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ABSTRACT
Siblings of patients with Crohn’s disease (CD) have elevated risk of developing CD and display
aspects of disease phenotype, including faecal dysbiosis. In our recent article we have used 16S
rRNA gene targeted high-throughput sequencing to comprehensively characterize the mucosal
microbiota in healthy siblings of CD patients, and determine the influence of genotypic and
phenotypic factors on the gut microbiota (dysbiosis). We have demonstrated that the core
microbiota of both patients with CD and healthy siblings is significantly less diverse than controls.
Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity between both
patients and controls and between siblings and controls. Phenotype/genotype markers of CD risk
significantly influenced microbiota variation between and within groups, of which genotype had
the largest effect. Individuals with elevated CD-risk display mucosal dysbiosis characterized by
reduced diversity of core microbiota and lower abundance of F. prausnitzii. The presence of this
dysbiosis in healthy people at-risk of CD implicates microbiological processes in CD pathogenesis.
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In contrast to skin, lung or eye, where barrier function
is prioritised and the range of substances targeted for
absorption are limited, the surface of the gut has
uniquely evolved to actively interact with a wide vari-
ety of ingested constituents of the host’s environment.
Why the regulation of this intricate interface between
humans and their environment degenerates in inflam-
matory bowel disease (IBD) is unclear. However, in
some genetically predisposed individuals an abnormal
immune reaction to gut microbes develops and results
in chronic intestinal inflammation. Traditionally, 2
main clinical entities have been described: Crohn’s
disease (CD) and ulcerative colitis. However, genetic
and microbiome studies have challenged this dogma;
for example some studies support a difference between
small intestinal-restricted and colonic-involving
CD.1,2

A genetic predisposition to IBD is fundamental and
relatives of patients are at enhanced risk of developing
IBD themselves.3,4 The interaction between the gut
microbiota and the gut immune system is pivotal in

IBD pathogenesis5 and in patients with IBD abnor-
malities can be demonstrated in both the gut immune
system and the gut microbiota (dysbiosis) as well as
alterations in intestinal permeability and increased
concentrations of neutrophil-derived calprotectin in
faeces.6 However, whether dysbiosis has a role in dis-
ease pathogenesis or is merely consequent to inflam-
mation cannot be determined by examining only
individuals with established IBD. For example,
increased faecal g-proteobacteria have been widely
described in CD5,7 particularly increased in Escheri-
chia coli,8 and putative mechanisms by which E. coli
may contribute to CD pathogenesis include the capac-
ity to adhere to and invade the intestinal mucosa,9,10

as well as the persistence of these bacteria in epithelial
cells and macrophages.11 However, there are also
potential mechanisms by which E. coli may be
increased opportunistically as a consequence of CD,
such as the increased activity of nitric oxide synthases
associated with inflammation,12 which could favor
the survival of these nitrate-reducing bacteria, or
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increased intestinal luminal pH secondary to a reduc-
tion in faecal butyrate producers frequently reported
in CD – potentially favoring the survival of organisms
that are inhibited at acidic pH such as E. coli.13 More-
over, there is also evidence that the abundance of
g-proteobacteria may be affected by drugs such as
immunosuppressant and 5-ASA drugs used to treat
CD.14 There has therefore been an ongoing conun-
drum as to whether the dysbiosis in IBD patients is a
feature of pathogenesis or whether it occurs after dis-
ease onset as a result of established inflammation. The
temporal relationship between dysbiosis and disease
onset is not easily examined in humans, however these
factors may be more readily manipulated in animal
models. There is a strong implication from animal
models of IBD that the microbiota are a key part of
disease pathogenesis given that in several animal mod-
els of gut inflammation, animals kept in germ-free
conditions do not develop disease.15-18 Genotype-
environment interactions may also be examined in
animal models, such as that described between
Atg16L1 and murine norovirus in a mouse model of
CD.19 However, extrapolation from animal data to
human disease should be approached with caution.
Studying individuals before they develop CD, or indi-
viduals who share genetic and environmental expo-
sures that predispose to IBD, but in whom the
cumulative effect of these triggers is, as yet, insufficient
to produce the full-blown disease phenotype, i.e.
healthy relatives of IBD patients, provide a window
into pathogenic pathways in the absence of the obfus-
cating influence of established, chronic CD.

In our recent publication “Siblings of patients with
Crohn’s disease exhibit biologically relevant dysbiosis
in mucosal microbial metacommunities”20 we used
16S rRNA gene targeted high-throughput sequencing
to test the hypothesis that dysbiosis exists in the
mucosal microbiota of healthy siblings of CD patients,
and is therefore not merely a consequence of estab-
lished disease. In addition, we examined the influence
of genotypic and phenotypic factors, on that dysbiosis.
Twenty-one patients with quiescent CD and 17 of
their healthy siblings were recruited via gastroenterol-
ogy outpatient clinics, in addition to 19 unrelated
healthy controls. Participants at the peak age when
CD is diagnosed (16–35 years),21 were specifically tar-
geted in order that data from this study is most rele-
vant to the population in which any future pre-disease
screening program is the most viable. In addition,

enrolling only young relatives of CD patients increases
the possibility of including individuals who will go on
to develop CD. Healthy but genetically predisposed
relatives may manifest biomarkers that reflect genetic
risk or environmental exposures and crucially, may
reveal their cumulative and combined effects. In addi-
tion, an accurate description of the ‘at risk’ state in sib-
lings and offspring of CD patients raises the potential
to predict and prevent disease. Moreover, longitudinal
surveys in families who are enriched for both genetic
and environmental risk factors provide a cohort with
greater incidence of CD. However, the analysis of CD
pathogenesis in healthy siblings is not completely
straightforward. First, the degree of genetic relatedness
of full-siblings is on average around 50% but detailed
analysis of sibling genomes reveals that their similarity
may vary between 37 to 62%.22 Secondly, expression
of risk phenotypes may depend on environmental
exposures that may vary between family members; for
example aspirin may induce increased intestinal per-
meability.23 Finally, one of the advantages of family
studies (the capacity to examine genotype-environ-
ment interactions) is also a limitation in that it may
not be possible to determine whether a phenotype that
is shared between siblings is shared because of geno-
type (e.g. genetic determination of gut microbiota) or
shared environment (e.g., maternal microbial inocu-
lum determining neonatal gut microbiota). Such ques-
tions may be addressed using twin cohorts. Despite
these limitations, studies of healthy, at-risk relatives of
patients with CD may uniquely contribute to the illu-
mination of pathogenic pathways that are not easily
discernible in studying patients with established
disease.

We showed that core microbiota of both CD
patients and healthy siblings were significantly less
diverse compared with healthy unrelated controls.
This finding confirms that dysbiosis is not merely a
consequence of intestinal inflammation but is also
present in at-risk, healthy individuals, clearly impli-
cating the microbiota in CD pathogenesis. The signif-
icance of reduced microbial diversity is not fully
understood but it is interesting to speculate on
because this is a feature of the dysbiosis in a variety
of diseased states including obesity,24,25 colorectal
cancer,26 eczema,27 and in addition has been linked
with smoking.28 Perhaps lower diversity is associated
with incomplete occupation of ecological niches
resulting in reduced resistance to colonisation by
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more pro-inflammatory species; alternatively a more
restricted gut metagenome may contain a lower array
of microbial genes that results in the loss of key func-
tions. Currently it is not clear whether reduced diver-
sity in itself has a specific functional consequence or
if it functions as a barometer for the overall health of
the gut microbiota.

Using metacommunity profiling we also showed
that the sibling core microbial composition is more
similar to their CD affected siblings than to matched
healthy controls (Fig. 1). Moreover, reduced Faecali-
bacterium prausnitzii contributed most to core meta-
community dissimilarity both between siblings and
controls, and between patients and controls. As a pro-
portion of core species F. prausnitzii had a higher rela-
tive abundance in healthy controls (30.9%) than either
patients with CD (22.4%) or siblings (24.2%). Interest-
ingly, we had also previously demonstrated a similar
finding in luminal samples from the same cohort
(published separately): siblings had significantly lower
concentrations of several Firmicute groups including
Clostridia cluster IV, Roseburia spp. and F. prausnitzii

which was lower in siblings (median 9.27, IQR
8.12–9.78 log10 copies/g) compared with controls
(median 9.59, IQR 9.34–10.14 log10 copies/g,
p D 0.048) as well as between patients (median 6.88,
IQR 5.03–9.35 log10 copies/g) compared with controls
(p D 0.006) (Fig. 2).29 Thus, the finding of sibling dys-
biosis including reduced abundance of F. prausnitzii is
robust, having been demonstrated in analyses using
different techniques (454 pyrosequencing and qPCR),
and in both mucosa-associated and faecal microbiota

There has been intense speculation regarding the
role of F. prausnitzii in CD pathogenesis as it is the
only microbial factor shown to be predictive of
the natural history of CD30 and of the response to
treatment.31 It may be speculated that loss of F. praus-
nitzii could result in the loss of key functions that
contribute to gut health, for example the production
of short-chain fatty acids, in particular butyrate,32 and
NFkB-mediated effects.33 However, we would be cau-
tious in constructing pathogenic hypotheses based on
the functions of this particular species, rather inter-
preting these data as implicating that loss of F. praus-
nitzii is a sensitive indicator of a broader change in
the gut microbiota. Furthermore, data are emerging
demonstrating increases in F. prausnitzii in new onset
pediatric Crohn’s disease, indicating that the role this
species plays in pathogenesis is complex.34 Interest-
ingly, increased E. coli contributed to the dissimilarity
between patients and healthy controls but not to the
dissimilarity between siblings and healthy controls.
Thus it may be that the CD dysbiosis comprises
microbial factors that contribute to pathogenesis
(as exemplified by lower F. prausnitzii), overlaid with
microbial alterations that are consequent to inflamma-
tion (as exemplified by higher abundance of E. coli).
Alternatively, the sibling dysbiosis may represent an
incomplete version of the full CD dysbiosis, which is
insufficient to lead to full-blown CD. Only longitudi-
nal studies can answer this question.

Genotype contributes to CD pathogenesis35 and in
addition the composition of the gut microbiota is
partly determined by genotype.36 In our study we
demonstrated that genotype relative risk (a composite
score of genotypic risk across 72 loci associated with
CD) was the most significant factor in explaining vari-
ance between the 3 cohorts, (patients, healthy siblings
and healthy, unrelated controls) and also within each
cohort. There is an evolutionary advantage to be
accrued through host genetic influence over the

Figure 1. Dendrogram showing the microbial community dissim-
ilarity between the 3 groups: The composition of the whole
microbiota as determined by Bray-Curtis index, is more similar
between patients and their healthy siblings than between
healthy siblings and healthy controls, and this pattern is driven
by similarity in the core microbiota between patients and siblings
rather than the rare microbiota.
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colonisation by commensals to maximize host fitness.
Furthermore, microbiota differ markedly from one
host habitat to another, such as skin compared with
gut,37 and this indicates that there are selection pres-
sures, potentially under host control, that determine
the differential survival of bacteria in these sites. It
would therefore be surprising if the capacity to influ-
ence host microbiota had failed to evolve within the
human genome. If the host can shape the microbiota,
it therefore follows that due to natural variation, in
some individuals a suboptimal genotype will produce
a less well-adapted phenotype, and furthermore may
even result in disease. Recent data in animal models
supports the role for the gut immune system in shap-
ing the microbiota and suggests that this effect may be
at least in part dependent on a pathway involving
both polyreactive and bacteria-specific secretory
IgA,38 as well as mediated through gut epithelial cells
and HopxC cell-derived miRNAs, which enter bacte-
ria and regulate bacterial gene expression and growth,
in turn affecting the microbiota composition and sus-
ceptibility to colitis.39 Furthermore specific SNPs have
been associated with gut microbiota composition in a
cohort of healthy relatives.36

We have shown that perturbations in the mucosal
gut microbiota occur not only in individuals with

Crohn’s disease but also in otherwise healthy individu-
als at elevated risk of Crohn’s disease, thus dysbiosis is
not merely a consequence of inflammation. However,
studies of pediatric IBD highlight paradoxical
increases in species such as F. prausnitzii34,40 that are
widely reported to be reduced in adults with IBD.
While this finding might suggest that alternative path-
ogenic pathways exist in pediatric IBD, it might also
indicate that gut microbiota composition may evolve
during pathogenesis. Rather than focusing on the
microbial composition at the point when the individ-
ual develops the disease, it may be that the influence
of the gut microbiota occurs long before disease onset.
It may be speculated that there are critical periods
during immune development when dysbiosis may
exert its influence. The evidence for the importance of
the early childhood period comes from several sour-
ces: studies of human migration from areas of low
prevalence to high prevalence and vice versa indicate
that in some populations IBD risk is associated with
the area of birth,41 implicating events in the perinatal
or early childhood period in IBD pathogenesis. Many
of the epidemiological associations with IBD link to
early childhood, including breastfeeding, tonsillec-
tomy, childhood vaccinations, childhood infections,42

birth rank43 and birth in hospital.44 In conjunction,

Figure 2. Concentrations of different Firmicute populations in faecal samples were significantly lower in patients (n D 22) and siblings,
(n D 21) compared with controls, (n D 25).
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several of these factors have been shown to influence
the gut microbiota,45 and the acquisition of the gut
microbiota in humans appears to occur predomi-
nantly over the first 2 y of life.46 In animal models gut
immune maturation is influenced by the timing of
introduction of gut microbiota,47 implying that early
microbial exposure may have the capacity to condition
immune responses in the long-term. Moreover, other
animal studies have implicated even pre-natal effects
of the maternal microbiota on the developing immune
system of the fetus/neonate. Such influences may be
effected through factors including microbial molecular
transfer mediated by maternal immunoglobulins
transmitted both trans-placentally and through lacta-
tion.48 Defining the interrelated processes of human
immune development and microbial acquisition may
have a significant impact on our understanding of the
pathogenesis of IBD.

Given the factors discussed above, it may be
hypothesized that environmental factors impact on
the acquisition of the gut microbiota during the prena-
tal, neonatal or early childhood period, which in turn
creates a persistent inflammatory immune tone, thus
laying the foundations for future IBD risk. Defining
the relationship between microbial acquisition,
immune phenotype and IBD risk requires longitudinal
studies and the results of ongoing studies including
the MECONIUMstudy (Exploring MEChanisms Of
disease traNsmisson In Utero through the Micro-
biome; a study comparing the bacterial profiles of
pregnant women with and without IBD with their
new-born babies and in addition assessing the influ-
ence of infant feeding practices and antibiotic use
early in life on microbiota acquisition) and the GEM
project (Genetics, Environment and Microbiota Proj-
ect: A longitudinal study of relatives of patients with
Crohn’s disease)36 are eagerly awaited.
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