Fig). These results are consistent with elevated anxiety in male Lef1CKO

mice. We also observed enhanced anxiety specifically in OFT with estrous female Lef1CKO

mice, but not with diestrous or all females, or with EPM testing of any females (Fig 4B and 4C

and S4A and S4B Fig), likely due to reported variations in anxiety-related behavior between

different sexes [24] and different behavioral assays [25]. Together, these results suggest a con-

served role of hypothalamic Lef1 in inhibiting anxiety.

Hypothalamic Lef1 is required for generation of Pmch+ neurons in mice

Consistent with the neurogenesis defect we observed in zebrafish, we found fewer HuC/D+

cells in the mouse hypothalamic ventricular zone in Lef1CKO embryos at E14.5 (Fig 5A).

Importantly, this effect was restricted to coronal sections in which endogenous Lef1 is

expressed (S5B Fig). To identify Lef1-dependent genes in the mouse hypothalamus, we per-

formed RNA-seq analysis of hypothalami dissected from E14.5 Lef1CON and Lef1CKO embryos,

and surprisingly identified only 1 protein-coding gene that mapped to a unique locus with an

AdjP<0.1 and a fold change>2, Pmch (Fig 5B and S5 Table). Pmch expression normally over-

laps with Lef1 in the premammillary hypothalamus, and extends into the lateral hypothalamus

(Fig 5C) [17,26]. We confirmed loss of Pmch expression in E14.5 Lef1CKO embryos by quantita-

tive real-time PCR (qPCR) and immunostaining (Fig 5D and S5D and S5E Fig). The only

other significantly affected protein-coding gene identified by RNA-seq, Ribosomal Protein L34
(Rpl34) (Fig 5B, S5 and S6 Tables), is a repetitive processed pseudogene that could not be con-

clusively mapped to a single genomic locus, although one copy is located adjacent to Lef1.

Reduced Pmch expression in Lef1CKO embryos was unexpected because its orthologs were

not significantly affected in RNA-seq analysis of zebrafish lef1 mutants (S2 Table). To deter-

mine if any Lef1-dependent genes were conserved with zebrafish later in development, we per-

formed another RNA-seq analysis at postnatal day (P) 22, when Lef1CKO mice begin to exhibit

a growth defect (Fig 4A). In this experiment, we identified only 2 affected protein-coding

genes mapped to unique loci with an AdjP <0.1: Pmch and Tachykinin receptor 3 (Tacr3) (Fig

5B, S6 Table). Tacr3 is known to be co-expressed in Pmch+ neurons, along with CART prepro-
peptide (Cartpt) [27]. We confirmed their reduced expression in the lateral hypothalamus of

P22 Lef1CKO mice by qPCR and in situ hybridization (Fig 5D and 5E and S5E Fig), consistent

with loss of Pmch+ neurons. Decreased body weight observed after ablating Pmch+ neurons

[28,29] may therefore be related to an anxiolytic role for these cells [12], which is further sup-

ported by characterization of their inputs and activity [30].

Orthologs of multiple Lef1-dependent anxiety-related genes in zebrafish are expressed near

Lef1 in the mouse hypothalamus, such as Pde9a and Nitric oxide synthase 1 (Nos1) at E14.5

[26], and Crhbp and Histidine decarboxylase (Hdc) in adults [16]. However, RNA-seq analysis

indicated that expression of these genes was Lef1-independent in mice (S5 and S6 Tables), and

we confirmed this result for Crhbp by qPCR and in situ hybridization (Fig 5D and S5E and

S5F Fig). In addition, we confirmed that expression of zebrafish pmch orthologs [31] does not

depend on Lef1 at either 3 dpf or 15 dpf (S6A–S6C Fig). While we cannot rule out the possibil-

ity that our RNA-seq analysis of the mouse hypothalamus lacked the sensitivity to identify

other conserved Lef1-dependent genes, it is clear that the identity of Lef1-dependent neurons

relevant for anxiety differs between zebrafish and mice.
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Fig 5. Hypothalamic Lef1 is required for Pmch+ neuron formation in mice. (A) Immunostaining of HuC/D

+ cells in the hypothalamic ventricular zone of E14.5 CON-M and CKO-M, with quantification shown on the

right (n = 4). Images are z-projections of 16 μm confocal optical slices, shown with dorsal side on top, and

higher magnification views of yellow squares in the insets. (B) Volcano plot of mouse RNA sequencing (RNA-

seq) shows differentially expressed genes in the hypothalamus of CKO-M compared to CON-M at E14.5 (left)

and P22 (right), using the same format as in Fig 2A. (C) E14.5 sagittal in situ hybridization images (www.

genepaint.org) show expression of Lef1 (red arrows) and Pmch in the wild-type (wt) hypothalamus [26]. (D)

Quantitative real-time PCR (qPCR) analysis for male shows hypothalamic gene expression in E14.5 and P22

CKO-M relative to CON-M. (E) P22 coronal in situ hybridization images show expression of Pro-melanin

concentrating hormone (Pmch), CART prepropeptide (Cartpt), and Tachykinin receptor 3 (Tacr3) in the lateral

hypothalamus. 3V, third ventricle. Data are mean ± SEM. ***P < 0.001, ns. P > 0.05 by unpaired Student t

tests. Scale bars: 400 μm in (C); 30 μm in (E). Raw data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.2002257.g005
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Lef1 dependence of crhbp expression is conserved between zebrafish

and Drosophila

Interestingly, many Lef1-dependent genes in zebrafish encoding components of anxiety-medi-

ating transmitter pathways, such as GABA, 5-HT, and CRH (Fig 2B), have a conserved func-

tion in Drosophila anxiety-like behavior [1]. Therefore, we hypothesized that hypothalamic

Lef1-dependent neurons in zebrafish may represent an evolutionarily ancient pathway. The

Drosophila pars intercerebralis (PI) and pars lateralis (PL) represent neuroendocrine organs

equivalent to the vertebrate rostral hypothalamus and Hc, respectively [32]. In Drosophila, a

single Lef/Tcf family member, pangolin (pan), functions as a Wnt activator [33,34]. Consistent

with our hypothesis, we detected specific pan expression at stage 14 and the crhbp ortholog

CG15537 expression at stage 16 in the Drosophila PL primordium [32] (Fig 6A–6C). Further-

more, we observed a loss of crhbp expression in the PL of pan mutants [34] at stage 16, despite

intact expression in the PI and normal PL morphology (Fig 6C–6E). Drosophila crhbp in the

PL may also be anxiolytic by inhibiting CRH/CRH-like diuretic hormone in the PI [1,32,35],

thus these results support a relationship between neuroendocrine Lef1 function and the devel-

opment of anxiolytic Crhbp+ neurons dating back to a common bilaterian ancestor. By con-

trast, Pmch is a vertebrate specific gene, and Lef1-dependent Pmch+ neuronal circuitry in mice

may reflect a more recent mammalian divergence that co-evolved with new brain structures

[36].

Coordinated expression of PMCH and CRHBP in the human

hypothalamus

Our animal models suggest that in humans Lef1 may also regulate the formation of Pmch+

and/or Crhbp+ hypothalamic neurons. To test this hypothesis, we compared the hypothalamic

RNA-seq transcriptomes of 96 human individuals from the GTEx project [37] (S7 Table).

Despite the fact that these data did not include prenatal samples, we found that expression of

Fig 6. Loss of Drosophila corticotropin-releasing hormone binding protein (crhbp) expression in

pangolin (pan) mutants. (A-E) Whole mount in situ hybridization for the lef1 ortholog pan (A) and crhbp (C

and D), and immunostaining for the pars lateralis (PL) marker FasII [32] (B and E) were performed in

Drosophila wild-type (wt) embryos (A-C) and offspring from a pan+/- incross (D and E). Percentage of

embryos with representative phenotype is displayed in (D) (n = 142) and (E) (n = 25). Confocal z-projections

are shown in (B) and (E). All are representative images for at least 3 embryos. Left images in (A) and (C) are

lateral views with dorsal side on top, and the other images are dorsal views. All images have anterior side on

the left. Red and yellow arrows indicate the PL and pars intercerebralis (PI), respectively. Scale bars: 150 μm.

https://doi.org/10.1371/journal.pbio.2002257.g006
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PMCH and CRHBP are both moderately correlated with LEF1, which is expressed at a rela-

tively low level in the adult human hypothalamus (Fig 7A and 7B). Notably, PMCH and

Fig 7. Correlation analysis in the human hypothalamus. (A-G) Pearson correlations for hypothalamic gene

expression among 96 postmortem human samples obtained from the Genotype-Tissue Expression (GTEx) project

[39]. All the Pearson’s r and P values were calculated between 2 genes, and displayed in the graphs or tables after

sorting by r values. Correlation expression profiles are shown for gene pairs Pro-melanin concentrating hormone

(PMCH) versus LEF1 (A), Corticotropin-releasing hormone binding protein (CRHBP) versus LEF1 (B), CRHBP

versus PMCH (F), and Agouti-related protein (AGRP) versus Neuropeptide Y (NPY) (G), with reads per kilobase of

transcript per million mapped reads (RPKM) at log10 scale used on both axes. Note that 1 data point (NPY: 0.1395;

AGRP: 0) was not included in (G) due to the inability of plotting a 0 value on the logarithmic axis. Three tables of

correlated genes for LEF1 (C), CRHBP (D), and PMCH (E) list the top 9 positively correlated genes plus selected

genes, including those involved in canonical Wnt signaling labeled in red. See the full list in S8 Table.

https://doi.org/10.1371/journal.pbio.2002257.g007
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CRHBP were both within the top 100 LEF1-correlated genes, along with known Wnt targets

such as Sal-like protein 4 (SALL4) [38] and SP5 [11] (Fig 7C and S8 Table).

In the course of this analysis, we noticed similar correlation profiles for CRHBP and PMCH
(Fig 7A and 7B), suggesting a possible expression correlation between these 2 genes. Surpris-

ingly, we found CRHBP and PMCH to be the most highly correlated genes with each other

(Fig 7D–7F and S8 Table), a relationship that has never been reported previously. Among the

top 200 PMCH- or CRHBP-correlated genes, we also found 2 Wnt ligands and 1 Wnt co-acti-

vator: R-Spondin 1 (RSPO1) [40] (Fig 7D and 7E). As a comparison, AGRP is the most highly

correlated gene with Neuropeptide Y (NPY) (Fig 7G and S8 Table), consistent with their co-

expression in the same hypothalamic neurons [41]. Interestingly, while Pmch and Crhbp are

expressed in different regions of the mouse hypothalamus [16], they are expressed in the same

hypothalamic nuclei in another primate, the marmoset according to the Marmoset Gene Atlas

(https://gene-atlas.bminds.brain.riken.jp). Importantly, the results of all our correlation analy-

ses are recapitulated on GeneNetwork (www.genenetwork.org) [42], which imported an older

version of GTEx’s datasets and calculated Pearson correlation across a population (See Materi-

als and methods). Together these data suggest co-expression of PMCH and CRHBP in the pri-

mate hypothalamus and potential regulation by LEF1-mediated Wnt signaling in humans.

Discussion

In this study, we demonstrate that Lef1-mediated hypothalamic Wnt signaling plays an evolu-

tionarily conserved role in regulating the formation of anxiolytic neurons (See Fig 8 for sum-

mary). In zebrafish lef1 mutants, neural progenitors fail to differentiate and undergo apoptosis,

resulting in a smaller Hc (alternatively named the hypothalamic posterior recess, the posterior

part of the paraventricular organ, or the caudal zone of the periventricular hypothalamus

[4,43,44]). Any or all of the 20 anxiety-related genes that are misregulated in the zebrafish

mutant (Fig 2B) may contribute to the behavioral phenotypes that we observe. Likewise, our

data do not conclusively prove that crhbp+ neurons, or indeed any individual Lef1-dependent

Fig 8. Mechanism of Lef1-mediated Wnt signaling in hypothalamic neurogenesis and anxiety.

Lef1-mediated Wnt signaling plays an evolutionarily conserved role in hypothalamic neurogenesis that inhibits

anxiety. However, the underlying molecular and cellular mechanisms can vary between organisms.

https://doi.org/10.1371/journal.pbio.2002257.g008
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neuronal populations, mediate the effect of Lef1 on anxiety. Such a conclusion would require

either rescue of the lef1 mutant phenotype by restoration of missing neurons, or phenocopy by

specific ablation of the cells. However, the specific loss of Pmch+ neurons in our mouse condi-

tional knockout (Fig 5B), combined with the unexpected expression correlation between

PMCH and CRHBP in the human hypothalamus (Fig 7F), is consistent with a common role for

these 2 genes in behavior. While we also cannot rule out the possibility that Lef1 mutants may

have other behavioral defects, genes that are known to regulate other hypothalamus-driven

behaviors, such as Npy, Agrp, Pomc, and Hcrt, are unaffected in our mutants (S2, S5 and S6

Tables). In addition, pure assessment of other behaviors cannot distinguish a direct phenotype

from an anxiety-related secondary phenotype.

While the major product of Pmch, melanin-concentrating hormone (MCH), is an anxio-

lytic factor in teleosts [45], studies in mammals have reported it to be either anxiolytic, anxio-

genic or having no effect [46,47]. In addition, the Pmch propeptide makes at least 2 more

neuropeptides, neuropeptide-glutamic acid-isoleucine (NEI), and neuropeptide-glycine-glu-

tamic acid (NGE), which are also involved in stress response and anxiety [48]. Germline Pmch
mouse knockouts gain weight more slowly than controls, a phenotype originally attributed

to decreased food intake [49]. However, on a different background strain, the same group

reported that the knockout mice were not hypophagic, while retaining a growth phenotype

[50]. Interestingly, all rodent models ablating Pmch [49–53] or Pmch+ neurons [28,29] exhibit

a reduced growth rate. One possible underlying mechanism could be enhanced anxiety [12],

which was not directly tested in any of these studies. Therefore, we hypothesize that in Lef1CKO

mice, loss of hypothalamic Pmch+ neurons is responsible for elevated anxiety, leading to a sec-

ondary growth phenotype.

Our data suggest that the gene expression and neuronal subtypes dependent on Lef1 can

change during evolution while maintaining a common behavioral output. While transcrip-

tional networks can undergo rapid rewiring at the level of enhancer binding sites during yeast,

insect and mammalian evolution [54,55], the direct transcriptional targets of Lef1 mediating

hypothalamic neurogenesis are still unknown. We have identified Tcf/Lef consensus binding

sites in zebrafish and mouse Crhbp and Pmch loci, but it remains important to determine

whether these 2 genes are direct targets of Lef1, or are instead lost as a secondary result of neu-

rogenesis defects in mutants. In either case, it will also be useful to understand the circuitry of

Lef1-dependent neurons. While the targets of Crhbp+ neurons in Drosophila and zebrafish are

unknown, the projections of Pmch+ neurons in the hypothalamus of mice and other mammals

are well characterized, and the regulation of these circuits by Lef1 in these species may be

linked to anatomical and functional expansion of target brain regions such as the cortex [36].

Importantly, the coordinated expression of CRHBP and PMCH in the human hypothalamus

suggests that they may be co-expressed in a single neuronal cell type.

Loss of other genes important for hypothalamic neurogenesis has been shown to affect

behavior [2]. Interestingly, mice lacking hypothalamic Dbx1 also exhibit a loss of Pmch+ neu-

rons along with other populations [56]. In that study, Lef1-expressing hypothalamic nuclei

were hypothesized to regulate innate behaviors outside the hypothalamic-pituitary-adrenal

(HPA) axis, partly due to the observation of expanded Wnt activity in Dbx1 knockout animals.

However, because our work demonstrates that Lef1 is in fact required for the genesis of Pmch+

neurons and for HPA-related behaviors, an alternative explanation is that Dbx1 functions in a

parallel pathway to Lef1.

Together these results identify Wnt signaling as a link between brain development and

function that allows essential behaviors to be maintained even as anatomical structures change

through evolution. In addition, given the function for hypothalamic Wnt signaling in regulat-

ing postembryonic zebrafish neurogenesis [4], and the continuous expression of Lef1 in the
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hypothalamus of fish (S2D Fig) and mammals [16] throughout life, it would be interesting to

test a possible contribution to adult behavior using temporal conditional knockout models.

While Wnt signaling in the mammalian hippocampus and nucleus accumbens has been asso-

ciated previously with anxiety and depression [57,58], our data demonstrate a novel require-

ment for pathway activity in a brain region that is highly conserved throughout the vertebrate

lineage, and may prove useful for the diagnosis and treatment of hypothalamus-related anxiety

disorders.

Materials and methods

Ethics statement

All experimental protocols were approved by the University of Utah Institutional Animal Care

and Use Committee and were in accordance with the guidelines from the National Institutes

of Health. Approval number: 16–09011. Zebrafish were euthanized by ice water immersion.

Mice were euthanized by CO2 or ketamine/xylazine.

Subjects: Zebrafish

Zebrafish (Danio rerio) were bred and maintained in a 14:10 hour light/dark cycle as previ-

ously described [59]. Zebrafish per tank were fed with similar amount of food and treated by

the staff who were blinded to the experiments. Wt strains were �AB. The following mutant and

transgenic strains were used: lef1zd11 [4], Tg(top:GFP)w25 [7], Tg(dlx6a-1.4dlx5a-dlx6a:GFP)ot1

[60], Tg(h2afv:GFP)kca6 [61], Tg(th2:GFP-Aequorin)zd201 [8], p53e7 [62]. lef1-/- homozygous

mutants were identified between 3 dpf and 10 dpf by DASPEI staining as described previously

[15] and at or after 15 dpf by loss of caudal fin [4]; wt and heterozygous siblings were used as

controls. All the zebrafish were from at least 1 single-pair breeding. Genotyping was done as

described before for lef1zd11 [4] and p53e7 [63], except primers used for lef1zd11 (forward

primer: 5’-CACTCTCTCCAGCCCAACATT-3’, reverse primer: 5’-TGTTACTGTTGG

GACTGATTTCTG-3’).

Subjects: Mice

Male and female C57BL/6J mice (Mus musculus) were group-housed with 2–5 mice per cage

in a reverse 12 hour light/dark cycle with ad libitum access to food and water. Mice were 19–

20 and 15–20 weeks old at the time of behavioral tests for male and female animals, respec-

tively. Ai9 reporter RosatdTomato (line 007905) [22], Nkx2-1Cre (line 008661) [21], and TCF/Lef:
H2B-GFP mice (line 013752) [23] were purchased from Jackson Laboratories. Lef1flox/flox mice

were provided by HHX [20]. All strains were maintained on a C57BL/6J background except

TCF/Lef:H2B-GFPmice, which were originally on a C57BL/6 × 129 background. Male Nkx2-
1Cre/Cre;Lef1flox/+ and female Lef1flox/flox;RosatdTomato/tdTomato mice were used to generate condi-

tional knockout (Lef1CKO: Nkx2-1Cre/+;Lef1flox/flox;RosatdTomato/+) and control (Lef1CON: Nkx2-
1Cre/+;Lef1flox/+; RosatdTomato/+) offspring. Females breeders were maintained by inbreeding.

Male breeders were maintained by interbreeding Nkx2-1Cre/Cre;Lef1+/+ and Nkx2-1Cre/Cre;
Lef1flox/+ for no more than 5 generations to avoid potential artifacts caused by Cre homozygous

inbreeding [64]. In occasional litters, Ai9 reporter expression was observed throughout the

body of approximately 10% of experimental animals, consistent with published literature [21];

such animals were not used for experiments. All the mice were from at least 3 litters unless oth-

erwise noted. Sex at E14.5 was determined by genotyping by Jarid 1c [65]. When generating

experimental mice for body weight measurement and behavioral tests, each litter was culled to

8 pups at P0. Genotyping for RosatdTomato and TCF/Lef:H2B-GFP animals was done according
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to available Jackson Laboratory protocols for these strains. Genotyping for Nkx2-1Cre mice was

done using primers for Cre recombinase detection (forward primer: 5’-ATGCTTCTGTCCGT

TTGCCG-3’, reverse primer: 5’-CCTGTTTTGCACGTTCACCG-3’). Genotyping for Lef1flox

mice was done using primers contributed by HHX (forward primer: 5’-GCAGATATAGAC

ACTAGCACC-3’, reverse primer: 5’-TCCACACAACTAACGGCTAC-3’).

Subjects: Drosophila

Canton-S wild-type and pan2 mutant (BL4759) Drosophila melanogaster strains were obtained

from Bloomington Stock Center.

Zebrafish transplantation experiments

At the sphere stage, 10–50 blastula cells from donor embryos were transplanted using a glass

micropipette into the dorsal side of shield stage host embryos, 20–40 degrees from the animal

pole, representing the hypothalamus anlage [66]. Embryos were then raised to 5 dpf for immu-

nohistochemistry. Donor and host embryos were retained for genotyping to identify lef1
mutants.

BrdU labeling

Four dpf zebrafish embryos were incubated in E3 media containing 10 mM BrdU (Sigma-

Aldrich, St. Louis, MO) at 28.5˚C for indicated time before being washed in E3 media for at

least 3 times.

Immunohistochemistry: Zebrafish

Embryos and larvae were fixed in 4% paraformaldehyde (PFA) for 3 hours at room temperature

(RT) or overnight (O/N) at 4˚C followed by brain dissection. Brains were either dehydrated

in methanol and stored at −20˚C, or immediately processed for immunohistochemistry. For 3

dpf embryos, 5% sucrose was included in the fixative to ease dissection. Brains were treated

with 0.5 U dispase (Gibco #17105–041) in 2% PBST (PBS/2% Triton X-100) for 60 minutes at

RT. For BrdU, PCNA, pH3 or Caspase-3 staining, brains were washed in water for 5 minutes

twice, followed by incubation in 2 N HCl for 60 minutes at RT, followed by 2 more water

washes. Brains were then blocked in 5% to 10% goat serum in 0.5% PBST for 60 minutes at

RT. Embryos were incubated in primary antibodies in block O/N at 4˚C and secondary anti-

bodies and Hoechst 33342 (Life Technologies, H3570) in block O/N at 4˚C before mounting

in Fluoromount-G (SouthernBiotech, Birmingham, AL) with the ventral hypothalamus facing

the coverslip. Primary antibodies were all used at 1:500 dilution except as noted: chicken anti-

GFP (Aves Labs, GFP-1020), rabbit anti-GFP (Molecular Probes, A11122), mouse anti-HuC/

D (Molecular Probes, A21271), rabbit anti-5-HT (ImmunoStar, 541016), rabbit anti-pH3

(1:400, Cell Signaling, 9713), rabbit anti-active Caspase-3 (BD Pharmingen, 559565), rabbit

anti-BLBP (Abcam, ab32432), mouse anti-PCNA (Sigma, P8825), and chicken anti-BrdU

(ICL, CBDU-65A-Z). Secondary antibodies were all used at 1:500 dilution: goat anti-mouse

Alexa Fluor 448 (Invitrogen, A11001), goat anti-rabbit Alexa Fluor 488 (Invitrogen, A11008),

donkey anti-chicken Alexa Fluor 488 (Jackson ImmunoResearch, 703-545-155), goat anti-

rabbit cy3 (Jackson ImmunoResearch, 111-165-003), goat anti-mouse cy3 (Jackson Immu-

noResearch, 115-165-003), goat anti-mouse Alexa Fluor 647 (Invitrogen, A21235), goat anti-

rabbit Alexa Fluor 647 (Invitrogen, A21244), and goat anti-chicken Alexa Fluor 647 (Invitro-

gen, A21449). Hoechst 33342 (1:10,000) was used to stain nuclei. All the primary antibodies

were validated previously [4,67].
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Immunohistochemistry: Mice

E14.5 embryo heads were dissected in PBS and fixed in 4% PFA at RT for 1.5 hours or O/N at

4˚C. Brains were dissected and cryoprotected in 15% and then 30% sucrose, embedded in

OCT, and stored at −80˚C. Brains were cryosectioned at a thickness of 16 μm, air dried and

stored at −80˚C. Air-dried sections were then washed in PTW (PBS+0.1% Tween 20) 3 times,

followed by permeabilization in 0.25% PBST for 5 minutes and blocking in 10% goat serum in

PTW for 60 minutes. Sections were incubated in primary antibodies in blocking solution O/N

at 4˚C and secondary antibodies in blocking solution for 2 hours at RT, followed by Hoechst

33342 stain for 10 minutes at RT before mounting in Fluoromount-G. Antibodies used were as

described above except rabbit anti-LEF1 (1:200, Cell Signaling, 2230), goat anti-PMCH (1:500,

Santa Cruz, sc14509) and donkey anti-goat Alexa Fluor 647 (1:400, Invitrogen, A21447). All pri-

mary antibodies were validated by absence of staining in Lef1CKO animals. For HuC/D staining,

incubation for 30 minutes in 0.5 U dispase was performed in 0.25% PBST.

Immunohistochemistry: Drosophila

Drosophila immunohistochemistry was performed as previously described [68] except that a

fluorescent secondary antibody was used. Antibodies used were as described above except

mouse anti-FasII (1:5, DSHB, 1D4), which was validated previously [32].

Probes for in situ hybridization

In situ hybridization probes were made by a clone-free method as described previously

[69,70], with DNA templates purified using Zymo Research DNA Clean & Concentrator-5 kit.

Primers were designed by Primer-BLAST [71] except for mouse genes with primer sequences

available from the Allen Brain Atlas (ABA) [16] or GenePaint Atlas [26]. A full list of primers

used to make probes is in S9 Table. cDNA made from 3 dpf zebrafish embryos, P2, and P60

mouse hypothalamus, and adult Drosophila (gift from C. Thummel) was used as the initial

template for PCR to generate T7 promoter-containing DNA. RNA probes for zebrafish lef1
[72] and axin2 [73] were previously described. The RNA probe for Drosophila pan was gener-

ated from the Drosophila Gene Collection T7 promoter-containing cDNA GM04312 [74].

Whole mount in situ hybridization: Zebrafish

Zebrafish whole mount in situ hybridization was performed as described previously [75]

except that 15 dpf and adult zebrafish were fixed in 4% PFA O/N at 4˚C followed by washing

in PBS and brain dissection. All tissues were treated for 30 minutes with 10 μg/ml Proteinase

K. Pigmented embryos were bleached in 1% H2O2/5% formamide/0.5× SSC O/N at RT after in

situ hybridization. 3 dpf embryos and postembryonic brains were imaged in 100% glycerol

and PBS, respectively. For automated whole mount in situ hybridization, all steps following

probe hybridization and before color reaction were performed using a BioLane HTI (Intavis,

Chicago, IL).

Section in situ hybridization: Mice

Twenty-five μm brain cryosections were collected and post-fixed as previously described [76]

(http://developingmouse.brain-map.org/docs/Overview.pdf). In situ hybridization was then

performed as described [77].

Whole mount in situ hybridization: Drosophila

Drosophila whole mount in situ hybridization was performed as described previously [68].
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Body length: Zebrafish

Zebrafish from a single home tank were anesthetized using tricaine (Sigma-Aldrich, St. Louis,

MO) in shallow water. Images were acquired of immobilized, non-overlapping fish with a

ruler for scale. Body length was calculated by measuring the distance between the mouth and

the anterior edge of the tail fin, using ImageJ.

Novel tank diving test

Five fish from lef1+/- incrosses were raised per tank starting at 5 dpf. lef1 mutants and controls

were separated at 15 dpf. Novel tank diving tests [13] were performed on 16 dpf larvae during

the early afternoon of the same days, before lef1 mutants start to display surfacing behavior at

20 dpf. Novel rectangular tanks (16.6 cm × 9.5 cm × 12.3 cm) were illuminated by a centered

white light, and videos were acquired with a mounted Nokia Lumia 640 phone 1080p camera.

For each experiment, single mutant and control larvae were netted and then removed simulta-

neously from their home cages and transferred to novel tanks with identical water volume.

The order of netting mutant and control fish was rotated between trials. Videos were viewed

in MPlayerX to manually analyze the latency of larvae to enter the upper half of the tank after

initial sinking. Videos were then imported and analyzed using Ethovision XT version 11.5

(Noldus, Leesburg, VA) during the initial exploration phase, with a tracking period of 2 min-

utes beginning 1 minute after release into the novel tank to decrease water agitation resulting

from netting. Videos were also analyzed after the initial exploration phase with a tracking

period during the 4 to 6 minute interval. Tracks were analyzed for distance travelled, time in

upper half of the tank and time of immobility.

Body weight: Mice

All pups were weaned at P21 immediately following the first weighing. Pups weighing less

than 6.5 g were excluded from analysis. All mice were weighed during the morning of the

same days of the following weeks.

Behavior tests: Mice

Group-housed mice were allowed to acclimate to the animal facility for behavioral tests 9 days

after an on-campus transfer. Each mouse was handled daily for 2 minutes, during midmorning

for 7 days before commencement of behavioral testing using the cupped hand method [78].

To avoid behavioral variation caused by female estrous cycle [79], a vaginal lavage procedure

was done after daily handling for estrous phase evaluation for 7 days, as previously reported

[80]. Female mice in their proestrus or estrus phases were collectively grouped as “Estrus” and

females in their metestrus and diestrus phases were collectively grouped as “Diestrus.” All

mice were acclimated to the behavior room for 1 hour under red light (69 lux) before com-

mencement of tests. Open field and EPM behavioral tests were performed in order, once daily

for 2 days, from 9 AM to 5 PM. The experimenter was blinded to genotype.

OFT

Each mouse was placed in a circular plexiglass chamber (4.5” diameter × 3” height) located

inside an illuminated (330 lux) circular open field arena (110 cm diameter) and allowed to

acclimate for 1 minute to decrease movement bias resulting from experimenter handling.

After 1 minute, the plexiglass chamber was removed from the arena, and the mouse was

allowed to freely explore the arena for 10 minutes. Movement was video recorded and ana-

lyzed using Ethovision version 9 (Noldus, Leesburg, VA).
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EPM

The EPM apparatus was elevated 60 cm from the floor, having 2 open arms (35 cm × 5 cm)

and 2 closed arms (35 cm × 16 cm) connected by a central platform (5 cm × 5 cm). The

EPM was illuminated by a white light (205 lux) at the center platform. Each mouse was

placed in a rectangular opaque white plexiglass chamber (2” × 3” × 5”) located on the center

platform, and allowed to acclimate for 1 minute before commencement of the test. The

white chamber was removed and the mouse was allowed to freely explore the EPM for 5

minutes. Behavior was video recorded and analyzed using Ethovision version 9 (Noldus,

Leesburg, VA).

RNA-seq: Zebrafish

Embryos were fixed for 1.5 hours in 4% PFA/5% sucrose in PBS at RT, followed by whole

hypothalamus dissection with super-fine forceps (FST, 11252–00). For each biological repli-

cate, 28 to 38 dissected hypothalami were pooled for lef1 mutant and control samples from at

least 1 single-pair breeding. RNA was extracted using a RecoverAll Total Nucleic Acid Isola-

tion Kit for FFPE (Ambion, AM1975) according to the manufacturer’s instructions. Three bio-

logical replicates were obtained on different days from offspring of different breedings. A total

of 300 ng RNA per sample was submitted to the High Throughput Genomic Core at the Uni-

versity of Utah for RNA quality control by High Sensitivity R6K ScreenTape, RNA concentra-

tion by vacuum drying, cDNA library prep by Illumina TruSeq Stranded RNA Kit with Ribo-

Zero Gold and sequencing by HiSeq 50 Cycle Single-Read Sequencing version 3. RNA-seq was

analyzed by the Bioinformatics Core at the University of Utah. A transcriptome reference was

created by combining GRCz10 chromosome sequences with Ensembl build 84 splice junction

sequences generated with USeq (version 8.8.8) MakeTranscriptome. RNA-seq reads were

mapped to the GRCz10 zebrafish transcriptome reference using Novoalign (version 2.08.03).

Splice junction alignments were converted back to genomic space using USeq SamTranscrip-

tomeParser. USeq DefinedRegionDifferentialSeq was used to generate per gene read counts,

which were used in DESeq2 to determine differential expression. RNA-seq graph in Fig 2A

was made by IPython Notebook with package NetworkX.

RNA-seq: Mice

E14.5 and P22 nonweaned male Lef1CON and Lef1CKO hypothalami were dissected using a

fluorescent microscope in ice-cold PBS, while tail tissue was retained for genotyping. E14.5

tissues were immediately immersed in RNAlater (Thermo Fisher, Waltham, MA) and stored

at 4˚C for up to 7 days until RNA extraction. P22 tissues dissected from at least 2 litters were

immediately homogenized in TRIzol (Thermo Fisher, Waltham, MA) and stored at −80˚C.

Three biological replicates were prepared from either 5 pooled hypothalami (E14.5) or a sin-

gle hypothalamus (P22) from Lef1CON and Lef1CKO mice, and RNA was extracted on the

same day using TRIzol followed by purification with an RNeasy Mini Kit (Qiagen, Hilden,

Germany) and on-column DNase digestion (Sigma-Aldrich, St. Louis, MO). One μg of RNA

per sample was submitted to the High Throughput Genomic Core at the University of Utah

for RNA quality control with Agilent RNA ScreenTape, cDNA library prep with Illumina

TruSeq Stranded RNA Kit with Ribo-Zero Gold, and sequencing using HiSeq 50 Cycle Sin-

gle-Read Sequencing version 4. RNA-seq reads were mapped to GRCm38. Differential gene

expression analysis and graph plotting were carried out using the same methods as for zebra-

fish RNA-seq.
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qPCR

Three biological replicates of RNA from male and female mice were prepared as described

above for RNA-seq. Two and a half μg RNA was used for cDNA synthesis with a SuperScript

III Reverse Transcriptase kit (Invitrogen, Carlsbad, CA). qPCR was performed in triplicate

using Platinum SYBR Green master mix (Invitrogen, Carlsbad, CA) on 96-well CFX Connect

(Bio-Rad, Hercules, CA) plates or 384-well QuantStudio 12K Flex (Life Technologies, Dur-

ham, NC) plates at the Genomics Core at the University of Utah, according to manufacturer’s

instructions. Gapdh was used to normalize quantification, and reverse transcriptase was omit-

ted for controls. qPCR analysis was performed with the ΔΔCt method to determine relative

expression change [81]. Dissociation curve analysis was performed to confirm the specificity

of amplicons. qPCR primers were designed from PrimerBank [82] as follows (forward primer

first, reverse primer second, in 5’ to 3’ orientation with PrimerBank ID in the parentheses),

Pmch (12861395a1): GTCTGGCTGTAAAACCTTACCTC, CCTGAGCATGTCAAAATCT

CTCC; Tacr3 (10946720a1): CTGGGCTTGCCAGTGACAT, CGCTTGTGGGCCAAGATG

AT; Crhbp (162287189c2): CTTACCCTCGGACACTTGCAT, GGTCTGCTAAGGGCATC

ATCT.

Image analysis and cell counting

Fluorescent images of dissected zebrafish and mouse brains were obtained with an Olympus

FV1000 confocal microscope at the Cell Imaging Core at the University of Utah. Z-stack

images were all maximum intensity z-projections of 3 μm slices; single- or double-labeled cells

were manually counted in FV1000 ASW 4.2 Viewer. All the zebrafish and mouse in situ

hybridization images were obtained with an Olympus SZX16 dissecting microscope except

those in Fig 5E, S2C Fig and S6B Fig, which were obtained with an Olympus BX51WI com-

pound microscope. Two months post-fertilization (mpf) zebrafish images (S3A and S3B Fig)

were acquired using a Leica MZ16 microscope. Drosophila in situ hybridization images were

obtained with a Zeiss Axioskop.

IPA

IPA (QIAGEN, Redwood City, CA) was performed with 129 mouse orthologs of the 138 zeb-

rafish protein-coding genes identified from RNA-seq with AdjP<0.1 (S4 Table). Analysis was

performed by the Bioinformatics Core at the University of Utah according to QIAGEN’s

instructions and “diseases and functions” were extracted from the software (S3 Table).

Human correlation analysis

Publically available GTEx raw datasets were downloaded from www.gtexportal.org in April

2017 as a single file: GTEx_Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_rpkm.gct.gz.

Ninety-six hypothalamic samples were identified according to their specific strong PMCH
expression, and extracted into S7 Table by IPython Notebook with packages gzip and xlwt.

Pearson correlation was calculated by gene reads per kilobase of transcript per million mapped

reads (RPKM) using IPython Notebook with function scipy.stats.stats.pearsonr, followed by

result writing into S8 Table by IPython Notebook with package xlwt. The same Pearson corre-

lation r values were confirmed using Excel’s CORREL function. A similar correlation result

was obtained when searching for the top 200 correlated genes by Pearson on GeneNetwork

(www.genenetwork.org) in April 2017. Several differences are noted between our analyses and

GeneNetwork’s analyses. First, GeneNetwork imported an older version of GTEx’s datasets

(GTEXv5 Human Brain Hypothalamus RefSeq [Sep15] RPKM log2). Second, GeneNetwork
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calculated Pearson correlation using RPKM log2 rather than RPKM in our case. Third, Gene-

Network calculated Pearson’s sample correlation across a population, with an adjustment

across the genome, and also based on the number of the top correlated genes requested by the

users; in our case, we calculated Pearson correlation between 2 genes, and simply ranked all

the genes by their Pearson’s r values calculated for the gene of interest. Lastly, GeneNetwork’s

imported older GTEx datasets had 102 hypothalamic samples, 6 among which were left out in

current GTEx’s server. The complete overlapping of the 96 samples further confirmed our suc-

cessful extraction of hypothalamic datasets from the GTEx project.

Statistical analysis

No statistical methods were used to predetermine sample size. For behavioral assays, sample

size was determined based on accepted practice. The experiments were not randomized. Due

to visible phenotypes, the investigators were not blinded to outcome assessment except for

whole mount in situ hybridization of zebrafish lef1+/- incrosses, Drosophila pan+/- incrosses,

and mouse body weight and behavioral assays. Two-tailed unpaired Student t tests were per-

formed for all statistical analysis, except mouse body weight (2-way ANOVA with repeated

measures), using GraphPad Prism software version 6. Outliers were identified by Grubbs’ test

for behavioral assays with significance assigned at P< 0.05 (alpha = 0.01). All the criteria for

excluding data points were established prior to data collection.

Supporting information

S1 Fig. Lef1 promotes neurogenesis in the zebrafish caudal hypothalamus (Hc). (A and B)

Hc size in control and lef1 mutants (A) estimated by the area of confocal ventricular slice (B).

Hc was defined as an oval indicated by red outline in (B). The lengths of a1, a2, b1, b2 in the

representative image (B) were measured by ImageJ, and the area of the oval was calculated by

the following equations: Estimated area = π�a�b/4; a = a1+a2; b = (b1+b2)/2. (C) Co-immu-

nostaining of HuC/D and GABAergic lineage marker dlx5/6:GFP [83] in the 3 dpf Hc. Three

confocal channel-split magnified images of the region depicted by the yellow rectangle are

shown on the right. A representative image is shown for at least 3 embryos tested. (D and E)

Immunostaining of th2:GFP+ (D) and BLBP+ cells (E) in the Hc of 3 dpf control and lef1
mutant. Representative images are shown on the left, and quantifications are shown on the

right. Higher magnification views of yellow rectangles in single channel are shown in the insets

in (E). (F-H) Measurement of proliferation in the Hc of 5 dpf control and lef1 mutant as

shown by pH3+ (F) and PCNA+ cells (G; representative image on the left and quantification

on the right; cells adjacent to the horizontal ventricle were counted), and 1 day BrdU labeling

(H; schematic on the left). (I), BrdU pulse-chase (schematic on the left) to measure birth of

5-HT+ and ventricular HuC/D+ cells after 4 dpf. Data are mean ± SEM, except mean ± SD in

(A) and (I). ���P< 0.001, ��P< 0.01, �P< 0.05, ns. P> 0.05 by unpaired Student t tests. All

images are confocal ventricular slices. All scale bars are 25 μm except 12.5 μm in the magnified

image in (C). See S1 Table for description of quantification and experimental n. Raw data can

be found in S1 Data.

(TIF)

S2 Fig. Whole mount in situ hybridization for zebrafish Lef1-dependent genes identified

from RNA-seq. (A) Representative images of whole mount in situ hybridization on 3 dpf con-

trol and lef1 mutant embryos. Red and yellow arrows indicate gene expression in caudal and

rostral hypothalamus, respectively. Lateral (adarb2, ccdc129, foxb2, klf17, mmp17b, and

slc18a2) or ventral (other genes) views were selected for optimal expression visualization. (B)

Lef1 regulates hypothalamic anxiolytic neurons

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002257 August 24, 2017 20 / 27

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2002257.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2002257.s002
https://doi.org/10.1371/journal.pbio.2002257


Quantification of expression following whole mount in situ hybridization on 3 dpf offspring

from lef1+/- incrosses. Fifty to eighty-five embryos were analyzed per gene. (C) Images of 3

dpf control brains centered on Hc from ventral view. (D) Gene expression in the hypothala-

mus of 4 months post-fertilization (mpf) female wild-type zebrafish from ventral view. Repre-

sentative images are shown in (C) and (D) for at least 2 samples tested. Images of ventral view

have anterior on top; images of lateral view have dorsal on top and anterior on the left. Red

dashed outlines in (C) and (D) depict the caudal hypothalamus. Scale bars: 0.1 mm in (A);

5 μm in (C); 0.2 mm in (D). Raw data can be found in S1 Data.

(TIF)

S3 Fig. Physiological and behavioral analysis of zebrafish lef1 mutants. (A-C) Body size and

survival rate of lef1 mutants under different culture conditions. Offspring of lef1+/- incrosses

were either unsorted or sorted by genotype at 15 dpf, and raised at 25 fish per tank. Body

length and number of surviving fish at 2 mpf are shown in (C) with representative pictures in

(A) and (B) (lef1 mutants have no caudal fins [4]). (D) Body length of wild-type fish with dif-

ferent culture densities [84]. Data are mean ± SEM. Raw data can be found in S1 Data.

(TIF)

S4 Fig. Mouse anxiety tests. (A) Elevated plus maze. (B) Open field test. In (A) and (B), n =

12, 9 for male CON, CKO. In (A), n = 11, 11 for female CON, CKO in estrus; n = 12, 11 for

female CON, CKO in diestrus. In (B), n = 12, 6 for female CON, CKO in estrus; n = 11, 16 for

female CON, CKO in diestrus. Data are mean ± SEM. ��P< 0.01, ns. P> 0.05 by unpaired

Student t tests. Outliers depicted in black (B) were excluded from statistical analysis using the

Grubbs’ test (P< 0.05). Raw data can be found in S1 Data.

(TIF)

S5 Fig. Cellular and molecular phenotypes in mouse Lef1CKO hypothalamus. (A) P50 female

Nkx2-1Cre/+;Lef1flox/+;RosatdTomato/+ (CON-F) expresses tdTomato in the hypothalamus. Bright

field (left) and red fluorescence (right) ventral view images of the same brain with anterior on

top are shown. Representative images are shown for at least 3 adult brains dissected. (B)

Immunostaining for Lef1 in the hypothalamus of E14.5 Lef1CON (CON) and Lef1CKO (CKO).

Coronal images are z-projections of 16 μm confocal optical sections, shown with dorsal side

on top. Representative images are shown for at least 2 replicates tested. (C) Immunostaining

for Wnt reporter TCF/Lef:H2B-GFP. Hypothalamic green fluorescence (below) views of yellow

rectangles in bright field (above) view images of the same brain are shown, respectively. Images

are whole mount ventral views with anterior side on top, acquired with the same setting for

CON and CKO. Representative images are shown for at least 3 replicates tested. (D) Immunos-

taining for Pmch in the E14.5 hypothalamus. Higher magnification views of yellow rectangles

are shown in the insets. Coronal images are z-projections of 16 μm confocal optical slices,

shown with dorsal side on top. (E) qPCR analysis for female shows hypothalamic gene expres-

sion in E14.5 and P22 CKO-F relative to CON-F. Data are mean ± SEM. ���P< 0.001, ns.

P> 0.05 by unpaired Student t tests. (F) Twenty-five μm coronal section in situ hybridization

for Crhbp in the male P22 ventral premammillary and posterior hypothalamus, shown with

dorsal side on top. Representative images are shown for at least 2 replicates tested. 3V: third

ventricle. All scale bars are 100 μm except 500 μm in (F). Raw data can be found in S1 Data.

(TIF)

S6 Fig. Normal expression of pmch and pmchl in zebrafish lef1 mutants. (A-C) Whole

mount in situ hybridization images for pmch and pmchl (pmch, like) in the hypothalamus of 3

dpf (A and B) and 15 dpf (C) zebrafish control and lef1 mutant embryos. Images of dorsal

views (anterior on top) and lateral views (dorsal on top and anterior on the left) of the same
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individual lef1+/- or lef1-/- fish were shown in (A). Representative ventral view images of 3 dpf

lef1+/- (B), 15 dpf control and lef1 mutant (C) brains centered on the caudal hypothalamus

(dashed red outlines) with anterior on top. Number of fish with representative gene expression

among total number of fish is labeled on the right upper corner of each image in (C). Scale bar:

100 μm in (A and C); 5 μm in (B).

(TIF)

S1 Table. Details of confocal images, quantification and number of samples.

(TIF)

S2 Table. Zebrafish RNA-seq at 3 dpf.

(XLSX)

S3 Table. Ingenuity Pathway Analysis (IPA) for diseases & functions.

(XLSX)

S4 Table. IPA input gene list. Same zebrafish genes in Tab “AdjP<0.1” of S2 Table are listed

with orthologous mouse gene information used for IPA.

(XLSX)

S5 Table. Mouse RNA-seq at E14.5.

(XLSX)

S6 Table. Mouse RNA-seq at P22.

(XLSX)

S7 Table. Extracted GTEx RNA-seq data from 96 human hypothalamic samples.

(ZIP)

S8 Table. Pearson correlation with hypothalamic GTEx RNA-seq data for PMCH, CRHRP,

LEF1 and NPY. Gene name followed with “_r” indicates Pearson’s r value and gene name fol-

lowed with “_p” indicates P value.

(ZIP)

S9 Table. Primer sequences for synthesizing in situ hybridization probes. Reverse primers

also included a T7 promoter-containing sequence “CCAAGCTTCTAATACGACTCACTA

TAGGGAGA” that was added 5’ to the sequences listed in the table [70]. All primers were

designed by Primer-BLAST except mouse genes Cartpt (ABA experiment 72077479), Crhbp
(ABA experiment 77455017), Pmch (GenePaint set MH227) and Tacr3 (ABA experiment

80342167).

(XLSX)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for all the figure panels.

(XLSX)

S1 Video. One representative video of novel tank diving test. The resolution of the video

was reduced from original 1080p to 540p, and its dimension was cropped to remove unneces-

sary space using software HandBrake.

(MP4)
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