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Abstract

The MDplot package provides plotting functions to allow for automated visualisation of 

molecular dynamics simulation output. It is especially useful in cases where the plot generation is 

rather tedious due to complex file formats or when a large number of plots are generated. The 

graphs that are supported range from those which are standard, such as RMsD/RMsF (root-mean-

square deviation and root-mean-square fluctuation, respectively) to less standard, such as 

thermodynamic integration analysis and hydrogen bond monitoring over time. All told, they 

address many commonly used analyses. In this article, we set out the MDplot package′s 

functions, give examples of the function calls, and show the associated plots. Plotting and data 

parsing is separated in all cases, i.e. the respective functions can be used independently. Thus, data 

manipulation and the integration of additional file formats is fairly easy. Currently, the loading 

functions support GROMOS, GROMACS, and AMBER file formats. Moreover, we also provide a 

Bash interface that allows simple embedding of MDplot into Bash scripts as the final analysis step.

Availability—The package can be obtained in the latest major version from CRAN (https://

cran.r-project.org/package=MDplot) or in the most recent version from the project′s 

GitHub page at https://github.com/MDplot/MDplot, where feedback is also most welcome. 

MDplot is published under the GPL-3 license.

Introduction

The amount of data produced by molecular dynamics (MD) engines (such as GROMOS 

(Schmid et al., 2012; Eichenberger et al., 2011), GROMACS (Pronk et al., 2013), NAMD 

(Phillips et al., 2005), AMBER (Cornell et al., 1995), and CHARMM (Brooks et al., 2009)) 

has been constantly increasing over recent years. This is mainly due to more powerful and 

cheaper hardware. As a result of this, both the lengths and sheer number of MD simulations 

(i.e. trajectories) have increased enormously. Even large sets of simulations (e.g., in the 

context of drug design) are attainable nowadays; thus suggesting that the processing of the 

resulting information is undertaken automatically.

In this respect, automated yet flexible visualisation of molecular dynamics data would be 

highly advantageous: both in order to avoid repetitive tasks for the user and to yield the 

ultimately desired result instantly (see Figure 1). Moreover, generating some of the graphs 

can be cumbersome. An example would be the plotting of a time series of a clustering 

program or hydrogen bonds. Therefore, these cases are predestined to be handled by a 
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plotting library. There have been attempts made in that direction, for example the package 

bio3d (Grant et al., 2006; Skjærven et al., 2014) (which allows the trajectories to be 

processed in terms of principle component analysis (PCA), RMSD and RMSF calculations), 

MDtraj (McGibbon et al., 2015), or Rknots (Comoglio and Rinaldi, 2012). However, to the 

best of our knowledge, there is currently no R package available that offers the wide range 

of plotting functions and engine-support that is provided by MDplot. R is the natural choice 

for this undertaking because of both its power in data handling and its vast plotting abilities.

In the following sections we outline all of the plotting functions that are currently supported. 

For each function, examples of the function calls based on the test data included in the 

package, the resulting plots, the return values, and a table of arguments are detailed. The 

respective code samples use the loading functions (reported below) to parse the input files 

located in folder ′extdata′, which allows immediate testing and provides format 

information to users. Currently, the package supports GROMOS, GROMACS, and AMBER 

file formats as input.1 However, extensions in both format support and plotting 

functionalities are planned.

Plotting functions

The package currently offers 14 distinct plotting functions (Table 1), which cover many of 

the graphs that are commonly required. Although the focus of the package relies on the 

visualisation of data, in addition to this values are calculated to characterise the underlying 

data when appropriate. For example, TIcurve() calculates the thermodynamic integration 

free-energy values including error estimates and the hysteresis between the integration 

curves. In many cases, the plotting functions return useful information on the data used, e.g., 

range, mean and standard deviation of curves.

To provide simple access to these functions, they may be called from within a Bash script. 

Examples are provided at the end of the manuscript.

Table 1

Lists all of the currently available plotting functions that have been implemented in MDplot. 
Most functions accept a boolean parameter (barePlot), that indicates printing of the 

plotting area only, i.e. stripped from any additional features such as axis labels.

Plot function Description

clusters() Summary of clustering over trajectories (RMSD based).

clusters_ts() Time series of cluster populations (RMSD based).

dssp() Secondary structure annotation plot (DSSP based).

dssp_ts() Time series of secondary structure elements (DSSP based).

hbond() Hydrogen bonds summary plot.

1In this manuscript, the code samples use GROMOS input (since the default value of the loading functions′ parameter mdEngine 
is ”GROMOS”). For information on how to load GROMACS or AMBER files, please have a look at the manual pages of the 
respective loading functions.
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Plot function Description

hbond_ts() Time series of hydrogen bonds.

noe() Nuclear-Overhauser-effect violation plot.

ramachandran() Dihedral angle plot.

rmsd() Root-mean-square deviation plot.

rmsd_average() Average root-mean-square deviation plot.

rmsf() Root-mean-square fluctuation plot.

TIcurve() Thermodynamic integration curves.

timeseries() General time series plot.

xrmsd() Cross-RMSD plot (heat-map of RMSD values).

The clusters() function

Molecular dynamics simulation trajectories can be considered to be a set of atom 

configurations along the time axis. Clustering is a method, that can be applied in order to 

extract common structural features from these. The configurations are classified and grouped 

together based on the root-mean-square deviation (RMSD). These subsets of configurations 

around the cluster′s central member structure and their relative occurrences allow for 

comparisons between different and within individual simulations. clusters() allows to 

plot a summary of all of the (selected) clusters over a set of trajectories (Figure 2).

clusters(load_clusters("inst/extdata/clusters_example.txt.gz",

                       names=c("wild-type","mut1","mut2",

                               "mut3","mut4","mut5")),

         clustersNumber=9,main="MDplot::clusters()",ylab="# configurations")

Return value: Returns an n × m-matrix with n being the number of input trajectories and m 

the number of different clusters. Each element in the matrix holds the number of snapshots, 

in which the respective cluster occurred in the respective trajectory.

Table 2

Arguments of the clusters() function.

Argument name Default value Description

clusters none Matrix with clusters: trajectories are given in row-wise, 
clusters in column-wise fashion as provided by 
load_clusters(), the associated loading function.

clustersNumber NA When specified, only these first clusters are shown.

legendTitle “trajectories” The title of the legend.

barePlot FALSE A Boolean indicating whether the plot is to be made without 
any additional information or not.

… none Additional arguments.
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The clusters_ts() function

In structural clustering, it is often instructive to have a look at the development over time 

rather than the overall summary. This functionality is provided by clusters_ts(). In the 

top sub-plot the overall distribution is given, while the time series is shown at the bottom. 

The clusters are sorted beginning with the most populated one, in descending order. 

Selections can be made and clusters that are not selected do also not appear in the time series 

plot (white areas). The time axis may be shown in nanoseconds (see Figure 3 for an 

example).

clusters_ts(load_clusters_ts("inst/extdata/clusters_ts_example.txt.gz",

                             lengths=c(4000,4000,4000,4000,4000,4000),

                             names=c("wild-type","mut1","mut2",

                                     "mut3","mut4","mut5")),

            clustersNumber=7,main="MDplot::clusters_ts() example",

            timeUnit="ns",snapshotsPerTimeInt=100)

Return value: Returns a summary (n + 1) × m-matrix with n being the number of input 

trajectories and m the number of different clusters (which have been plotted). Each element 

in the matrix holds the number of snapshots, in which the respective cluster occurred in the 

respective trajectory. In addition, the first line is the overall summary counted over all 

trajectories.

Table 3

Arguments of the clusters_ts() function.

Argument name Default value Description

clustersDataTS none List of cluster information as provided by 
load_clusters_ts(), the associated loading function.

clustersNumber NA An integer specifying the number of clusters that is to be plotted.

selectTraj NA Vector of indices of trajectories that are plotted (as given in the 
input file).

selectTime NA Range of time in snapshots.

timeUnit NA Abbreviation of time unit.

snapshotsPerTimeInt 1000 Number of snapshots per time unit.

… none Additional arguments.

The dssp() function

In terms of proteins the secondary structure can be annotated by the widely used program 

DSSP (Definition of Secondary Structure of Proteins) (Kabsch and Sander, 1983). This 

algorithm uses the backbone hydrogen bond pattern in order to assign secondary structure 

elements such as α-helices, β-strands, and turns to protein sequences. The plotting function 

dssp() has three different visualisation methods and plots the overall result over the 

trajectory and over the residues. The user can specify selections of residues and which 

elements should be taken into consideration (Figure 4).
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layout(matrix(1:3, nrow=1), widths=c(0.33,0.33,0.33))

dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

     main="plotType=dots",showResidues=c(1,35))

dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

     main="plotType=curves",plotType="curves",showResidues=c(1,35))

dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

     main="plotType=bars",plotType="bars",showResidues=c(1,35))

Return value: Returns a matrix, where the first column is the residue-number and the 

remaining ones denote secondary structure classes. Residues are given row-wise and values 

range from 0 to 100 percent.

Table 4

Arguments of the dssp() function.

Argument name Default value Description

dsspData none Table containing information on the secondary structure elements. Can 
be generated by function load_dssp().

printLegend FALSE If TRUE, a legend is printed on the right hand side of the plot.

useOwnLegend FALSE If FALSE, the names of the secondary structure elements are 
considered to be in default order.

elementNames NA Vector of names for the secondary structure elements.

colours NA A vector of colours that can be specified to replace the default ones.

showValues NA A vector of boundaries for the values.

showResidues NA A vector of boundaries for the residues.

plotType “dots” Either “dots”, “curves”, or “bars“.

selectedElements NA A vector of names of the elements selected.

barePlot FALSE Boolean, indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The dssp_ts() function

The secondary structure information as described for the function dssp() can also be 

visualised along the time axis using function dssp_ts() (Figure 5). The time can be 

annotated in snapshots or time units (e.g., nanoseconds).

dssp_ts(load_dssp_ts("inst/extdata/dssp_ts_example"),printLegend=TRUE,

        main="MDplot::dssp_ts()",timeUnit="ns",

        snapshotsPerTime=1000)
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Table 5

Arguments of the dssp_ts() function.

Argument name Default value Description

tsData none List of lists, which are composed of a name (string) and a values 
table (x … snapshots, y … residues). Can be generated by 
load_dssp_ts().

printLegend TRUE If TRUE, a legend is printed on the right hand side of the plot.

timeBoundaries NA A vector of boundaries for the time in snapshots.

residueBoundaries NA A vector of boundaries for the residues.

timeUnit NA If set, the snapshots are transformed into the respective time 
(depending on parameter snapshotsPerTime).

snapshotsPerTimeInt 1000 Number of snapshots per respective timeUnit.

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The hbond() function

In the context of biomolecules, hydrogen bonds are of particular importance. These bonds 

take place between a donor, a hydrogen, and an acceptor atom. This function plots the 

summary output of hydrogen bond calculations and allows selection of donor and acceptor 

residues. occurrence over the whole trajectory is indicated by a colour scale. Note, that in 

case multiple hydrogen bond interactions between two particular residues take place 

(conveyed by different sets of atoms), the interaction with prevalence will be used for 

colour-coding (and by default, this interaction is marked with a black circle, see below). An 

example is given in Figure 6.

hbond(load_hbond("inst/extdata/hbond_example.txt.gz"),

      main="MDplot::hbond()", donorRange=c(0, 65))

Return value: Returns a table containing the information used for plotting in columns as 

follows:

• resDonor Residue number (donor).

• resAcceptor Residue number (acceptor).

• percentage Percentage, that has been used for colour-coding.

• numberInteractions Number of hydrogen bond interactions taking place 

between the specified donor and acceptor residues.
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Table 6

Arguments of the hbond() function.

Argument name Default value Description

hbonds none Table containing the hydrogen bond 
information in columns "hbondID", 
"resDonor", "resDonorName", 
"resAcceptor", "resAcceptorName", "atom-
Donor", "atomDonorName", "atomH", 
"atomAcceptor", "atomAcceptorName", 
"percentage" (automatically generated by 
function load_hbond()).

plotMethod ”residue-wise” Allows to set the detail of hydrogen bond 
information displayed. options 
are: ”residue-wise”.

acceptorRange NA A vector specifying the range of acceptor 
residues.

donorRange NA A vector specifying the range of donor 
residues.

printLegend TRUE A Boolean enabling the legend.

showMultipleInteractions TRUE If TRUE, this option causes multiple 
interactions between the same residues as 
being represented by a black circle around 
the coloured dot.

barePlot FALSE A Boolean indicating whether the plot is to 
be made without any additional information.

… none Additional arguments.

The hbond_ts() function

The time series of hydrogen bond occurrences can be visualised using the function 

hbond_ts(), which plots them either according to their identifiers or in a human readable 

form in three- or one-letter code (the participating atoms can be shown as well) on the y-axis 

and the time on the x-axis. If the GROMOS input format is used, this function requires two 

different files: the summary of the hbond program and the time series file. The occurrence of 

a hydrogen bond is represented by a black bar and the occurrence summary can be added on 

the right hand side as a sub-plot (Figure 7). In addition to the time series file, depending on 

the MD engine format used, an additional summary file might also be necessary (see the 

documentation of the function load_hbond_ts() for further information).

hbond_ts(timeseries=load_hbond_ts("inst/extdata/hbond_ts_example.txt.gz"),

         summary=load_hbond("inst/extdata/hbond_example.txt.gz"),

         main="MDplot::hbond_ts()",acceptorRange=c(22,75),

         hbondIndices=list(c(0,24)),plotOccurences=TRUE,timeUnit="ns",

         snapshotsPerTimeInt=100,printNames=TRUE,namesToSingle=TRUE,

         printAtoms=TRUE)
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Return value: Returns an n × 2-matrix, with the first column being the list of hydrogen 

bond identifiers plotted and the second one the occurrence (in percent) over the selected time 

range.

Table 7

Arguments of the hbond_ts() function.

Argument name Default value Description

timeseries none Table containing the time series information (e.g., produced by 
load_hbond_ts()).

summary none Table containing the summary information (e.g., produced by 
load_hbond()).

acceptorRange NA A vector of acceptor residues.

donorRange NA A vector of donor residues.

plotOccurences FALSE Specifies whether the overall summary should be plotted on the 
right hand side.

scalingFactorPlot NA Used to manually set the scaling factor (if necessary).

printNames FALSE Enables human readable names rather than the hydrogen bond 
identifiers.

namesToSingle FALSE If printNames is TRUE, this flag instructs one-letter codes 
instead of three-letter ones.

printAtoms FALSE Enables atom names in hydrogen bond identification on the y-
axis.

timeUnit NA Specifies the time unit on the x-axis.

snapshotsPerTimeInt 1000 Specifies how many snapshots make up one time unit (see 
above).

timeRange NA A vector specifying a certain time range.

hbondIndices NA A list containing vectors to select hydrogen bonds by their 
identifiers.

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The noe() function

The nuclear-overhauser-effect is one of the most important measures of structure validity in 

the context of molecular dynamics simulations. These interactions are transmitted through 

space and arise from spin-spin coupling, which can be measured by nuclear magnetic 

resonance (NMR) spectroscopy. These measurements provide pivotal distance restrains 

which should be matched on average during molecular dynamics simulations of the same 

system and can hence be used for parameter validation. The plotting function noe() allows 

to visualise the number of distance restrain violations and their respective spatial deviation. 

As shown in Figure 8, multiple replicates or different protein systems are supported 

simultaneously. Note that negative violations are not considered.

noe(load_noe(files=c("inst/extdata/noe_example_1.txt.gz",

                     "inst/extdata/noe_example_2.txt.gz")),

    main="MDplot::noe()")
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Return value: Returns a matrix, in which the first column holds the bin boundaries used and 

the following columns represent either the percentage or absolute numbers of the violations 

per bin, depending on the specification.

Table 8

Arguments of the noe() function.

Argument name Default value Description

noeData none Input matrix. Generated by function load_noe().

printPercentages TRUE If TRUE, the violations will be reported in a relative manner (percent) 
rather than absolute numbers.

colours NA Vector of colours to be used for the bars.

lineTypes NA If plotSumCurves is TRUE, this vector might be used to 
specify the types of curves plotted.

names NA Vector to name the input columns (legend).

plotSumCurves TRUE If TRUE, the violations are summed up from left to right to show the 
overall behaviour.

maxYAxis NA Can be used to manually set the y-axis of the plot.

printLegend FALSE A Boolean indicating if legend is to be plotted.

… none Additional arguments.

The ramachandran() function

This graph type (Ramachandran et al., 1963) is often used to show the sampling of the ϕ/ψ 
protein backbone dihedral angles in order to assign propensities of secondary structure 

elements to the protein of interest (so-called Ramachandran plots). These plots can provide 

crucial insight into energy barriers arising as required, for example, in the context of 

parameter validation (Margreitter and Oostenbrink, 2016). The function ramachandran() 

offers a 2D (Figure 9) and 3D (Figure 10) variant with the former offering the possibility to 

print user-defined secondary structure regions as well. The number of bins for the two axes 

and the colours used for the legend can be specified by the user.

ramachandran(load_ramachandran("inst/extdata/ramachandran_example.txt.gz"),

             heatFun="log",plotType="sparse",xBins=90,yBins=90,

             main="ramachandran() (plotType=sparse)",

             plotContour=TRUE)

ramachandran(load_ramachandran("inst/extdata/ramachandran_example.txt.gz"),

             heatFun="norm",plotType="fancy",xBins=90,yBins=90,

             main="ramachandran() (plotType=fancy)",

             printLegend=TRUE)

Return value: Returns a list of binned dihedral angle occurrences.
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Table 9

Arguments of the ramachandran() function.

Argument name Default value Description

dihedrals none Matrix with angles (two columns). Generated by function 
load_ramachandran().

xBins 150 Number of bins used to plot (x-axis).

yBins 150 Number of bins used to plot (y-axis).

heatFun “norm” Function selector for calculation of the colour. The possibilities are either: 
“norm” for linear calculation or “log” for logarithmic calculation.

structureAreas c() List of areas, which are plotted as black lines.

plotType “sparse” Type of plot to be used, either “sparse” (default, using function 
hist2d()), “comic” (own binning, supports very few 
datapoints), or “fancy” (3D, using function persp()).

printLegend FALSE A Boolean specifying whether a heat legend is to be plotted or not.

plotContour FALSE A Boolean specifying whether a contour should be added or not.

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The rmsd() function

The atom-positional root-mean-square deviation (RMSD) is one of the most commonly used 

plot types in the field of biophysical simulations. In the context of atom configurations, it is 

a measure for the positional divergence of one or multiple atoms. The input requires a list of 

alternating vectors of time indices and RMSD values. Multiple data sets can be plotted, 

given in separate input files. Figure 11 shows an example for two trajectories.

rmsd(load_rmsd(c("inst/extdata/rmsd_example_1.txt.gz",

                 "inst/extdata/rmsd_example_2.txt.gz")),

     printLegend=TRUE,names=c("WT","mut"),main="MDplot::rmsd()")

Return value: Returns a list of lists, where each sub-list represents a RMSD curve and 

contains the components:

• minValue The minimum value over the whole time range.

• maxValue The maximum value over the whole time range.

• meanValue The mean value calculated over the whole time range.

• sd The standard deviation calculated over the whole time range.
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Table 10

Arguments of the rmsd() function.

Argument name Default value Description

rmsdData none List of (alternating) indices and RMSD value vectors, as 
produced by load_rmsd().

printLegend TRUE A Boolean which triggers the plotting of the legend.

factor 1000 A number specifying how many snapshots are within one 
timeUnit.

timeUnit “ns” Specifies the time unit.

rmsdUnit “nm” Specifies the RMSD unit.

colours NA A vector of colours used for plotting.

names NA A vector holding the names of the trajectories.

legendPosition “bottomright” Indicates the position of the legend: either 
“bottomright", “bottomleft", 
“topleft", or “topright".

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The rmsd_average() function

Nowadays, for many molecular systems multiple replicates of simulations are performed in 

order to enhance the sampling of the phase space. However, since the amount of analysis 

data grows accordingly, a joint representation of the results may be desirable. For the case of 

backbone-atom and other RMSD plots, the MDplot package supports average plotting. 

Instead of plotting every curve individually, the mean and the minimum and maximum 

values of all trajectories at a given time point is plotted. Thus, the spread of multiple 

simulations is represented as a ′corridor′ over time.

rmsd_average(rmsdInput=list(load_rmsd("inst/extdata/rmsd_example_1.txt.gz" ),

                            load_rmsd("inst/extdata/rmsd_example_2.txt.gz")),

             maxYAxis=0.375,main="MDplot::rmsd_average()")

Return value: Returns an n × 4-matrix, with the rows representing different snapshots and 

the columns the respective values as follows:

• snapshot Index of the snapshot.

• minimum The minimum RMSD value over all input sources at a given time.

• mean The mean RMSD value over all input sources at a given time.

• maximum The maximum RMSD value over all input sources at a given time.

Margreitter and Oostenbrink Page 11

R J. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Table 11

Arguments of the rmsd_average() function.

Argument name Default value Description

rmsdInput none List of snapshot and RMSD value pairs, as, for example, 
provided by loading function load_rmsd().

levelFactor NA If there are many datapoints, this parameter may be used to use 
only the levelFactorth datapoints to obtain a clean graph.

snapshotsPerTimeInt 1000 Number, specifying how many snapshots are comprising one 
timeUnit.

timeUnit ”ns” Specifies the time unit.

rmsdUnit ”nm” Specifies the RMSD unit.

maxYAxis NA Can be used to manually set the y-axis of the plot.

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The rmsf() function

The atom-positional root-mean-square fluctuation (RMSF) represents the degree of 

positional variation of a given atom over time. The input requires one column with all 

residues or atoms and a second one holding RMSF values. Figure 13 shows, as an example, 

the RMSF of the first 75 atoms, calculated for two independent simulations.

rmsf(load_rmsf(c("inst/extdata/rmsf_example_1.txt.gz",

                 "inst/extdata/rmsf_example_2.txt.gz")),

     printLegend=TRUE,names=c("WT","mut"),range=c(1,75),

     main=“MDplot::rmsf()”)

Return value: A list of vectors, alternately holding atom indices and their respective values.

Table 12

Arguments of the rmsf() function.

Argument name Default value Description

rmsfData none List of (alternating) atom numbers and RMSF values, as, for example, 
produced by load_rmsf().

printLegend TRUE A Boolean controlling the plotting of the legend.

rmsfUnit "nm" Specifies the RMSF unit.

colours NA A vector of colours used for plot.

residuewise FALSE A Boolean specifying whether atoms or residues are plotted on the x-axis.

atomsPerResidue NA If residuewise is TRUE, this parameter can be used to specify the 
number of atoms per residue for plotting.

names NA A vector of the names of the trajectories.

range NA Range of atoms.
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Argument name Default value Description

legendPosition ”topright” Indicates position of legend: 
either ”bottomright”, ”bottomleft”, ”topleft”, 
or ”topright”.

barePlot FALSE A Boolean indicating whether the plot is to be made without any additional 
information.

… none Additional arguments.

The TIcurve() function

For calculations of the free energy difference occurring when transforming one chemical 

compound into another (alchemical changes) or for estimates of free energy changes upon 

binding, thermodynamic integration (Kirkwood, 1935) is one of the most trusted and applied 

approaches. The derivative of the Hamiltonian, as a function of a coupling parameter λ, is 

calculated over a series of λ state points (typically around 15). The integral of this curve is 

equivalent to the change in free energy (Figure 14). The function TIcurve() performs the 

integration and, if the data for both the forward and backward processes are provided, the 

hysteresis between them.

TIcurve(load_TIcurve(c("inst/extdata/TIcurve_fb_forward_example.txt.gz",

                       "inst/extdata/TIcurve_fb_backward_example.txt.gz")),

        invertedBackwards=TRUE, main="MDplot::TIcurve()")

Return value: Returns a list with the following components:

• lambdapoints A list containing a (at least) n × 3-matrix for every data input 

series.

• integrationresults A matrix containing one row of "deltaG" and "error" 

columns from the integration for every data input series.

• hysteresis if two (i.e. forward and backward) data input series are provided, 

the resulting hysteresis is reported (and set to be NA otherwise).

Table 13

Arguments of the TIcurve() function.

Argument name Default value Description

lambdas none List of matrices (automatically generated by 
load_TIcurve()) holding the thermodynamic integration 
information.

invertedBackwards FALSE If a forward and backward TI are provided and the lambda points are 
enumerated reversely (i.e. 0.3 of one TI is equivalent to 0.7 of the 
other), this flag can be set to be TRUE in order to automatically 
mirror the values appropriately.

energyUnit "kJ/mol" Defines the energy unit used for the plot.

printValues TRUE If TRUE, the free energy values are printed.

printErrors TRUE A Boolean indicating whether error bars are to be plotted.
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Argument name Default value Description

errorBarThreshold 0 If the error at a given lambda point is below this threshold, it is not 
plotted.

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

The timeseries() function

This function provides a general interface for any time series given as a time-value pair 

(Figure 15).

timeseries(load_timeseries(c("inst/extdata/timeseries_example_1.txt.gz",

                             "inst/extdata/timeseries_example_2.txt.gz")),

           main="MDplot::timeseries()",

           names=c("fluc1","fluc2"),

           snapshotsPerTimeInt=100)

Return value: Returns a list of lists, each of the latter holding for every data input series:

• minValue The minimum value over the whole set.

• maxValue The maximum value over the whole set.

• meanValue The mean value over the whole set.

• sd The standard deviation over the whole set.

Table 14

Arguments of the timeseries() function.

Argument name Default value Description

tsData none List of (alternating) indices and response values, as produced by 
load_timeseries().

printLegend TRUE Parameter enabling the plotting of the legend.

snapshotsPerTimeInt 1000 Number specifying how many snapshots make up one timeUnit.

timeUnit ”ns” Specifies the time unit.

valueName NA Name of response variable.

valueUnit NA Specifies the response variable's unit.

colours NA A vector of colours used for plotting.

names NA A vector of names of the trajectories.

legendPosition ”bottomright” Indicates position of legend: 
either ”bottomright”, ”bottomleft”, ”topleft”, 
or ”topright”.

barePlot FALSE A Boolean indicating whether the plot is to be made without any 
additional information.

… none Additional arguments.

Margreitter and Oostenbrink Page 14

R J. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The xrmsd() function

This function generates a plot which shows a heat-map of the atom positional root-mean-

square differences between snapshots (figure 16). The structures are listed on the x- and y-

axes. The heat-map shows the difference between one structure and another using a coloured 

bin. The legend is adapted in accordance to the size of the values.

xrmsd(load_xrmsd("inst/extdata/xrmsd_example.txt.gz"),

      printLegend=TRUE,main="MDplot::xrmsd()")

Table 15

Arguments of the xrmsd() function.

Argument name Default value Description

xrmsdValues none Input matrix (three rows: x-values, y-values, RMSD-values). Can be generated 
by function load_xrmsd().

printLegend TRUE If TRUE, a legend is printed on the right hand side.

xaxisRange NA A vector of boundaries for the x-snapshots.

yaxisRange NA A vector of boundaries for the y-snapshots.

colours NA User-specified vector of colours to be used for plotting.

rmsdUnit ”nm” Specifies in which unit the RMSD values are given.

barPlot FALSE A Boolean indicating whether the plot is to be made without any additional 
information.

… none Additional arguments.

Additional functions and the Bash interface

Given that the plotting functions expect input to be stored in a defined data structure, the 

step of loading and parsing data from the text input files has been implemented in separate 

loading functions. Currently, they support GROMOS, GROMACS, and AMBER file formats 

and further developments are planned to cover additional ones as well.

In order to allow for direct calls from Bash scripts, users might use the Rscript interface 

located in the folder ′bash′ which serves as a wrapper shell. Pictures in the file formats 

PNG, TIFF, or PDF can be used provided that the users′ R installation supports them. If 

help=TRUE is set, all the other options are ignored and a full list of options for every 

command is printed. In general, the names of the arguments of the functions are the same for 

calls by script. The syntax for these calls is Rscript MDplot_bash.R {function 

name} [argument1=...] [argument2=...], which can be combined with Bash 

variables (see below). The file path can be given in an absolute manner or relative to the 

Rscript folder path. The package holds a file called ′bash/test.sh′ which contains 

several examples.

#/bin/bash

# clusters

Rscript MDplot_bash.R clusters files=../extdata/clusters_example.txt.gz \

                               title="Cluster analysis" size=900,900 \

Margreitter and Oostenbrink Page 15

R J. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



                               outformat=tiff outfile=clusters.tiff \

                               clustersNumber=7 \

                               names=WT,varA,varB,varC2,varD3,varE4

# xrmsd

Rscript MDplot_bash.R xrmsd files=../extdata/xrmsd_example.txt.gz 

title="XRMSD" \

                            size=1100,900 outformat=pdf outfile=XRMSD.pdf \

                            xaxisRange=75,145

# ramachandran

Rscript MDplot_bash.R ramachandran files=../extdata/

ramachandran_example.txt.gz \

                      title="Ramachandran plot" size=1400,1400 

resolution=175 \

                      outformat=tiff outfile=ramachandran.tiff 

angleColumns=1,2 \

                      bins=75,75 heatFun=norm printLegend=TRUE plotType=fancy

The loading functions

In order to ease data preparation, loading functions have been devised which are currently 

able to load the output of standard GROMOS, GROMACS, and AMBER analysis tools and 

store these data such, that they can be interpreted by the MDplot plotting functions.2 

Loading functions are named after their associated plotting function with 'load_' as prefix. 

For other molecular dynamics engines than the aforementioned ones, the user has to specify 

how their output should be read. However, in case other file formats are requested we 

appreciate suggestions, requests, and contributions (to be made on our GitHub page). For 

detailed descriptions of the data structures used, we refer to the manual pages of the loading 

functions and the respective examples. For storage reasons the example input files have been 

compressed using gzip with R being able to load both compressed and uncompressed files.

Conclusions

In this paper we have presented the package MDplot and described its application in the 

context of molecular dynamics simulation analysis. Automated figure generation is likely to 

aid in the understanding of results at the first glance and may be used in presentations and 

publications. Planned extensions include both the integration of new functionalities such as a 

DISICL (secondary structure classification (Nagy and Oostenbrink, 2014a,b)) as well as the 

provision of loading interfaces for additional molecular dynamics engines. Further 

developments will be published on the projects′ GitHub page and on CRAN.

2Functions load_timeseries() and load_TIcurve() do not require engine-specific loading and function noe() is 
only available for GROMOS because no input files for the other engines could be retrieved.
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Figure 1. 
Shows the overall workflow typically applied in molecular dynamics simulations beginning 

with a single PDB (Berman et al., 2000) structure as the input for the simulation and ending 

with the graphical representation of the data obtained. For large amounts of data, generating 

figures might become a tedious, highly repetitive task.
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Figure 2. 
The clusters are plotted along the x-axis and the number of configurations for each trajectory 

for every cluster on the y-axis. The number of clusters is limited in this example to nine with 

the clustersNumber argument, which can be useful to omit scarcely populated clusters.
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Figure 3. 
The plot shows a selection of the seven most populated clusters of six trajectories. Regions 

that do not belong to one of the first seven clusters are shown in white.
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Figure 4. 
Example of dssp() with plotType set to ”dots” (default), ”curves” or ”bars”. Note 

that the fractions do not necessarily sum up to a hundred percent, because some residues 

might not be in defined secondary structure elements all the time. In this figure, there is no 

legend plotted due to space limitations (see Figure 5 for a colour-code explanation).
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Figure 5. 
Example showing all of the defined secondary structure elements per residue over time. 

Note, that for this example plot a sparse data set was used to reduce the size of the data file 

(hence the large white areas in the middle).

Margreitter and Oostenbrink Page 23

R J. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. 
The acceptor residues are plotted on the x-axis whilst the donors are shown on the y-axis. 

The different colours indicate the occurrences throughout the whole trajectory.
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Figure 7. 
Example figure generated by hbond_ts() for both an identifier and acceptor residues′ 
selection. The labels for the hydrogen bonds may be printed as identifiers or with names 

composed of residue names (in single- or three-letter code) and those of the participating 

atoms.
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Figure 8. 
Example plot showing two different replicates of a protein simulation (they share the same 

molecule, but have different initial velocities). Note, that the maximum value (x-axis) over 

all replicates is used for the plot. The sum over all violations from left to right is shown by 

an additional curve on top. The number of violations may be given as fractions (in %), as 

shown above, or absolute numbers (flag printPercentages either TRUE or FALSE).
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Figure 9. 
Two-dimensional plot version ”sparse” of the ramachandran() function with enabled 

contour plotting. The number of bins can be specified for both dimensions independently.
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Figure 10. 
Three-dimensional example of the ramachandran() function. In addition to the colour, the 

height (z-axis) also represents the number of dihedrals per bin.

Margreitter and Oostenbrink Page 28

R J. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 11. 
This plot shows the RMSD curves for two different trajectories. The time is given in 

nanoseconds, which requires a properly set factor parameter.
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Figure 12. 
In black, the mean RMSD value at a given timepoint and in grey the respective minimum 

and maximum values are given. In this example, two rather similar curves have been used.
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Figure 13. 
Plot showing two different RMSF curves.
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Figure 14. 
A forward and backward thermodynamic integration curve with the resulting hysteresis 

between them (precision as permitted by the error).
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Figure 15. 
Shows time series with parameter snapshotsPerTimeInt set in a way such, that the proper 

time in nanoseconds is plotted. In addition, the legend has been moved to the bottom-right 

position.
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Figure 16. 
An example xrmsd() plot showing only the upper half because of the mirroring of the 

values.
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