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Abstract

The very close structural similarities between cysteine and homocysteine present a great challenge 

to achieve their selective detection using regular fluorescent probes, limiting the biological and 

pathological studies of these two amino thiols. A coumarin-based fluorescent probe was designed 

featuring pH-promoted distinct turn-on followed by ratiometric fluorescence responses for Cys 

and turn-on fluorescence response for Hcy through two different reaction paths. These specific 

responses demonstrate the activity differences between Cys and Hcy qualitatively for the first time. 

The probe could also be used for Cys and Hcy imaging in living cells.
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Cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are closely related to the 

pathology of many diseases. The deficiency of Cys was reported to cause slowed growth, 

edema, liver damage, skin lesions, and weakness.1 The normal intracellular concentration of 

Cys is 30–200 μM.2 For Hcy, the normal concentration in serum is approximately 5–12 μM. 

Excess Hcy is associated with diseases including Alzheimer's, neural tube defects, and 

mental disorders.3 GSH intracellular concentrations are 1–10 mM.4 Because of the similar 

structures and chemical properties among Cys, Hcy, and GSH, most commercially available 

probes for thiols do not enable their discrimination, thus impeding further studies in their 

roles on pathogenesis and physiological activities.5 There have been few probes reported to 

date with distinct detection characteristics for these three biothiols.6 In 2011, the Strongin 

group utilized the acrylate moiety to synthesize a benzothiazole derivative for discriminative 

detection of exogenous Cys and Hcy in human plasma through a nucleophilic addition-

cyclization process.6a In a later work, a micelle-catalyzed detection procedure specific for 

GSH was developed on the basis of the same strategy.6b Subsequently, the Yang group 

reported a BODIPY-based fluorescent probe for specific detection of GSH over Cys and Hcy 

through a nucleophilic chloride displacement by the thiol group.6c For Cys and Hcy, the 

thiol-substituted products further undergo an intramolecular substitution of the thiol group 

by the amino group.

For GSH, its tripeptide structure hinders the attack by the amino group. Other probes have 

been developed in recent years that were based on this design strategy and have made 

additional progress in biothiol detection.6d,7 Thus, the focus should be to further develop 

fluorescent probes that address discriminative detection between Cys and Hcy.8,7d 

Concentrated on this point, the distinction of the pKa values (pKa Cys = 8.0; pKa Hcy = 8.87; 

pKa GSH = 9.20), which may reflect the nucleophilic addition activity of thiol moieties 

depend on the pH environment of the three biothiols and afford the opportunity to detect 

them separately.9 Additionally, the different steric-hindrance effects of the three biothiols 

can also be used for discriminant detection.10 For the reaction site, the acryloyl group 

displayed excellent sensitivity and selectivity for Cys,11 especially the work for discriminant 

detection of Cys and Hcy as reported by the Strongin group.6a Based on this schematic, we 

modified the coumarin moiety to synthesize probe 1 for fluorescence detection of thiols 

(Scheme 1). The detection mechanisms of probe 1 toward Cys and Hcy were the thiol-
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induced nucleophilic addition–cyclization process and sensitive pH-promoted nucleophilic 

addition in aqueous solution, respectively. 1H NMR titration experiments and mass (MS) 

data confirmed these processes.

The spectroscopic properties of probe 1 toward biothiols were measured through time-

dependent UV–vis and fluorescence spectrometry in Hepes buffer/DMSO (1:1, v/v, pH 7.4) 

solution. As shown in Figure 1a, probe 1 itself displayed dim fluorescence emission at 559 

nm. However, the addition of Cys into the probe 1 containing buffer induced a significant 

blueshifted fluorescence emission at 499 nm with the excitation at 447 nm and plateaued 

with 44-fold enhancement in 30 min. The corresponding UV–vis spectrum displayed 7 nm 

blue shift within 60 min (Figure 1b). For Hcy addition, a quarter-fold fluorescence emission 

enhancement at 499 nm was observed compared with the Cys-probe system, and the UV–vis 

spectrum was almost invariable (Figure S4). At the same time, the responses of probe 1 
toward Hcy in this system were hysteretic (Figure 1d). However, GSH was virtually inert to 

probe 1 in the detection environment (Figure S4). These optical responses of probe 1 toward 

the three thiol-containing amino acids might be caused by the nucleophilic addition process 

displayed in Scheme 1, which resulted in the specific detection of Cys in Hepes buffer/

DMSO (1:1, v/v, pH 7.4).

Encouraged by our previous work12 and the emergence of the weak responses of probe 1 

toward Hcy in the above system, we further measured the time-dependent UV–vis and 

fluorescence spectra in Hepes buffer/DMSO (1:1, v/v) with a slightly higher pH value (pH = 

7.8). As expected, the responses of probe 1 toward both Cys and Hcy were accelerated 

(Figure 2). As a result, the turn-on fluorescence responses of probe 1 to Cys at 499 nm 

peaked within 12 min, then decreased, accompanied by the increase of a new signal centered 

at 554 nm over extended periods of time (Figure 2a,b). Corresponding to the fluorescence 

changes, the UV–vis responses of probe 1 to Cys displayed an apparent blue shift within the 

first 30 min and then reversed with red shift changes in the subsequent 90 min (Figure S6). 

Neither Hcy nor GSH induced the second fluorescence signal in the present detection 

system. Interestingly for GSH, pH 7.8 induced a slight responses compared to pH 7.4, which 

further proved the pH-regulated nucleophilic addition activities of the three thiols. The 

specific pH-promoted changes of probe 1 toward Cys may be caused by the stepwise 

detection processes presented in Scheme 1. The pH modulated turn-on and subsequent 

ratiometric fluorescence responses of probe 1 with Cys, Hcy, and GSH provided chances for 

distinct detection of the three similar biothiols. To verify the threshold of the pH-regulated 

two-stage responses, we further studied the detection systems at pH 7.6 and 8.0. The result 

showed that the differences in the fluorescence sensing of probe 1 toward Cys, Hcy, and 

GSH occur when the pH value of the system exceeds 7.6 and that there is a proportional 

relation between fluorescence change and increasing pH value (Figures S5 and S7). These 

specific fluorescence responses induced by minor pH changes reflected the activity 

differences among Cys, Hcy, and GSH qualitatively.

The probe not only showed a pH-promoted sensitive response to the biothiols but also had 

an excellent selectivity toward Cys, Hcy, and GSH over various canonical amino acids. As 

shown in Figure 1c, only Cys and Hcy could induce the turn-on fluorescence responses at 

499 nm within 60 min, and other amino acids (which included GSH) did not interfere with 
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the detection process. Furthermore, in the Hepes buffer/DMSO (1:1, v/v, pH 7.8) system, 

probe 1 displayed distinct fluorescence responses toward Cys and Hcy without interference 

of other amino acids (Figure 2d). Similarly, the detection processes in the pH 7.6 and 8.0 

systems maintained the same results as above (Figure S8). These data showed that probe 1 
could selectively detect Cys and Hcy through two emission channels.

To further confirm the detection mechanisms of probe 1 toward Cys and Hcy, we carried out 

time-dependent 1H NMR experiments upon addition of equivalent amounts of Cys and Hcy 

to probe 1 in DMSO-d6 (Figure S1). As shown in Figure 3, the addition of Cys reduced the 

signals at 6.19, 6.44, and 6.57 ppm (j, k) that belong to the acryloyl group and disappeared 

completely after 30 min. At the same time, the signals at 7.29 (h) and 7.80 ppm (g) reduced 

gradually and two new signals at 6.84 and 7.57 emerged which are consistent with the 1H 

NMR data of compound 5. These signal changes demonstrated how the nucleophilic 

addition–cyclization process occurred during the detection process of probe 1 toward Cys 

selectivity. Furthermore, the HR-MS data of the Cys-probe 1 system in Figure S2 also 

supported the same aforementioned mechanism. For Hcy, however, the original 1H NMR 

signals at 6.19, 6.44, and 6.57 ppm (j, k) decreased while other signals downfield remained 

the same (Figure 3), which indicated that the olefinic bond of the acryloyl group in probe 1 
was broken but the ester group still remained intact. Moreover, in the ESI-MS data in Figure 

S3 we found m/z = 574.75 for compound 6 (n = 2) [M + Na]+. These changes in the reaction 

processes may be caused by the more stable 7-membered ring in the case of Cys compared 

to the 8-membered ring for Hcy.

To evaluate the applicability of probe 1 in biological systems, we measured the MTT assay 

with HepG2 cells, and the results showed minimal cytotoxicity of probe 1 at a concentration 

of 50 μM (87.6% viability) (Figure S9). The cell-imaging experiments were measured with 

HepG2 cells in the pH 7.4 system. As shown in Figure 4, cells preincubated with 1 mM 

NEM and then 5 μM probe 1 in HBSS buffer (containing 10 μM nigericin, an H+/K+ 

ionophore to homogenize the intra-and extracellular pH)13 displayed nearly nonfluorescence 

emission (a). However, the further exogenous Cys and Hcy induced noticeable fluorescence 

emission (b, c), and interestingly, the cross-sectional analysis of a single cell for Cys and 

Hcy respectively displayed distinct intensity differences (g). At the same time, the 

exogenous GSH displayed nonvariance with the controlled trial (Figure S10). These results 

demonstrated that probe 1 could detect Cys and Hcy specifically under physiological 

conditions.

To further value the discriminative detection of Cys and Hcy in living cells, we measured the 

fluorescence imaging experiments with HepG2 cells in pH 7.8. As shown in Figure 5, cells 

precultured with 1 mM NEM and then 5 μM probe 1 in HBSS buffer (containing 10 μM 

nigericin) displayed nearly nonfluorescence emission in both the green and red channels (a, 

d). Further incubation with Cys induced distinct fluorescence emission in the two emission 

channels (b, e). As for Hcy, these cells displayed strong fluorescence emission in the green 

channel but very low emission in the red channel (c, f). The cross-sectional analysis of a 

single cell in the green and red channels for Cys and Hcy, respectively, displayed a large 

signal ratio that demonstrated the utility of probe 1 for discrimination detection of Cys and 

Hcy in living cells (j, k) (Figure S11). Consistently, the exogenous GSH could not induce the 
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fluorescence responses in the pH 7.8 system (Figure S12). These minor pH changes induced 

fluorescence responses of probe 1 toward Cys and Hcy in living cells promoted a deeper 

insight into the activities of the biothiols in biological systems.

In conclusion, we designed a coumarin-based fluorescent probe for discriminative detection 

of Cys and Hcy through two emission channels. The reaction mechanism involves a 

nucleophilic addition step followed by intramolecular cyclization and cleavage. Probe 1 was 

able to detect Cys through a turn-on-ratiometric fluorescence response when the pH of the 

reaction was set at 7.6, while Hcy would only undergo the nucleophilic addition step with a 

turn-on fluorescence signal. Increasing the reaction pH up to 8.0 modulated the turn-on 

fluorescence at 499 nm of probe 1 toward Cys, Hcy, and GSH with high selectivity. Further, 

imaging studies with HepG2 cells showed that probe 1 can detect Cys and Hcy in live cells 

using two emission channels. These results have promoted ongoing related studies of 

fluorescent probes for thiols in subcellular structures at either pH 8.0 in mitochondria or at 

pH 4.5 in lysosomes. The pH-promoted detection mechanism provides a new pathway for 

the design of thiol probes and may bring a deeper insight into the biological activities of 

these amino thiols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Time-dependent fluorescence emission spectra of 1 (30 μM) in the presence of 10 equiv 

of Cys in Hepes buffer/DMSO (1:1, v/v, pH 7.4) at 25 °C. (b) Corresponding time-

dependent UV–vis spectra of 1 (30 μM) in the presence of 10 equiv of Cys in Hepes buffer/

DMSO (1:1, v/v, pH 7.4) at 25 °C. (c) Fluorescence emission spectra of 1 (30 μM) upon 

addition of 10 equiv of Cys, Hcy, GSH, Ala, Asn, Arg, Asp, Gln, Glu, Gly, His, Ile, Leu, 

Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val in Hepes buffer/DMSO (1:1, v/v, pH 7.4) at 

25 °C. (d) Time-dependent fluorescence emission intensity changes of 1 toward 10 equiv of 

biothiols at 499 nm (λex = 447 nm, slit: 5 nm/5 nm).
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Figure 2. 
(a, b) Time-dependent fluorescence emission spectra of 1 (30 μM) in the presence of 10 

equiv of Cys in Hepes buffer/DMSO (1:1, v/v, pH 7.8) at 25 °C. (c) Time-dependent 

fluorescence emission spectra of 1 (30 μM) in the presence of 10 equiv of Hcy in Hepes 

buffer/DMSO (1:1, v/v, pH 7.8) at 25 °C. (d) Fluorescence spectra of 1 (30 μM) upon 

addition of 10 equiv of Cys, Hcy, GSH, Ala, Asn, Arg, Asp, Gln, Glu, Gly, His, Ile, Leu, 

Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val in Hepes buffer/DMSO (1:1, v/v, pH 7.8) at 

25 °C. (λex = 447 nm, slit: 5 nm/5 nm).
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Figure 3. 
Time-dependent 1H NMR experiments of probe 1 toward Cys and Hcy in DMSO-d6. Spectra 

for probe 1 + Cys, and probe 1 + Hcy were obtained 30 min after addition.
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Figure 4. 
(a, d) Confocal fluorescence image of HepG2 cells preincubated with 1 mM NEM for 30 

min and further incubated with HBSS (Hanks' Balanced Salt Solution (with Ca2+, Mg2+)) of 

pH 7.4 in the presence of 10 μM nigericin and 5 μM probe 1 for 30 min. (b, e) Using the 

control procedures, the cells were further incubated with 100 μM Cys in HBSS of pH 7.4 in 

the presence of 10 μM nigericin for 60 min. (c, f) Using the control procedures, the cells 

were further incubated with 100 μM Hcy in HBSS of pH 7.4 in the presence of 10 μM 

nigericin for 60 min. (g) Cross-sectional analysis along the white line in the insets (single 

cell in white squares in (b) and (c), respectively). λex = 458 nm; scale bar =30 μm. Green 

channel: 500 ± 20 nm.
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Figure 5. 
(a, d, g) Confocal fluorescence image of HepG2 cells preincubated with 1 mM NEM for 30 

min and further incubated with HBSS (Hanks' Balanced Salt Solution (with Ca2+, Mg2+)) of 

pH 7.8 in the presence of 10 μM nigericin and 5 μM probe 1 for 30 min. (b, e, h) Using the 

control procedures, the cells were further incubated with 100 μM Cys in HBSS of pH 7.8 in 

the presence of 10 μM nigericin for 60 min. (c, f, i) Using the control procedures, the cells 

were further incubated with 100 μ;M Hcy in HBSS of pH 7.8 in the presence of 10 μM 

nigericin for 60 min. (j, k) Cross-sectional analysis along the white line in the insets (single 

cell in white squares in (b) and (c), (e) and (f) respectively). λex = 458 nm; scale bar =30 

μm. Green channel: 500 ± 20 nm; Red channel: 600 ± 25 nm.
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Scheme 1. 
Design of Probe 1 and the Divisional Detection of Cys and Hcy
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