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Abstract

We consider the task of learning the structure of the graph underlying a mutually-exciting 

multivariate Hawkes process in the high-dimensional setting. We propose a simple and 

computationally inexpensive edge screening approach. Under a subset of the assumptions required 

for penalized estimation approaches to recover the graph, this edge screening approach has the 

sure screening property: with high probability, the screened edge set is a superset of the true edge 

set. Furthermore, the screened edge set is relatively small. We illustrate the performance of this 

new edge screening approach in simulation studies.
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1. Introduction

1.1. Overview of the multivariate Hawkes process

In a seminal paper, Hawkes (1971) proposed the multivariate Hawkes process, a multivariate 

point process model in which a past event may trigger the occurrence of future events. The 

Hawkes process and its variants have been widely applied to model recurrent events, with 

notable applications in modeling earthquakes (Ogata, 1988), crime rates (Mohler et al., 

2011), interactions in social networks (Simma and Jordan, 2012; Perry and Wolfe, 2013; 

Zhou, Zha and Song, 2013a,b), financial events (Chavez-Demoulin, Davison and McNeil, 
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2005; Bowsher, 2007; Aït-Sahalia, Cacho-Diaz and Laeven, 2015), and spiking histories of 

neurons (see e.g., Brillinger, 1988; Okatan, Wilson and Brown, 2005; Paninski, Pillow and 

Lewi, 2007; Pillow et al., 2008).

In this section, we provide a very brief review of the multivariate Hawkes process. A more 

comprehensive discussion can be found in Liniger (2009) and Zhu (2013).

Following Brémaud and Massoulié (1996), we define a simple point process N on ℝ+ as a 

family {N(A)}A∈ℬ(ℝ+) taking integer values (including positive infinity), where ℬ(ℝ+) 

denotes the Borel σ-algebra of the positive half of the real line. Further let t1, t2, … ∈ ℝ+ be 

the event times of N. In this notation, N(A) = Σi 𝟙[ti∈A] for A ∈ ℬ(ℝ+). We write N ([t, t + 

dt)) as dN(t), where dt denotes an arbitrary small increment of t. Let ℋt be the history of N 
up to time t. Then the ℋt-predictable intensity process of N is defined as

(1)

Now suppose that N is a marked point process, in which each event time ti is associated with 

a mark mi ∈ {1, …, p} (see e.g., Definition 6.4.I. in Daley and Vere-Jones, 2003). We can 

then view N as a multivariate point process (Nj)j=1,…,p, of which the jth component process 

is given by Nj(A) = Σi 𝟙[ti∈A,mi=j] for A ∈ ℬ(ℝ+). To simplify the notation, we let tj,1, tj,2, … 

∈ ℝ+ denote the event times of Nj.

The intensity of the jth component process is

In the case of the linear Hawkes process, this function takes the form (Brémaud and 

Massoulié, 1996; Hansen, Reynaud-Bouret and Rivoirard, 2015)

(2)

We refer to μj ∈ ℝ as the background intensity, and ωj,k(·): ℝ+ ↦ ℝ as the transfer 
function.

For p fixed, Brémaud and Massoulié (1996) established that the linear Hawkes process with 

intensity function (2) is stationary given the following assumption.

Assumption 1—Let Ω be a p × p matrix whose entries are , for j, k = 
1, …, p. We assume that the spectral norm of Ω is strictly less than 1, i.e., Γmax(Ω) ≤ γΩ < 1, 

where γω is a generic constant.
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We now define a directed graph with node set {1, …, p} and edge set

(3)

for ωj,k given in (2). Let

(4)

denote the maximum in-degree of the nodes in the graph. In this paper, we propose a simple 

screening procedure that can be used to obtain a small superset of the edge set ℰ.

1.2. Estimation and theory for the Hawkes process

We first consider the low-dimensional setting, in which the dimension of the process, p, is 

fixed, and T, the time period during which the point process is observed, is allowed to grow. 

In this setting, asymptotic properties such as the central limit theorem have been established; 

for instance, see Bacry et al. (2013) and Zhu (2013). Consequently, estimating the edge set ℰ 
is straightforward in low dimensions.

In high dimensions, when p might be large, we can fit the Hawkes process model using a 

penalized estimator of the form

(5)

where  is a loss function, based on, e.g., the log-likelihood (Bacry, Gaïffas 

and Muzy, 2015) or least squares (Hansen, Reynaud-Bouret and Rivoirard, 2015); 

 is a penalty function, such as the lasso (Hansen, Reynaud-Bouret and 

Rivoirard, 2015); λ is a nonnegative tuning parameter; and ℱ is a suitable function class. 

Then, a natural estimator for ℰ is {(j, k): ω̂j,k ≠ 0}.

Recently, Reynaud-Bouret and Schbath (2010), Bacry, Gaïffas and Muzy (2015), and 

Hansen, Reynaud-Bouret and Rivoirard (2015) have established that under certain 

assumptions, penalized estimation approaches of the form (5) are consistent in high 

dimensions, provided that the edge set ℰ is sparse. For instance, Hansen, Reynaud-Bouret 

and Rivoirard (2015) establish the oracle inequality of the lasso estimator for the Hawkes 

process, given that certain conditions hold on the observed event times. However, to show 

that these conditions hold with high probability for arbitrary samples, these theoretical 

results require that the point process is mutually-exciting — that is, an event in one 

component process can increase, but cannot decrease, the probability of an event in another 
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component process. This amounts to assuming that ωj,k(Δ) ≥ 0 for all Δ ≥ 0, for ωj,k defined 

in (1).

When the dimension p is large, penalized estimation procedures of the form (5) (Bacry, 

Gaïffas and Muzy, 2015; Hansen, Reynaud-Bouret and Rivoirard, 2015) become 

computationally expensive: they require (Tp2) operations per iteration in an iterative 

algorithm. This is problematic in contemporary applications, in which p can be on the order 

of tens of thousands (Ahrens et al., 2013). These concerns motivate us to propose a simple 

and computationally-efficient edge screening procedure for estimating the true edge set ℰ in 

high dimensions. Under very few assumptions, our proposed screening procedure is 

guaranteed to select a small superset of the true edge set ℰ.

1.3. Organization of paper

The rest of this paper proceeds as follows. In Section 2, we introduce our screening 

procedure for estimating the edge set ℰ, and establish its theoretical properties. We present 

simulation results in support of our proposed procedure in Section 3. Proofs of theoretical 

results are presented in Section 4, and the Discussion is in Section 5.

2. An edge screening procedure

2.1. Approach

For j = 1, …, p, let Λj denote the mean intensity of the jth point process introduced in 

Section 1. That is,

(6)

Following Equation 5 of Hawkes (1971), for any Δ ∈ ℝ, the (infinitesimal) cross-covariance 
of the jth and kth processes is defined as

(7)

where δ(·) is the Dirac delta function, which satisfies  and δ(x) = 0 for x ≠ 0.

For a given value of Δ, we can estimate the cross-covariance function Vj,k(Δ) using kernel 

smoothing:

(8)
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where K(·) is a kernel function with bandwidth h, and  is the Stieltjes integral, 

defined as

In this paper, we focus on kernel functions that are bounded by 1 and are defined on a 

bounded support, i.e., 0 ≤ K(x/h) ≤ 1 for x ∈ [−h, h], and K(x/h) = 0 for x ∉ [−h, h] (e.g., the 

Epanechnikov kernel).

Let B denote a tuning parameter that defines the time range of interest for Vj,k(Δ), i.e. Δ ∈ 
[−B, B]. For any ζ, we define the set of screened edges as

(9)

where  is the ℓ2-norm of a function f on the interval [l, u].

The screened edge set ℰ̂(ζ) in (9) can be calculated quickly: ||V̂
j,k||2,[−B,B] can be calculated 

in (T) computations, and so ℰ̂(ζ) can be calculated in (Tp2) computations. The procedure 

can be easily parallellized.

There are three tuning parameters in the procedure: the bandwidth h in (8), the range B in 

(9), and the screening threshold ζ in (9). The bandwidth h can be chosen by cross-validation. 

The range B can be selected based on the problem setting. For instance, when using the 

multivariate Hawkes process to model a spike train data set in neuroscience, we can set B to 

equal the maximum time gap between a spike and the spike it can possibly evoke. The 

choice of screening threshold ζ can be determined based on the sparsity level that we expect 

based on our prior knowledge. Alternatively, we may wish to use a small value of ζ in order 

to reduce the chance of false negative edges in ℰ̂(ζ), or a larger value due to limited 

computational resources in our downstream analysis.

2.2. Theoretical results

We consider the asymptotics of triangular arrays (Greenshtein and Ritov, 2004), where the 

dimension p is allowed to grow with T. When unrestricted, it is possible to cook up extreme 

networks, where, for instance, the mean intensity Λj in (6) diverges to infinity. To avoid such 

cases, we pose the following regularity assumption.

Assumption 2—There exist positive constants Λmin, Λmax, and Vmax such that 0 < Λmin ≤ 

Λj ≤ Λmax and maxΔ∈ℝ |Vj,k(Δ)| ≤ Vmax for all 1 ≤ j, k ≤ p, where Λj and Vj,k are defined in 
(6) and (7), respectively. Furthermore, Λmin, Λmax, and Vmax are generic constants that do 
not depend on p.
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Next, we make some standard assumptions on the transfer functions ωj,k in (2).

Assumption 3—The following hold:

a. The transfer functions are non-negative: ωj,k(Δ) ≥ 0 for all Δ ≥ 0.

b. There exists a positive constant βmin such that

c. There exist positive constants b, θ0, and C such that, for all 1 ≤ j, k ≤ p, and for 
any Δ1, Δ2 ∈ ℝ, supp(ωj,k) ⊂ (0, b], maxΔ |ωj,k(Δ)| ≤ C, and |ωj,k(Δ1) − ωj,k(Δ2)| 

≤ θ0|Δ1 − Δ2|.

Assumption 3(a) guarantees that the multivariate Hawkes process is mutually-exciting: that 

is, an event may trigger (but cannot inhibit) future events. This assumption is shared by the 

original proposal of Hawkes (1971). Furthermore, existing theory for penalized estimators 

for the Hawkes process requires this assumption (Bacry, Gaïffas and Muzy, 2015; Hansen, 

Reynaud-Bouret and Rivoirard, 2015).

Assumption 3(b) guarantees that the non-zero transfer functions are nonnegligible. Such an 

assumption is needed in order to establish variable selection consistency (Bühlmann and van 

de Geer, 2011; Wainwright, 2009) for the penalized estimator (5).

Assumption 3(c) guarantees that the transfer functions are sufficiently smooth; this 

guarantees that the cross-covariances are smooth (see Section A.2 in Appendix), and hence 

can be estimated using a kernel smoother (8). Instead of Assumption 3(c), we could assume 

that ωj,k is an exponential function (Bacry, Gaïffas and Muzy, 2015) or that it is well-

approximated by a set of smooth basis functions (Hansen, Reynaud-Bouret and Rivoirard, 

2015).

Recall that s was defined in (4). We now state our main result.

Theorem 1—Suppose that the Hawkes process (2) satisfies Assumptions 1–3. Let h = 

c1s−1/2T−1/6 in(8) and ζ = 2c2s1/2T−1/6 in (9) for some constants c1 and c2. Then, for some 
positive constants c3 and c4, with probability at least 1 − c3T7/6s1/2p2 exp(−c4T1/6),

a. ℰ ⊂ ℰ̂(ζ);

b.
.

Theorem 1(a) guarantees that, with high probability, the screened edge set ℰ̂(ζ) contains the 

true edge set ℰ. Therefore, screening does not result in false negatives. This is referred to as 

the sure screening property in the literature (Fan and Lv, 2008; Fan, Samworth and Wu, 

2009; Fan and Song, 2010; Fan, Feng and Song, 2011; Fan, Ma and Dai, 2014; Liu, Li and 

Wu, 2014; Song et al., 2014; Luo, Song and Witten, 2014). Typically, establishing the sure 

screening property requires assuming that the marginal association between a pair of nodes 

in ℰ is sufficiently large; see e.g. Condition 3 in Fan and Lv (2008) and Condition C in Fan, 
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Feng and Song (2011). In contrast, Theorem 1(a) requires only that the conditional 
association between a pair of nodes in ℰ is sufficiently large; see Assumption 3(b).

Theorem 1(b) guarantees that ℰ̂(ζ) is a relatively small set, on the order of 

(card(ℰ)s−1T1/3). Suppose that p2 ∝ s−1/2 exp(c4T1/6−ε) for some positive constant ε < 1/6; 

this is the high-dimensional regime, in which the probability statement in Theorem 1 

converges to one. Then the size of ℰ̂(ζ), (card(ℰ)s−1T1/3), can be much smaller than p2, the 

total number of node pairs. We note that the rate of T1/3 is comparable to existing results for 

non-parametric screening in the literature (see e.g., Fan, Feng and Song 2011; Fan, Ma and 

Dai 2014).

To summarize, Theorem 1 guarantees that under a small subset of the assumptions required 
for penalized estimation methods to recover the edge set ℰ, the screened edge set ℰ̂(ζ) (9) is 

small and contains no false negatives. We note that this is not the case for other types of 

models. For instance, in the case of the Gaussian graphical model, Luo, Song and Witten 

(2014) considered estimating the conditional dependence graph by screening the marginal 

covariances. In order for this procedure to have the sure screening property, one must make 

an assumption on the minimum marginal covariance associated with an edge in the graph, 

which is not required for variable selection consistency of penalized estimators (Cai, Liu and 

Luo, 2011; Luo, Song and Witten, 2014; Ravikumar et al., 2011; Saegusa and Shojaie, 

2016).

It is important to note that Theorem 1 considers an oracle procedure, where the tuning 

parameters depend on unknown parameters. The heuristic selection guidelines suggested at 

the end of Section 2.1 may not satisfy the requirements of Theorem 1. We leave the 

discussion of optimal tuning parameter selection criteria for future research. Also, note that 

the bandwidth h ∝ T−1/6 is wider than the typical bandwidth for kernel smoothing, which is 

T−1/3 (Tsybakov, 2009). This is because we aim to minimize a concentration bound on V̂
j,k − 

Vj,k (see the proof of Lemma 3 in the Appendix), rather than the usual mean integrated 

square error as in, e.g., Theorem 1.1 in Tsybakov (2009).

Remark 1—In light of Theorem 1, consider applying a constraint induced by ℰ̂(ζ) to (5):

(10)

Theorem 1 can be combined with existing results on consistency of penalized estimators of 
the Hawkes process (Bacry, Gaïffas and Muzy, 2015; Hansen, Reynaud-Bouret and 

Rivoirard, 2015) in order to establish that (10) results in consistent estimation of the transfer 
functions ωj,k. As a concrete example, Hansen, Reynaud-Bouret and Rivoirard (2015) 

considered (10) with  taken to be the least-squares loss, and 

 a lasso-type penalty. Our simulation experiments in Section 3 indicate that 
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in this setting, (10) can actually have better small-sample performance than (5) when p is 
very large. Furthermore, solving (10) can be much faster than solving (5): the former 
requires (T4/3s−1card(ℰ)) computations per iteration, compared to (Tp2) per iteration for 
the latter (using e.g. coordinate descent, Friedman, Hastie and Tibshirani, 2010). In the high-
dimensional regime when p2 ∝ s−1/2 exp(c4T1/6−ε) for some positive constant ε < 1/6, we 
have that T4/3s−1card(ℰ) ≪ Tp2. We note that in order to solve (10), we must first compute 
ℰ̂(ζ), which requires an additional one-time computational cost of (Tp2).

3. Simulation

3.1. Simulation set-up

In this section, we investigate the performance of our screening procedure in a simulation 

study with p = 100 point processes. Intensity functions are given by (2), with μj = 0.75 for j 
= 1, …, p, and ωj,k(t) = 2t exp(1 − 5t) for (j, k) ∈ ℰ. By definition, ωj,k = 0 for all (j, k) ∉ ℰ. 

We consider two settings for the edge set ℰ, Setting A and Setting B. These settings are 

displayed in Figure 1.

In what follows, it will be useful to think about the (undirected) node pairs as belonging to 

three types. (i) We let

(11)

(ii) With a slight abuse of notation, we will use ℰ̃c ∩ supp(V) to denote node pairs that are 

not in ℰ̃ with non-zero population cross-covariance, defined in (7). (iii) Continuing to 

slightly abuse notation, we will use ℰ̃c\supp(V) to denote node pairs that are not in ℰ̃ and 

that have zero population cross-covariance.

Throughout the simulation, we set the bandwidth h in (8) to equal T−1/6, and the range of 

interest B in (9) to equal 5. Thus, h satisfies the requirements of Theorem 1, and [−B, B] 

covers the majority of the mass of the transfer function ωj,k. However, these simulation 

results are not sensitive to the particular choices of h or B.

3.2. Investigation of the estimated cross-covariances

In Setting A, within a single connected component, all of the node pairs that are not in ℰ̃ are 

in ℰ̃c ∩ supp(V). However, for the most part, the population cross-covariances 

corresponding to node pairs in ℰ̃c ∩ supp(V) are quite small, because they are induced by 

paths of length two and greater. This can be seen from the left-hand panel of Figure 2. Given 

the left-hand panel of Figure 2, we expect the proposed screening procedure to work very 

well in Setting A: for a sufficiently large value of the time period T, there exists a value of ζ 
such that, with high probability, ℰ̂(ζ) = ℰ̃.

In Setting B, six nodes receive directed edges from the same set of four nodes. Therefore, 

we expect the pairs among these six nodes to be in the set ℰ̃c ∩ supp(V), and to have 

substantial population cross-covariances. This intuition is supported by the center panel of 
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Figure 2, which indicates that the node pairs in ℰ̃c ∩ supp(V) have relatively large estimated 

cross-covariances, on the same order as the node pairs in ℰ̃. In light of Figure 2, we 

anticipate that for a sufficiently large value of the time period T, the screened edge set ℰ̂(ζ) 

will contain the edges in ℰ̃ as well as many of the edges in ℰ̃c ∩ supp(V).

3.3. Size of smallest screened edge set

We now define ζ* ≡ max {ζ : ℰ ⊆ ℰ̂(ζ)}, and calculate card(ℰ̂(ζ*)). This represents the size 

of the smallest screened edge set that contains the true edge set.

Results, averaged over 200 simulated data sets, are shown in Figure 3.

We see that in Setting A, for sufficiently large T, card(ℰ̂(ζ*)) = card(ℰ̃), which implies that 

ℰ̂(ζ*) = ℰ̃. In other words, in Setting A, the screening procedure yields perfect recovery of 

the set ℰ̃ (11). This is in line with our intuition based on the left-hand panel of Figure 2.

In contrast, in Setting B, even when T is very large, card(ℰ̂(ζ*)) > card(ℰ̃), which implies 

that ℰ̂(ζ*) ⊇ ℰ̃. This was expected based on the center panel of Figure 2.

3.4. Performance of constrained penalized estimation

We now consider the performance of the estimator (10), which we obtain by calculating the 

screened edge set ℰ̂(ζ), and then performing a penalized regression subject to the constraint 

that ωjk = 0 for (j, k) ∉ ℰ̂(ζ). Note that rather than assuming a specific functional form for 

ωj,k, Hansen, Reynaud-Bouret and Rivoirard (2015) use a basis expansion to estimate ωj,k. 

Following their lead, we use a basis of step functions, of the form 𝟙((m−1)/2,m/2](t) for m = 1, 

…, 6. Instead of applying a lasso penalty to the basis function coefficients (Hansen, 

Reynaud-Bouret and Rivoirard, 2015), we employ a group lasso penalty for every 1 ≤ j, k ≤ 

p (Yuan and Lin, 2006; Simon and Tibshirani, 2012). Thus, (10) consists of a squared error 

loss function and a group lasso penalty. We let

(12)

where ω̂
j,k solves (10).

Results are shown in Figure 4. In Setting A, solving the constrained optimization problem 

(10) leads to substantially better performance than solving the unconstrained problem (5). 

The improvement is especially noticeable when T is small. In Setting B, solving the 

constrained optimization problem (10) leads to only a slight improvement in performance 

relative to solving the unconstrained problem (5), since, as we have learned from Figures 2 

and 3, the screened set ℰ̂(ζ) contains many edges in ℰ̃c ∩ supp(V). In both settings, solving 

the constrained optimization problem leads to substantial computational improvements.

4. Proofs of theoretical results

In this section, we prove Theorem 1. In Section 4.1, we review an important property of the 

Hawkes process, the Wiener-Hopf integral equation. In Section 4.2, we list three technical 
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lemmas used in the proof of Theorem 1. Theorem 1 is proved in Section 4.3. Proofs of the 

technical lemmas are provided in the Appendix.

4.1. The Wiener-Hopf integral equation

Recall that the transfer functions ω = {ωj,k}1≤j,k≤p were defined in (2), the cross-covariances 

V = {Vj,k}1≤j,k≤p were defined in (7), and the mean intensities Λ = (Λ1, …, Λp)T were 

defined in (6). If the Hawkes process defined in (2) is stationary, then for any Δ ∈ ℝ+,

(13)

where

and

Equation (13) belongs to a class of integral equations known as the Wiener-Hopf integral 
equations.

4.2. Technical lemmas

We state three lemmas used to prove Theorem 1, and provide their proofs in the Appendix. 

The following lemma is a direct consequence of (13) and our assumptions. Recall that [0, b] 

is a superset of supp(ωj,k) introduced in Assumption 3.

Lemma 1—Under Assumptions 1–3, for sufficiently large B such that B ≥ b, we have that ||
Vj,k||2,[−B,B] ≥ βminΛmin for (j, k) ∈ ℰ.

The next lemma shows that the cross-covariance is Lipschitz continuous given the 

smoothness assumption on ωj,k (Assumption 3(c)). We will use this lemma in the proof of 

Theorem 1, in order to bound the bias of the kernel smoothing estimator (8). Recall that s, 

the maximum node in-degree, was defined in (4).

Lemma 2—Under Assumptions 1–3, the cross-covariance function is Lipschitz for 1 ≤ j, k 
≤ p. More specifically, there exists some θ1 > 0 such that |Vj,k(x) − Vj,k(y)| ≤ θ1s|x − y| for 
any x, y ∈ ℝ.

Recall that the bandwidth h was defined in (8). The following concentration inequality holds 

on the estimated cross-covariance.
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Lemma 3—Suppose that Assumptions 1–3 hold, and let h = c1s−1/2T−1/6 for some constant 
c1. Then

4.3. Proof of Theorem 1

Proof: In what follows, we will consider the event

We will first show that part (b) of Theorem 1 holds. From the Wiener-Hopf equation, (13), 

for each (j, k), we can write

(14)

We thus have

(15)

where the last inequality follows from Young’s inequality (see e.g., Theorem 3.9.4 in 

Bogachev (2007)), which takes the form

(16)

with . Here, we let r = q = 2, p = 1, f = ωj,l, and g = Vl,k.

From Assumption 3(c), we know that ωj,k is bounded by C. Therefore, by the Cauchy-

Schwartz inequality,
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Using (15) and letting V̄
j,k ≡ ||Vj,k||2,(−∞,∞), we get

(17)

The ℓ2-norm of the vector V̄
·,k can then be bounded using the triangle inequality,

Thus, by Assumption 1,

Rearranging the terms, and using the fact that γΩ < 1, gives

(18)

Hence,

(19)

Now, recall that the number of non-zero elements in Ω is card(ℰ), and Ωj,k ≤ γΩ. Thus, the 

inequality becomes

(20)

Hence, no more than  elements of V̄
j,k exceed 

c2s1/2T−1/6. Recalling that V̄
j,k = ||Vj,k||2,(−∞,∞), this implies that no more than

elements of ||Vj,k||2,(−B,B) exceed c2s1/2T−1/6.
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Given the event ℳ, only edges in the set

can be contained in ℰ̂(ζ) for ζ = 2c2s1/2T−1/6. This implies that the size of ℰ̂(ζ) is on the 

order of .

We now proceed to prove part (a) of Theorem 1. Lemma 1 states that ||Vj,k||2,[−B,B] ≥ 

βminΛmin for (j, k) ∈ ℰ. If the event ℳ holds, then for T sufficiently large, ||V̂
j,k||2,[−B,B] > 

2c2s1/2T−1/6 = ζ for (j, k) ∈ ℰ. Therefore, ℰ ⊂ ℰ̂(ζ).

Finally, Theorem 1 follows from the fact that, by Lemma 3, the event ℳ holds with 

probability at least 1 − c3s1/2T7/6p2 exp(−c4T1/6).

5. Discussion

In this paper, we have proposed a very simple procedure for screening the edge set in a 

multivariate Hawkes process. Provided that the process is mutually-exciting, we establish 

that this screening procedure can lead to a very small screened edge set, without incurring 

any false negatives. In fact, this result holds under a subset of the conditions required to 

establish model selection consistency of penalized regression estimators for the Hawkes 

process (Wainwright, 2009; Hansen, Reynaud-Bouret and Rivoirard, 2015). Therefore, this 

screening should always be performed whenever estimating the graph for a mutually-

exciting Hawkes process.

The proposed screening procedure boils down to just screening pairs of nodes by 

thresholding an estimate of their cross-covariance. In fact, this approach is commonly taken 

within the neuroscience literature, with a goal of estimating the functional connectivity 
among a set of p neuronal spike trains (Okatan, Wilson and Brown, 2005; Pillow et al., 

2008; Mishchencko, Vogelstein and Paninski, 2011; Berry et al., 2012). Therefore, this paper 

sheds light on the theoretical foundations for an approach that is often used in practice.
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Appendix A: Technical proofs

A.1. Proof of Lemma 1

Proof—First, we observe that, if Vj,k is non-negative for all j and k, then ωj,l*Vl,k is non-

negative for any j, l, k. Under Assumption 1, we know that (13) holds. We can see from (13) 

that

Therefore, we have

(21)

where the inequality follows from Assumption 2 and the equality holds since
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From Assumption 3(b), we have that ||Vj,k(Δ)||2,[−B,B] ≥ βminΛmin for (j, k) ∈ ℰ.

We now show that the elements of V are non-negative, i.e., Vl,k(Δ) ≥ 0 for 1 ≤ l, k ≤ p, and Δ 

∈ ℝ. Recall from the definition (7) in the main paper that

(22)

where the second equality follows from

(23)

In this proof, we use the Stieltjes integral to rewrite λl(t) in (2) as

(24)

Plugging in λl(t) from (24) into (22) gives

where we use the definition Λk = [dNk(t − Δ)]/{d(t − Δ)}.

Using the fact that (see e.g., Hawkes and Oakes (1974))

we have
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Rearranging the terms gives

(25)

Next, we will rewrite (25) by taking the conditional expectation of dNk or dNm as in (23). 

Note here that, when Δ′ < Δ, we condition dNm on the history up to t − Δ′, i.e., ℋt − Δ′. 

Given ℋt − Δ′, dNk(t − Δ) is fixed since t − Δ < t − Δ′. When Δ′ > Δ, we condition dNk on 

the history up to t − Δ. These cases are discussed separately in the following.

When Δ′ < Δ, for each integral of the summation, it holds that

From the definition of λm(t) in (2), we know that λm(t − Δ′) ≥ μm. Hence, in (25), if Δ′ < Δ, 

it holds that

(26)

On the other hand, when Δ′ ≥ Δ, we have

Expanding λk and Λk yields
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Now, observe that Λm ≥ μm and {dNi(t − Δ − Δ″) dNm(t − Δ′)}/{dΔ′dΔ″} ≥ μiμm by the 

nature of the mutually-exciting process. Thus, for Δ′ ≥ Δ,

(27)

Applying both (26) and (27) to (25) shows that Vl,k(Δ) ≥ 0.

A.2. Proof of Lemma 2

Proof—For any Δ ≥ 0, the integral equation (13) gives

(28)

For any x, y ≥ 0, we can write

(29)

where the last inequality holds since ωj,l ≡ 0 for l ∉ εj. We then have

(30)

For I, we know from Assumptions 2 and 3(c) that

(31)
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For IIl, we can expand the convolution

Without loss of generality, we consider only the case that x ≥ y. We can decompose the 

integrals into parts on the intervals [−x, − y), [−y, b–x), and [b–x, b–y] as

where we use Assumption 3(c) in the second inequality, Assumptions 2 in the third 

inequality, and the boundedness of ωj,l from Assumption 3(c) in the last inequality. 

Recalling that x ≥ y, we have

(32)

Finally, plugging (31) and (32) into (30) gives

(33)

where we set θ1 ≡ θ0Λmax + bθ0Vmax + 2CVmax. Note that the last inequality holds as long 

as s ≥ 1. (The result also holds if s = 0: in this case, the second term in (30) is zero for every 

j and the bound (31) suffices.)

A.3. Proof of Lemma 3

Recall that the estimator of the cross-covariance (8) takes the form
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The proof of Lemma 3 uses the following result. Lemma 4 is based on Proposition 3 of 

Hansen, Reynaud-Bouret and Rivoirard (2015); for completeness, we provide its proof in 

Section A.4.

Lemma 4

Suppose that Assumption 1 holds. We have

(34)

(35)

where c4, c5, and c6 are constants.

We are now ready to prove Lemma 3.

Proof—First, note that

(36)

where we use the definition of V in the third equality. Using the fact that the kernel K(x/h) is 

defined on [−h, h], we can write
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(37)

where the first inequality follows from Lemma 2.

Recall that IIj ≡ T−1Nj(T) and IIk ≡ T−1Nk(T). Applying Lemma 4 and (37), we have, with 

probability at least 1 − 2c5p2T exp(−c4T1/6),

(38)

Letting h = c1s−1/2T−1/6, (38) can be written as

(39)

Lastly, we need a uniform bound on V̂
j,k − Vj,k on the region [−B,B]. We first see that the 

above probability statement holds for a grid of ⌈s1/2T1/6⌉ points on [−B,B], denoted as 

. The gap between adjacent points on this grid is bounded by 2Bs−1/2T−1/6. 

Furthermore, for any Δ ∈ [−B,B], we can find a point on the grid Δi such that |Δ − Δi| ≤ 

2B/⌈s1/2T1/6⌉ ≤ 2Bs−1/2T−1/6. From basic calculus we get that, for all Δ ∈ [−B,B],

(40)

for some constant c2.

Therefore, with probability at least 1 − c3s1/2p2T7/6 exp(−c4T1/6),
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(41)

A.4. Proof of Lemma 4

Lemma 4 follows directly from the proof of Proposition 3 in Hansen, Reynaud-Bouret and 

Rivoirard (2015). The only difference is that we want a polynomial bound on the deviation, 

while Hansen, Reynaud-Bouret and Rivoirard (2015) consider a logarithmic bound. For 

completeness, we state the proof of Lemma 4 below, but note that the proof is almost 

identical to the proof of Proposition 3 in Hansen, Reynaud-Bouret and Rivoirard (2015). We 

refer the interested readers to the original proof in Section 7.4.3 of Hansen, Reynaud-Bouret 

and Rivoirard (2015) for more details.

Throughout this section, we assume that N ≡ (N1, …, Np)T is defined on the full real line. 

We first state some notation that is only used in this section.

1. Following Hansen, Reynaud-Bouret and Rivoirard (2015), we use  to 

denote a constant that depends only on a1, a2, …; and we use the superscript i to 

indicate that this is the ith constant appearing in the proof.

2. Without loss of generality, we assume that supp(ωj,k) ⊂ (0, 1], as in Hansen, 

Reynaud-Bouret and Rivoirard (2015).

3. As in Hansen, Reynaud-Bouret and Rivoirard (2015), we introduce a function 

Z(N) such that Z(N) depends only on {dN(t′), t′∈ [−A, 0)}, and there exist two 

non-negative constants η and d such that

(42)

4. We also introduce the (time) shift operator St so that Z ○ St(N) depends only on 

{dN(t′), t′∈ [−A + t, t)}, in the same way as Z(N) depends on the points of N in 

[−A, 0).

We are now ready to prove the lemma. When proving the bound (34), we only discuss the 

case when j ≠ k. The proof for the case when j = k follows from the same argument and is 

thus omitted.

Proof

In this proof, we will consider a probability bound for [Z ○ St(N) − (Z)] dt ≥ u, where, for 

some κ ∈ (0, 1) to be specified later,

(43)
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Note that, by applying the bound to −Z(·), we can obtain a bound for|Z ○ St(N) − (Z)|. To 

complete the proof, we will verify the statements (34) and (35) by considering some specific 

choices of Z(·).

For any positive integer k such that x ≡ T/(2k) > A, we have

where the inequality follows from the stationarity of N. As in Reynaud-Bouret and Roy 

(2006), let  be a sequence of independent Hawkes processes, each of which is 

stationary with intensities λ(t) ≡ (λ1(t), …, λp(t))T. See Section 3 of Reynaud-Bouret and 

Roy (2006) for more details on the construction of . For each q, let  be the 

truncated process associated with , where truncation means that we only consider the 

points in [2qx − A, 2qx + x]. Now, if we set

(44)

then

(45)

where Te,q is the time to extinction of the process . The extinction time Te,q is introduced 

in Sections 2.2 and 3 in Reynaud-Bouret and Roy (2006). Roughly speaking, it is the last 

time when there is an event for the Hawkes process with intensity λ(t) of the form (2), with 

background intensity μ ≡ (μ1, …, μp)T set to 0 for t ≥ 0. Since Te,q is identically distributed 

for all q, we can focus on one Te,q. Denoting by al the ancestral points with marks l and by 

 the length of the corresponding cluster whose origin is al, we have:

(46)

Then by the exact argument on page 48 of Hansen, Reynaud-Bouret and Rivoirard (2015), 

we have
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(47)

Thus, there exists a constant  depending on A such that if we take , for 

some κ ∈ (0, 1) to be specified later, then

(48)

where c4 is a constant. Note that x = T/2k ≈ T1−κ is larger than A for T large enough 

(depending on A).

Now, note that the event  ≡ {Te,q ≤ T/2k − A, for all q = 0, …, k} only depends on the 

process N. We will first find a probability bound for the first term in (45). In other words, we 

will show that, given the event ,

(49)

Let

Consider the measurable events

where 𝒩̃ is a constant that will be defined later and  represents the number of 

points of  lying in [t − A, t). Let Ω = ∩0≤q≤k–1 Ωq. Then
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We have , where each  can be easily controlled. Indeed, it is 

sufficient to split [2qx–A, 2qx+x] into intervals of size A (there are about  of these) 

and require the number of points in each sub-interval to be smaller than 𝒩̃/2. By stationarity, 

we then obtain

Using Proposition 2 in Hansen, Reynaud-Bouret and Rivoirard (2015) with u = [𝒩̃/2] + 1/2, 

we obtain:

and, thus,

Note that this control holds for any positive choice of 𝒩̃. Thus, for any 𝒩̃ > 0,

(50)

Hence by taking , for  large enough, the right-hand side of (50) is smaller 

than .

It remains to obtain the rate of D ≡ ℘(Σq Fq ≥ u/2 and Ω). For any positive constant ε that 

will be chosen later, we have:

(51)

since the variables  are independent. But,
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and .

Next note that if for any integer l,

then

Hence, cutting  into slices of the type { } and using (50) 

with  for a large enough , we obtain

where in the last inequality, we have used the fact that  by (42). Plugging 

 into the above equation gives

In the same way, following Hansen, Reynaud-Bouret and Rivoirard (2015), we can write

(52)

where . Then, by stationarity,
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where σ2 ≡ [Z(N) − (Z)]. Going back to (51), by (52), we have

using the fact that log(1 + u) ≤ u. Since

one can choose c6 in the definition (43) of u (not depending on d) such that 

 for some z = c4Tκ–2η(1–κ). Hence,

One can choose ε (as in the proof of the Bernstein inequality in Massart (2007), page 25) to 

obtain a bound on the right-hand side in the form of e−z. We can then choose c4 large 

enough, and only depending on η and A, to guarantee that D ≤ e−z ≤ c5 exp(−c4T1–κ).

In summary, we have shown that, given the event ,

With a slight abuse of notation, letting  gives (49).

To complete the proof, we apply the concentration inequality (49) with some specific 

choices of Z(·).

For each pair (j, k), let
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We can check that d = 1 and η = 2 satisfy (42). Then with κ = 5/6 in (49), we get, given the 

event ,

Applying a union bound for all pairs (j, k), we have, given the event ,

(53)

Recall from the concentration inequality (48) that the event  holds with probability at least 

1–pT 1/6 exp(−c4T1/6). Thus, given that pT 1/6 exp(−c4T1/6) is dominated by the right-hand 

side of (53), it holds unconditionally that

which is the statement on Ij,k in (34).

The statement on IIl, l = j, k, in (35) can be shown in a similar manner by taking Z ○ St(N) 

≡ dNj(t)/dt, with η = 1, and κ = 13/18.
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Fig 1. 
Left: In Setting A, the edge set ℰ is composed of 5 connected components, each of which is 

a chain graph containing 20 nodes. Right: In Setting B, ℰ is composed of 10 connected 

components, each of which contains 10 nodes.

Chen et al. Page 29

Electron J Stat. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The quantiles of ||V̂

jk||2,[−5,5] are displayed, for node pairs in ℰ̃ (11), ℰ̃c∩ supp(V), and 

ℰ̃c\supp(V), as a function of the time period T. Left: Results for Setting A. The estimated 

cross-covariances of node pairs in ℰ̃c\supp(V) and ℰc̃ ∩ supp(V) overlap. Center: Results for 

Setting B. The estimated cross-covariances of node pairs in ℰ̃ and ℰ̃c ∩ supp(V) overlap. 

Right: The color legend is displayed.
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Fig. 3. 
For each of 200 simulated data sets, we calculated card(ℰ̂(ζ*)), where ζ* ≡ max {ζ : ℰ ⊆ 
ℰ̂(ζ)}, as a function of the time period T. The curves represent the mean of card(ℰ̂(ζ*)) 

( ); the 2.5% and 97.5% quantiles of card(ℰ̂(ζ*)) ( ); card(ℰ̃) ( ); and 

card(supp(V)) ( ). Left: Data generated under Setting A. Right: Data generated under 

Setting B.
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Fig. 4. 
The constrained penalized optimization problem (10) was performed, for a range of values 

of the tuning parameter λ. The x-axis displays the size of the estimated edge set ℰ̂℘ (12), 

and the y-axis displays the number of true positives, averaged over 200 simulated data sets. 

The curves represent performance when ζ is chosen to yield card(ℰ̂(ζ)) = 4card(ℰ̃) (T = 300 

[ ]and T = 600 [ ]), and when ζ is chosen to yield card(ℰ̂(ζ)) = 8card(ℰ̃) (T = 300 

[ ] and T = 600 [ ]). We also display performance of the unconstrained penalized 

optimization problem (5) (T = 300 [ ] and T = 600 [ ]).
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