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ABSTRACT
Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked
bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio
parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains
of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that
VtrA and VtrC form a b-barrel that binds bile salts in its hydrophobic interior to activate the VtrA
cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC
are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and
other unknown functions. Here we discuss our findings and review current knowledge on VtrA and
VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be
advantageous for the regulation of membrane and secretory proteins.
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Bile as a stressor and a signal

Bile is a secretory mixture that plays a key role in
digestion. It is synthesized in the liver, stored in the
gallbladder, and secreted into the small intestine after a
meal. Its principal components are bile salts, bilirubin,
cholesterol, phospholipids, and inorganic salts.1 Of
these, bile salts play a major role in solubilizing lipids
and fat-soluble vitamins to facilitate their absorption.
Bile salts are surfactant molecules that are synthesized
from cholesterol and conjugated to glycine or taurine
to increase their solubility.1 The detergent properties of
bile salts render them antimicrobial, as they can disrupt
cell membranes via their interaction with lipids and
proteins, damage nucleic acids, and cause redox stress.2

Commensal and pathogenic intestinal bacteria will
inevitably come into contact with bile salts and must
evolve strategies to cope with their damaging effects.
Many intestinal bacteria have adapted to bile by
decreasing membrane permeability, inducing efflux
pumps, inducing biofilm formation, and upregulating
redox and DNA damage repair genes.2 Others are able
to use bile salts as a cue for intestinal location to

regulate virulence factors. These responses can be com-
plex, vary among pathogens, and often depend on spe-
cific bile salts. For example, while deoxycholate has
been shown to induce virulence gene expression in
Campylobater jejuni,3 this same bile acid represses inva-
sion genes in Salmonella.4 Although bile salt induced
phenotypes in intestinal pathogens have been thor-
oughly documented,5 the mechanisms used for sensing
of bile salts, whether directly by binding to signaling
proteins or indirectly by sensing cell damage, remain
poorly characterized.

Virulence gene regulation by bile salts in Vibrio
parahaemolyticus

V. parahaemolyticus is a halophilic bacterium that
inhabits marine environments and enters the human
body mainly through the consumption of contami-
nated water or undercooked seafood.6 Pathogenic
strains of V. parahaemolyticus are able to colonize and
invade the digestive track, resulting in acute gastroen-
teritis.7,8 Disease is primarily caused by a set of viru-
lence determinants: pore-forming hemolysins and a
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Type-III Secretion System (T3SS2) that are encoded
by a pathogenicity island (Vp-PAI) in chromosome II
of V. parahaemolyticus.9,10 The T3SS2 is a needle-like
apparatus that spans the inner and outer bacterial
membranes and translocates toxic effector proteins
into eukaryotic cells. Several T3SS2 effectors have
been shown to manipulate actin and hijack host sig-
naling pathways; their functions are thoroughly
reviewed by de Souza Santos et al.11

A regulatory network that is specifically responsive
to bile salts restricts expression of Vp-PAI genes to
when V. parahaemolyticus encounters the small intes-
tine.12,13 This network comprises 3 inner-membrane
proteins: VtrA, VtrB, and VtrC.13 VtrA and VtrB con-
tain an N-terminal winged helix-turn-helix (wHTH)
DNA-binding domain of the OmpR family that is
attached to the inner membrane by a single trans-
membrane helix; VtrA also has a C-terminal periplas-
mic domain.14 (Fig. 1A). We recently uncovered the
third and essential protein component of this path-
way, VtrC, which is encoded by a gene located down-
stream of and in an operon with vtrA.13 VtrC is
anchored to the inner membrane by a single trans-
membrane helix and contains a C-terminal periplas-
mic domain like VtrA, but lacks a cytoplasmic
domain (Fig. 1A). We found that VtrA and VtrC form
a 1:1 complex through their periplasmic domains to
form a membrane-bound receptor that allows V. para-
haemolyticus to sense bile salts.13 X-ray structures of
this complex reveal an obligate heterodimer where 8

b-strands from VtrC and a single b-strand from VtrA
form a b-barrel that harbors a hydrophobic inner
chamber with a bile salt binding pocket (Fig. 1B).
Upon bile salt binding by this complex, VtrA is able to
induce transcription from the vtrB promoter. Newly
synthesized VtrB then binds to Vp-PAI promoters to
induce the expression of T3SS2-related genes. 12,14

Various Vibrio species possess VtrA and VtrC
homologs and/or more diverse protein pairs with the
same domain arrangement as VtrA and VtrC. These
include VtrA/VtrC homologs of unknown function, as
well as previously characterized regulators of virulence
gene expression TcpP/TcpH and ToxR/ToxS.15-17

Below, we summarize what is known about the func-
tion and mechanism of these proteins.

VtrA/VtrC homologs

Pathogenic non-O1/O139 V. cholerae that lack cholera
toxin (CT) and toxin coregulated pilus (TCP), such as
strain AM-19226, cause enterotoxicity via a T3SS
pathogenicity island similar to Vp-PAI.18 This patho-
genicity island is controlled by VtrA and VtrB homo-
logs VttRA and VttRB, respectively.

18 A VtrC homolog
present in V. cholerae AM-19226 is likely to be part of
this regulatory pathway as well.13,19 Variations in the
genes in this pathogenicity island can be reduced to 2
lineages, T3SS2a and T3SS2b, both of which are dis-
tributed among V. parahaemolyticus and V. cholerae
strains and were acquired through independent

Figure 1. Bile salt sensing by VtrA/VtrC. (A) Schematic of bile salt signaling network formed by VtrA, VtrB and VtrC. The VtrA/VtrC com-
plex senses bile salts in the periplasm, which activates the VtrA cytoplasmic DNA-binding domain to promote vtrB transcription, result-
ing in T3SS expression. P: periplasm; IM: inner membrane, C: cytoplasm. (B) Structure of the VtrA/VtrC periplasmic domain complex with
the ligand taurodeoxycholate (TDC).
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horizontal gene transfer events.20 While strain AM-
19226 and the V. parahaemolyticus strain used in our
study (RIMD2210633) contain T3SS2a, we found
genes encoding VtrA, VtrB, and VtrC homologs in
strains with T3SS2b (V. parahaemolyticus TH3996
and V. cholerae strains 1587 and 623–39, unpub-
lished). This suggests that the regulatory pathway con-
trolling T3SS2s from both lineages has been conserved
through evolution. There is evidence that genes out-
side of the V. cholerae strain AM-19226 T3SS patho-
genicity island that are involved in flagellar
biosynthesis, chemotaxis, metabolism, and type 6
secretion are influenced by VttRA and VttRB,

21 sup-
porting the idea that the this regulatory cascade goes
beyond controlling T3SS.

VtrA, VtrB, and VtrC are also conserved in spe-
cies with an incomplete set of T3SS genes, or no
T3SS genes at all.13 Remarkably, we found close
VtrA/VtrC homologs in a group of species that lack
a membrane-bound VtrB homolog.13 These species
have a gene encoding a predicted sphingomyelinase,
an enzyme that hydrolyses sphingomyelin,22 down-
stream of the vtrA/vtrC operon. Sphingomyelin is
abundant in eukaryotic cell membranes and several
bacterial pathogens produce sphingomyelinases that
contribute to their virulence.23-25 Some of the spe-
cies that contain a vtrA/vtrC operon followed by a

sphingomyelinase gene, like Moritella marina (for-
merly V. marinus), V. campbellii, V. harveyi, and V.
splendidus, are pathogens of marine animals,26-29 so
it is possible that this enzyme could play a role in
virulence toward aquatic organisms. More work is
needed to determine if this sphingomyelinase is a
virulence factor and whether VtrA/VtrC control its
expression in response to an environmental or host-
derived signal. The amino acid sequences of these
VtrA/VtrC homologs diverge significantly from the
V. parahaemolyticus VtrA/VtrC sequences and
given that bacteria are exposed to diverse environ-
ments, we think it likely that these homologs will
respond to signals other than bile salts. Further
work will determine whether these homologs use
sphingomyelin or a similar compound as a signal.

TcpP/TcpH

V. cholerae TcpP and TcpH adopt the same topology
as VtrA and VtrC (Fig. 2), respectively. TcpP and
TcpH are also encoded in a bicistronic operon as over-
lapping genes in the Vibrio pathogenicity island
(VPI),30 but lack homology to the periplasmic
domains of VtrA and VtrC. They regulate the expres-
sion of cytoplasmic transcription factor ToxT, which
activates the transcription of VPI genes encoding

Figure 2. Proposed model for coordinate regulation of V. cholerae and V. parahaemolyticus virulence by inner-membrane proteins. In V.
cholerae O1/O139 strains, TcpP, TcpH, ToxR and ToxS activate the transcription of toxT, whose gene product controls the expression of
TCP and CT genes. In pathogenic V. parahaemolyticus strains, VtrA, VtrC, ToxR and ToxS control vtrB transcription. VtrB then activates
the expression of T3SS genes. Known interactions between DNA-binding domains and promoters are indicated by solid arrows. A
dashed arrow indicates that an interaction between ToxR and the vtrB promoter is pressumed but has not been experimentally con-
firmed. P: periplasm; IM: inner membrane, C: cytoplasm.
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factors involved in colonization, such as TCP and CT
genes.31 The TcpP DNA-binding domain binds a site
immediately upstream of the predicted RNA polymer-
ase binding site in the toxT promoter, suggesting that
it might interact with RNA polymerase to activate
toxT transcription.15,32 TcpP’s interaction with TcpH,
as well as the formation of a disulfide bond between
the 2 cysteines in the TcpP periplasmic domain, pro-
tect it from degradation by regulated intramembrane
proteolysis (RIP).33-35

While a signal that binds the TcpP or TcpH peri-
plasmic domains has not been identified, the bile salt
taurocholate has been reported to induce TcpP homo-
dimerization and TcpP-dependent induction of toxT
expression.36 Recent data suggest that this effect is
indirectly mediated by the thiol:disulfide interchange
protein DsbA, rather than by bile salt binding by
TcpP or TcpH.37 V. cholerae DsbA was shown to bind
taurocholate, which correlates with a shift in the redox
equilibrium of this enzyme toward the reduced state
in the presence of taurocholate.37 This is proposed to
interfere with its ability to catalyze intramolecular
disulfide bond formation in TcpP, which favors the
formation of active TcpP homodimers linked, instead,
by intermolecular disulfide bonds.

ToxR/ToxS

ToxR and ToxS adopt the same domain topology as
VtrA and VtrC (Fig. 2) respectively, and are expressed
from a bicistronic operon that is part of the V. cholerae
ancestral genome, but is also widespread among Vibrio
species. In V. cholerae, ToxR controls the expression of
the outer membrane proteins important for surviving
in the small intestine 38,39 and is also involved in the
regulation of toxT by binding to a site upstream of the
TcpP binding site on the toxT promoter.32 Overex-
pressed TcpP can activate toxT transcription in the
absence of ToxR,15 suggesting that TcpP is the main
player in activation whereas ToxR’s role is to enhance
TcpP activity by recruiting it to the toxT promoter.32

The involvement of ToxS in ToxR-dependent regula-
tion is not completely clear, however, studies have
shown that ToxS enhances ToxR function as a tran-
scriptional activator16 and that it is able to dimerize
with ToxR.40 ToxS also decreases ToxR degradation
through RIP under starvation conditions and after alka-
line pH shock.41 ToxR has been reported to respond to
a variety of stimuli, such as pH, osmolarity, presence of

amino acids, bile, and cyclo(Phe-Pro),16,17,42-44 but it
remains to be determined whether these signals act on
ToxR (and/or ToxS) directly or indirectly via additional
factors. The sequence similarity between the periplas-
mic domains of ToxR/ToxS and VtrA/VtrC is limited
(< 25%), hindering inferences about ligand binding
based on the VtrA/VtrC structure. Additional biochem-
ical and biophysical studies are needed to determine
what, if any, compounds bind ToxR/ToxS.

ToxR and ToxS have adopted alternative roles in
Vibrio species that lack TCP and CT, like non-O1/
O139 V. cholerae strains and V. parahaemolyticus.
Studies with lacZ reporter fusions indicate that ToxR
moderately affects T3SS expression in V. cholerae strain
AM-19226.19 The V. parahaemolyticus ToxR homolog,
Vp-ToxR, has recently been shown to be necessary for
vtrB expression, after it was identified in a genetic
screen for factors contributing to colonization of the
mammalian intestine.45 This evidence suggests that
ToxR/ToxS works with VtrA/VtrC (or its homologs) to
control vtrB promoter expression in V. parahaemolyti-
cus and V. cholerae non-O1/O139 strains, analogous to
what has been proposed for ToxR/ToxS and TcpP/
TcpH to control toxT expression.32 Further evidence
that VttRA or VtrA overexpression in the absence of
ToxR restores T3SS and T3SS2 expression, respec-
tively,45,46 supports a scenario where ToxR plays a sec-
ondary role by enhancing VtrA’s transcription factor
activity. A possible mechanism that could explain this
role is that ToxR binding to the vtrB promoter recruits
VtrA to the promoter or affects VtrA’s ability to acti-
vate transcription by other mechanism. Future studies
will determine if ToxR binds the vtrB promoter and
whether protein-protein interactions between ToxR
and VtrA are involved in this process.

Homology beyond Vibrio spp.

Although the VtrA and VtrC periplasmic domains
lack sequence homology with proteins of known
structure, their tertiary structure bears striking struc-
tural similarity the calycin superfamily b-barrel fold.47

Calycins have diverse biologic functions and are found
in both prokaryotes and eukaryotes. Many members
of this superfamily bind small hydrophobic molecules
such as fatty acids, retinol, and biotin inside their
characteristic b-barrel.47 Thus, it is not surprising that
the structure of VtrA/VtrC in complex with tauro-
deoxycholate reveals that bile salts bind inside this
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b-barrel, displacing a disordered loop that covers the
binding site in the apo structure.13 Interestingly, the
VtrA/VtrC complex is the first example of a calycin
that forms an obligate heterodimer and can transmit a
signal.

Our finding raises the question of how bile salt
binding to the VtrA/VtrC complex in the periplasm
activates VtrA’s function as a transcription factor in
the cytoplasm. While VtrA’s domain topology with a
DNA-binding domain anchored to the inner mem-
brane is atypical – only 3% of prokaryotic transcritp-
tional regulators incorporating a sensing domain and
a HTH domain have transmembrane segments 48 – it
is also found in other proteins with diverse periplas-
mic sensing domains. Examples of these are the CadC
pH-responsive regulator found in Salmonella enterica
serovar Typhimurium,49 Escherichia coli,50 and V.
cholerae,51 Yersinia pestis PsaE, a regulator for the
production of the pH6 antigen,52 V. cholerae TfoS, a
regulator for compentence in response to chitin,53,54

and the Pseudoalteromonas tunicata WmpR, a regula-
tor for antifouling compound production.55 Further
work to determine how signals are transduced across
the membrane by VtrA/VtrC might reveal mechanis-
tic similarities between these distinct systems.

Conclusion

The prominent roles of inner-membrane bound tran-
scription factors and their partner proteins in Vibrio
spp suggest that this arrangement has a functional
advantage over other systems that couple sensing of
the external environment to gene regulation, such as 2-
component systems. Both membrane-bound transcrip-
tion factors and 2-component systems, the latter of
which are composed of a histidine kinase and a
response regulator, allow for transduction of signals
received from the environment. We speculate that
membrane-bound transcription factors have the addi-
tional feature in that they localize DNA transcription
to the cytoplasmic membrane by a mechanism reminis-
cent of, but distinct from, transertion (simultaneous
transcription, translation and membrane insertion,
resulting in DNA attachment to the membrane; for a
review, see ref. 56). Membrane-anchored transcription
factors promote the enrichment of mRNAs encoding
membrane-bound and secreted proteins at the mem-
brane, potentially facilitating co-translational insertion
and assembly of T3SS apparatus components, as well

as effector secretion. This is analogous to the idea that
certain mRNAs encoding membrane, polar and septal
proteins are targeted to their site of function in the pro-
karyotic cell via information contained within the
untranslated region of mRNA transcripts.57 Studies
suggest that the 3'-untranslated region of some mRNA
transcripts of flagellar and pathogenic T3SS proteins in
E. coli and Salmonella, respectively, are important for
membrane protein localization.58,59 Evidence of mRNA
localization goes beyond transcripts encoding flagellar
or T3SS proteins and does not always involve the
unstranslated region of mRNAs. An example of this is
the bglF mRNA transcript from E. coli, encoding a
membrane-bound b-glucoside permease, that was
shown to localize to the membrane by way of a signal
within its coding sequence, independently of transla-
tion.60 It is important to note that not all mRNAs
encoding membrane-bound or secreted proteins local-
ize to the membrane. Nonetheless, membrane localiza-
tion of some mRNAs may have evolved to minimize
non-specific interactions between newly translated pro-
teins thereby facilitating the assembly of multiprotein
complexes.57 Thus, it is conceivable that a similar
approach of restricting T3SS gene transcription to the
cytoplasmic membrane is used in Vibrio spp to expe-
dite the assembly of the needle apparatus and effector
secretion.

Despite significant advancements in our under-
standing of how environmental signals control viru-
lence in Vibrios, key questions remain to be answered.
Our recent results demonstrate that V. parahemolyti-
cus senses bile salts via the periplasmic domains of
VtrA and VtrC. This pair of inner-membrane proteins
form a signaling unit that regulates virulence in the
mammalian gut. To fully understand this system, we
need to determine how the binding of bile salt to their
periplasmic domains affects the VtrA DNA-binding
domain. Since DNA recognition sites for OmpR
DNA-binding domains tend to be direct repeats,61

one possibility is that ligand binding promotes VtrA
dimerization. Testing this hypothesis will require fur-
ther work to identify the VtrA recognition site and to
determine if dimerization is part of the mechanism by
which VtrA activates transcription from the vtrB pro-
moter. Nevertheless, mechanisms that do not involve
a monomer to dimer transition are also possible.

Another aspect that needs further study is the
crosstalk between ToxR/S and TcpP/H in V. cholerae
and VtrA/C and ToxR/S in V. parahaemolyticus.

370 G. RIVERA-CANCEL AND K. ORTH



While it has been established that these receptor pairs
influence the same virulence pathways, the actual
mechanism of how this happens remains elusive. Last
but not least, it would be interesting to know if the
periplasmic domains of ToxR/S, TcpP/H and VtrA/C
homologs from species that lack T3SS bind small mol-
ecules. The identity such signals, if any, would shed
light on how these receptors are stimulated and could
open an avenue for therapeutic development.
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