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Abstract

Background—Evolving animal studies and limited epidemiological data show that prenatal air 

pollution exposure is associated with childhood obesity. Timing of exposure and child sex may 

play an important role in these associations. We applied an innovative method to examine sex-

specific sensitive prenatal windows of exposure to PM2.5 on anthropometric measures in 

preschool-aged children.
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Methods—Analyses included 239 children born ≥37 weeks gestation in an ethnically-mixed 

lower-income urban birth cohort. Prenatal daily PM2.5 exposure was estimated using a validated 

satellite-based spatio-temporal model. Body mass index z-score (BMI-z), fat mass, % body fat, 

subscapular and triceps skinfold thickness, waist and hip circumferences and waist-to-hip ratio 

(WHR) were assessed at age 4.0±0.7 years. Using Bayesian distributed lag interaction models 

(BDLIMs), we examined sex differences in sensitive windows of weekly averaged PM2.5 levels on 

these measures, adjusting for child age, maternal age, education, race/ethnicity, and pre-pregnancy 

BMI.

Results—Mothers were primarily Hispanic (55%) or Black (26%), had ≤12 years of education 

(66%) and never smoked (80%). Increased PM2.5 exposure from 8–17 and 15–22 weeks gestation 

was significantly associated with increased BMI z-scores and fat mass in boys, but not in girls. 

Higher PM2.5 exposure from 10–29 weeks gestation was significantly associated with increased 

WHR in girls, but not in boys. Prenatal PM2.5 was not significantly associated with other measures 

of body composition. Estimated cumulative effects across pregnancy, accounting for sensitive 

windows and within-window effects, were 0.21 (95%CI=0.01–0.37) for BMI-z and 0.36 

(95%CI=0.12–0.68) for fat mass (kg) in boys, and 0.02 (95%CI=0.01–0.03) for WHR in girls, all 

per μg/m3 increase in PM2.5.

Conclusions—Increased prenatal PM2.5 exposure was more strongly associated with indices of 

increased whole body size in boys and with an indicator of body shape in girls. Methods to better 

characterize vulnerable windows may provide insight into underlying mechanisms contributing to 

sex-specific associations.
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1. INTRODUCTION

Nearly one third of children in the United States (U.S.) are overweight or obese, a proportion 

that has more than doubled since 1980 (Ogden et al., 2016). While some data suggest that 

U.S. obesity rates are stabilizing, rates remain high in preschoolers (CDC 2013) and 

continue to show disparities for lower-socioeconomic status (SES) groups (Yanovski and 

Yanovski 2011). Moreover, correlated phenotypes in infants and toddlers, such as faster 

weight gain and higher body fat, predict later life obesity-related trajectories (Barker 2012; 

Taveras et al., 2009). For example, children who are obese are five times as likely as those 

who are not to be obese adults (CDC 2013). Moreover, obesity increases the risk of a 

number of physical and mental health disorders over the life course (Bogers et al., 2007; 

CDC 2013; Strazzullo et al., 2010). Such trends result in U.S. spending approaching nearly 

$190 billion annually on obesity related healthcare expenses (Cawley and Meyerhoefer 

2012). Identifying potentially modifiable risk factors is a research priority.

While current standards mandate prevention to start soon after birth (2010), research 

increasingly shows that programming of obesity begins prenatally (Sutton et al., 2016). 

Moreover, while attempts to curb childhood obesity have largely focused on physical 

Chiu et al. Page 2

Environ Res. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity and diet, childhood obesity is likely influenced by a range of environmental factors 

beyond nutrition and exercise (Birch et al., 2011). Recent evidence points to a role for 

chemical environmental exposures in programming obesity (Vrijheid et al., 2016).

Emerging evidence specifically supports a role for particulate air pollution, a pro-oxidant 

environmental exposure, in obesity programming. Particulate air pollution has been 

increasingly linked to obesity and related phenotypes in animal models (Bolton et al., 2014). 

Oxidative stress (OS) plays a role in the generation and maintenance of an obesity 

phenotype in both isolated adipocytes and animals (Aroor and DeMarco 2014; De Marchi et 

al., 2013; Imhoff and Hansen 2010; Ye et al., 2015). Notably, obesity involves excess 

accumulation of adipose tissue, as well as dysregulation of glucose and lipid metabolism. 

Reactive oxygen species (ROS) promote adipogenic signaling pathways and disrupted 

adipogenesis (Atashi et al., 2015; Iyer et al., 2010). Moreover, recent prospective 

epidemiological data link early postnatal ambient pollution to child obesity (McConnell et 

al., 2015), and also link ambient pollution exposure, even below air quality guidelines, to 

glucose tolerance during pregnancy and food reward hormone dysregulation (Calderon-

Garciduenas et al., 2015; Fleisch et al., 2014), both of which are identified intermediate 

pathways to offspring/child obesity (Hillier et al., 2007; Jastreboff et al., 2014; Kubo et al., 

2014; Poston 2010).

Ambient air pollution effects likely begin in utero. In pregnant women, inhaled particles 

translocate from the lungs via the blood to other organs including the placenta 

(MohanKumar et al., 2008). Particulate matter can also invoke a chronic inflammatory 

process in the mother’s lung resulting in systemic inflammation and consequent placental 

OS (Liu et al., 2016). Our group and others have linked in utero air pollution exposure with 

low birth weight, a potential predecessor of overweight/obesity in later life (Bell et al., 2007; 

Kloog et al., 2012; Lakshmanan et al., 2015; Padula et al., 2012).

Prospective human studies examining the association between prenatal traffic-related air 

pollution exposure and childhood obesity remain sparse. Rundle et al. linked prenatal 

exposure to polyaromatic hydrocarbons (PAHs) to obesity in children assessed at ages 5 and 

7 years (Rundle et al., 2012). Fleisch et al. showed that prenatal exposure to fine particulate 

matter was associated with more rapid postnatal weight gain in 6-month-old infants (Fleisch 

et al., 2015). This group also demonstrated a link between proximity to major roadways at 

birth (<50 meters) and fat mass at both early- and mid-childhood (median 3.3 and 7.7 years 

of age) (Fleisch et al., 2016). Lavigne et al. showed that increased exposure to air pollution 

during pregnancy was associated with higher levels of umbilical cord blood adinopectin, 

which regulates glucose and fatty acid breakdown in the developing fetus, and may 

contribute to obesity in later childhood (Lavigne et al., 2016).

Notably, existing studies of prenatal air pollution effects on childhood obesity have 

considered subjective assignment of exposure timing, such as air pollution exposure in a 

certain trimester or averaged over the entire pregnancy or over a certain length of time 

before pregnancy. This makes it difficult to compare the results across studies as well as to 

better delineate the critical windows affecting fetal programming. Clinically defined 

trimesters do not necessarily correspond to relevant vulnerable periods of body growth. 
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Measuring exposure in an arbitrarily defined susceptibility window that does not overlap 

with periods of physiological vulnerability may lead to underestimated or even missed 

associations (Wilson et al., 2017a). In addition, animal data demonstrate sex-specific 

vulnerability to prenatal oxidant injury (Minghetti et al., 2013), which has been linked to 

both air pollution and infant growth (Sun et al., 2009). Recent analyses from our group 

combined advanced statistical methods with highly temporally resolved exposure data to 

more objectively identify susceptibility windows and enhance the power to detect 

associations and identify vulnerable groups (i.e., effect modification) (Chiu et al., 2016; Hsu 

et al., 2015). These analyses demonstrated sex-specific and time-varying associations of 

prenatal air pollution exposure on asthma and neurodevelopmental outcomes in children, but 

to our knowledge, this has not yet been examined for early childhood growth indicators.

We leveraged data on daily exposure to particulate matter with a diameter ≤2.5 μm (PM2.5) 

measured over gestation and applied advanced statistical methods to more precisely identify 

the sensitive windows of time-varying prenatal PM2.5 exposure effects on anthropometric 

measurements in preschool-aged children from an ethnically mixed lower-SES inner city 

population. We also examined effect modification by child sex.

2. MATERIALS AND METHODS

Participants were from the Asthma Coalition on Community, Environment and Social Stress 

(ACCESS) project, a pregnancy cohort originally funded to recruit 500 mother-child pairs to 

examine independent and interactive effects of early life stress and physical toxins on 

childhood respiratory health (Wright et al., 2008). Between August 2002 and January 2007, 

English- or Spanish-speaking pregnant women (≥18 years old) receiving care at Brigham & 

Women’s Hospital (BWH), Boston Medical Center (BMC), and affiliated community health 

centers were enrolled (at 28.4 ± 7.9 weeks gestation). Seventy-eight percent (78%) of 

women receiving prenatal care, who were approached by research staff on select clinic days, 

were eligible and agreed to enroll. There were no significant differences on race/ethnicity, 

education, and income between women enrolled and those who declined. A total of 455 

women gave birth to a live born infant and continued follow-up. Supplemental funding was 

obtained to assess anthropometry in children aged 3 to 5 years; of n=358 children age-

eligible for this initiative, n=277 completed anthropometry assessments at age 4.0±0.7 years 

of age. Among these children, n=30 were born <37 weeks, and n=8 did not have prenatal 

PM2.5 data (i.e., did not have accurate addresses during pregnancy), resulting in n=239 

available for analysis. Those included in analyses did not differ significantly from those not 

included in analyses based on key covariates including race/ethnicity, maternal age at 

enrollment, maternal educational status, maternal pre-pregnancy weight, prenatal smoking, 

child’s birth weight or gestational age. Procedures were approved by the human studies 

committees at BWH and BMC. Mothers provided written consent in their preferred 

language.

2.1 Prenatal PM2.5 Exposure

As described previously (Chiu et al., 2016), we used a validated hybrid satellite based 

spatio-temporal prediction model to estimate each woman’s prenatal exposure to PM2.5, an 
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index of ambient pollution from traffic and other sources, based on residence over pregnancy 

(i.e., at enrollment and updated if they moved). In brief, the model combines the aerosol 

optical depth (AOD) data derived by Moderate Resolution Imaging Spectroradiometer 

(MODIS) at a 10 km spatial resolution with traditional land-use regression (LUR) predictors 

to yield residence-specific estimates of daily PM2.5, as detailed elsewhere (Kloog et al., 

2011). The model was run using day-specific AOD data were calibrated against ground 

monitor-based PM2.5 measurements derived from 78 monitoring stations covering New 

England and incorporated traditional LUR terms (traffic density, point sources, etc) and 

meteorological variables (temperature, wind speed, visibility, elevation, distance to major 

roads, percent of open space, point emissions and area emissions). The relationship between 

AOD and PM2.5 was calibrated daily using data from grid cells with both AOD values and 

monitor data using mixed models with random slopes for day, nested within regions. If the 

AOD data was not available for certain locations due to metrological conditions such as 

cloud coverage or snow, the predictions at these locations were imputed by fitting the model 

with a thin plate spline of latitude and longitude and a random intercept for each cell. The R2 

of “out of sample” ten-fold cross validation for daily values were 0.83 for days with AOD 

and 0.81 for days without AOD data. We then calculated weekly averaged PM2.5 levels for 

each week over pregnancy for each participant to reduce potential noise caused by day-to-

day PM2.5 variation and autocorrelations.

2.2 Anthropometric Measurements

2.2.1 Body mass index (BMI)—Children’s height while standing was measured without 

shoes (to nearest 0.1 cm) using a portable stadiometer (Shorr Productions, Olney, MD) and 

weight was measured (to nearest 0.1 kg) in light clothing using a calibrated portable 

electronic scale (Seca model 881; Seca Corporation, Hanover, MD). BMI (kg/m2) was 

calculated as weight divided by square of height. BMI z-scores were calculated based on 

sex- and age- specific normative U.S. data using the Centers for Disease Control (CDC) 

2000 growth chart (CDC 2000).

2.2.2 Bioimpedance—Bipolar bioelectrical impedance was used to estimate fat mass 

(kg), fat free mass (kg), and percent body fat using the BIM4 bio-impedance analyzer 

(Impedimed, Queensland, Australia) which has been validated in young children (Rush et 

al., 2013).

2.2.3 Skinfold thickness—Subscapular (SS) and triceps skinfold (TS) thicknesses (mm) 

were measured using Harpenden skinfold calipers and standard techniques (Oken et al., 

2005); the sum (SS + TS) and ratio (SS:TS) were also calculated.

2.2.4 Waist and hip circumferences—Waist circumference was measured midway 

between the lowest rib and the top of the iliac crest at end expiration and hip circumference 

(to nearest 0.1 cm) over the great trochanters using a measuring tape (Hoechstmass Balzer 

GmbH, Sulzbach, Germany). Waist-to-hip ratio (WHR) was calculated by dividing waist 

circumference by hip circumference.
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2.3 Covariates

Maternal age, race/ethnicity, and educational status were ascertained at enrollment; 

information about child’s sex, date of birth, gestational age at birth, and birth weight were 

obtained by medical record review. Women’s pre-pregnancy BMI (kg/m2) was calculated 

from height and pre-pregnancy weight reported at enrollment. An internal validation study 

comparing self-report and measured height and weight available in 121 women assessed 

early in pregnancy (<10 weeks gestation) showed good agreement across all levels of height 

and weight (Wright et al., 2013). We calculated length of gestation using last menstrual 

period, and sex-specific birth weight for gestational age z-scores were calculated based on 

the U.S. national reference (Lakshmanan et al., 2015; Oken et al., 2003).

2.4 Statistical Analysis

Analyses included 239 mothers and their singleton children born at ≥37 weeks gestation. In 

order to identify sensitive windows for the effects of prenatal PM2.5 in relation to 

anthropometric outcomes, we applied a distributed lag model (DLM) (Gasparrini et al., 

2010; Zanobetti et al., 2000). Using a constrained DLM, we estimate the time-varying 

association for each participant’s weekly exposures throughout the gestational period and 

anthropometric outcomes. Significant sensitive exposure windows were identified as weeks 

during pregnancy with a statistically significant association as previously described (Chiu et 

al., 2016; Hsu et al., 2015).

To examine effect modification by child sex, we estimated the interaction of prenatal PM2.5 

× sex using Bayesian distributed lag interaction models (BDLIMs) as recently detailed 

elsewhere (Wilson et al., 2017b). In brief, BDLIM extends the traditional constrained DLM 

framework for critical windows to more fully account for effect modification - in our case, 

by child sex. The constrained DLM assumes that boys and girls either have the same 

sensitive window and within-window effect or that they have both different windows and 

different within-window effects. In contrast, BDLIM partitions the DLM into shape and 

scale components, which allows the additional possibilities of boys and girls having the 

same sensitive window but different within-window effect or the same within-window effect 

but different sensitive windows. The BDLIM for child i (i=1, …, n) who is sex j (j=1 for 

female and j=0 for male) is , where aj is a fixed sex-specific 

intercept, βj, is the regression coefficient characterizing the sex-specific association between 

weighted PM2.5 exposure and anthropometric outcome,  is the weighted 

exposure, and  is the covariate regression term. BDLIM partitions the time-varying 

association between exposure and outcome into two components: 1) the weights, wjt, that 

identify critical windows of susceptibility and 2) the coefficients, βj, that identify the 

magnitude of the within-window effects. When the weights are constant over time in both 

groups, BDLIM is equivalent to a model with mean exposure over pregnancy interacted with 

child sex. When the weights vary by time, the model identifies time periods with greater 

weight (i.e., potential sensitive windows) that will graphically appear as a bump during 

which exposure is significantly associated with the respective anthropometric indicators. 

This data-driven approach automatically determines whether the wjt and βj are the same or 
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different for each group based on the likelihood of each pattern of heterogeneity. In other 

words, the BDLIM is able to identify the best fit pattern of effect modification by sex among 

the four patterns: 1) boys and girls have the same weights (shape of distributed lag function) 

and the same coefficients (within window effect or scale); 2) boys and girls have the same 

weight (windows) function but different coefficients; 3) boys and girls have different weights 

but the same coefficients; 4) and boys and girls have both different weights and coefficients. 

The association between exposure and outcome was then estimated under the effect 

modification pattern that is best supported by the data. Deviance information criterion (DIC) 

was used to determine the best fitting model with optimal parameters (e.g., number of knots 

and degrees of freedom used) and whether the weights and effects were different across sex 

(Wilson et al., 2017b).

The BDLIM incorporates the data from all exposure time points simultaneously and 

assumes that the association between the outcome and exposure at a given time point varies 

smoothly as a function of time while controlling for exposure at all other time points. It also 

yields an estimate of a cumulative effect across all time points (in our case, across the entire 

pregnancy) accounting for both the sensitive windows and the strength of within-window 

associations for each sex group, by calculating the sum of βj × wjt for each time point.

Standard controls (maternal age, child’s sex, child’s age at anthropometric assessment) as 

well as potential confounders (maternal race/ethnicity, education, pre-pregnancy BMI) were 

included in analyses. We also conducted sensitivity analyses additionally adjusting for 

postnatal daily PM2.5 levels predicted by the spatio-temporal model averaged over the first 2 

years of life and perinatal smoking, as well as birth weight for gestational age z-score, a 

potential pathway variable. All analyses were implemented in R statistical software (v3.3.1, 

Vienna, Austria).

3. RESULTS

3.1 Participant characteristics

Most mothers were ethnic minority (55% Hispanic, 26% African American), had ≤ 12 years 

of education (66%), and never smoked (80%) (Table 1). Table 2 summarizes the distribution 

of child anthropometry measurements and prenatal PM2.5 exposure by sex. Prenatal PM2.5 

levels were similar for boys and girls and there were no significant sex differences in terms 

of maternal age at enrollment, race/ethnicity, education, pre-pregnancy BMI, and smoking 

status or child’s birth weight for gestational age z-score or age at anthropometry assessment 

(Tables 1–2).

3.2 Identification of sensitive windows and sex-specific associations

When examining the association between prenatal PM2.5 exposure over gestation and 

anthropometry using DLMs in the sample as a whole, only the calculated index, WHR, was 

significantly associated with exposure at 2–22 weeks gestation (Supplemental Materials, 

Figure S1). However, examining the interaction between prenatal PM2.5 and child’s sex in 

relation to anthropometric outcomes using BDLIMs revealed significant sexually-dimorphic 

associations in several indices (Figures 1–3). When interpreting the figures, “sensitive 
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windows” graphically appear as a bump during which exposure is significantly associated 

with the respective outcome. Analyses revealed a significant association between higher 

PM2.5 exposure in early-to-mid pregnancy (8–17 weeks of gestation) and higher BMI z-

scores in boys, but not in girls (Figure 1). Higher PM2.5 levels in mid-pregnancy (15–22 

weeks of gestation) were significantly associated with increased fat mass among boys, but 

not in girls (Figure 2). On the other hand, a significant association between higher PM2.5 

levels and increased WHR among girls with a sensitive window spanning 10–29 weeks 

gestation was seen, whereas the association was only suggestive in boys (Figure 3). We did 

not find statistically significant sensitive prenatal windows for the remaining anthropometric 

measurements. For the respective outcome measurements with identified significant sex-

specific sensitive exposure windows, the BDLIM analysis found that effect modification by 

sex was attributable to difference in the magnitude of the within-window association (i.e., βj) 

between boys and girls, while the window (i.e., wjt) was not different between the two sexes 

(the normalized posterior density was 0.56, 0.98, and 0.97 for BMI-z, fat mass, and WHR 

models, respectively, which can be interpreted as a probability that the model with a 

common window but different magnitudes was the best fitting pattern of effect 

modification).

3.3 Cumulative effects across pregnancy accounting for sensitive windows

In order to further assess the associations over the entire pregnancy while accounting for 

time-varying associations, we also estimated the cumulative effects accounting for sensitive 

windows and within-window associations identified by BDLIMs (Table 3). The estimated 

cumulative effects of prenatal PM2.5 exposure (per μg/m3 increase in PM2.5) were significant 

for BMI-z (0.21, 95%CI=0.003–0.37) and fat mass (0.36, 95%CI=0.12–0.68) in boys, but 

not in girls. The estimated cumulative effect of prenatal PM2.5 was significant for WHR 

among girls (0.02, 95%CI=0.01–0.03) and only suggestive in boys (0.006, 95%CI= 

−0.0001–0.014).

3.4 Sensitivity analyses

Finally, sensitivity analyses additionally including postnatal PM2.5 levels, perinatal smoking, 

and birth weight for gestational age z-scores in the models showed similar sex-specific 

patterns for significant associations as in our main analyses (Supplemental Materials, 

Figures S2–S4 and Table S1).

4. DISCUSSION

These data add to a sparse literature linking in utero traffic-related air pollution exposure and 

early childhood body composition in two significant ways. First, this is the first study to 

leverage weekly address-specific PM2.5 exposure estimates and Bayesian distributed lag 

interaction models to examine time-varying effects in a data driven fashion rather than 

assigning a priori exposure time periods arbitrarily (e.g., averaged over a certain length of 

time before birth or using clinically defined trimesters) in order to more definitively identify 

sensitive windows for effects on child growth. In addition, the use of BDLIM allowed us to 

directly examine the time-varying interaction by sex and estimation of cumulative effects 

across the pregnancy accounting for both sensitive windows and within-window effects. Our 
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data suggested that increased exposure to PM2.5 in early to mid-pregnancy was associated 

with increased fat mass and higher BMI z-scores among boys. Among girls, higher exposure 

to PM2.5 from early-to-mid pregnancy was associated with increased WHR.

More refined estimation of the sensitive time windows in which air pollution has the greatest 

impact may enhance our insight into underlying mechanisms as well as the etiology of sex-

specific effects on child growth. Oxidative stress is one of the leading hypothesized 

mechanisms that may be operating between prenatal particulate air pollution and early 

growth outcomes. Particulate air pollution may result in increased placental or fetal 

oxidative stress and related DNA damage or inflammation, which may inhibit nutrient 

transfer from mother to fetus and disrupt programming of the fetal metabolic system, 

thereby disrupting fetal growth (Fleisch et al., 2015; Kannan et al., 2006). Excess fetal 

oxidative stress or inflammation resulting from air pollution exposure could also induce fetal 

or infant adipose tissue inflammation and hypertrophy, which may be related to excessive 

weight gain (Sun et al., 2009). Increased oxidative stress could also induce 

neuroinflammation and central nervous system effects, which may be linked to disrupted 

satiety signals (Bolton et al., 2014).

Further, these analyses also found that the sensitive windows for prenatal exposure to PM2.5 

may be sex specific. While prior human data are not available, animal studies have 

demonstrated sex-specific associations between prenatal air pollutants and offspring growth 

outcomes. In a rodent study, Bolton et al. (Bolton et al., 2012) found that adult male 

offspring born to pregnant mice exposed to diesel exhaust weighed 12% more compared to 

those born to non-exposed pregnant mice, whereas there was no difference seen in female 

offspring. These investigators also found that female offspring born to pregnant mice 

exposed to diesel exhaust gained 340% more weight following a high fat diet compared to 

those born to non-exposed pregnant mice; no such differences were found in male offspring. 

Other research suggested that sex hormones contribute to sex differences induced by pro-

inflammatory triggers such as air pollution (Melcangi et al., 2008). For example, a study in 

rodents found that estrogens may have anti-inflammatory properties mediated by cytokine 

expression (Shivers et al., 2015).

To our knowledge, only one previous human study has examined the association between 

prenatal fine particulate matter and anthropometric outcomes in children. Fleisch et al. 

(Fleisch et al., 2016) found that proximity to major roadway at birth address (<50 m), a 

surrogate of traffic-related air pollution exposure, was associated with BMI-z score, waist 

circumference, and skinfold thickness in children aged at 3.3 years as well as at 7.7 years. 

On the other hand, this same study did not find statistically significant associations between 

prenatal black carbon or PM2.5 exposure averaged over the 3rd trimester and these 

measurements nor did they find effect modification by sex (Fleisch et al., 2016). While the 

methodology used to estimate participant’s exposure to PM2.5 was the same in both studies, 

Fleisch et al. (Fleisch et al., 2016) assessed exposure in the 3rd trimester only, and thus it is 

difficult to directly compare the results with our study. Of note, in a recent simulation 

analysis, our group demonstrated that measuring exposure only in an arbitrarily defined 

susceptibility window during pregnancy may lead to missed associations (Wilson et al., 

2017a). Moreover, the analytical approach used in the present study found that associations 
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between PM2.5 and growth outcomes may be more significant in the 1st and 2nd trimester 

rather than later in pregnancy. This may also explain the discrepancy between the findings in 

the two studies, especially in terms of effect modification by sex.

A larger WHR reflects a type of body shape with excess weight around the waist (i.e., 

central or abdominal obesity, or “apple shape” obesity), whereas increased BMI or fat mass 

is more of an indicator for increased general body size (Bray and Bouchard 2014). The sex-

specific findings in our study suggest that prenatal air pollution exposure may have a 

stronger association with increased body size in general among boys, whereas it may affect 

body shape among girls. The observed associations with body composition in these 

preschool-aged children may have long term health implications in a sex-specific manner. 

For example, a recent study of 8–16 year-old Hispanic children reported that the association 

between BMI and insulin resistance, a predictor of type-2 diabetes, was significantly 

stronger in boys compared to girls; on the other hand, the association between WHR and 

insulin resistance was significantly stronger in girls compared to boys (Qi et al., 2016). Of 

note, as the variability of WHR in children is generally small, the estimated effect size of 

prenatal exposure per unit at each time point on this indicator also likely to be small; 

however, we were still able to identify a sensitive window and sex difference in estimated 

cumulative effect over the pregnancy. Further studies are needed to replicate these results in 

early childhood, elucidate underlying mechanisms, and examine whether these associations 

are sustained over time. Longitudinal studies assessing air pollution exposures beginning in 
utero on growth trajectories over the life course will be most informative.

This study has notable strengths. We were able to leverage daily particulate air pollution data 

estimated by address-specific exposure for each woman over gestation, using a validated 

state-of-the-art hybrid spatio-temporal LUR model incorporating satellite-derived AOD 

measures (Kloog et al., 2011), to apply a data-driven advanced statistical approach to more 

objectively identify sensitive windows of prenatal PM2.5 and more directly examine 

interactions by child sex. In addition, our study population consists of a lower-SES 

ethnically mixed inner-city population that is more likely to live in communities with higher 

traffic-related air pollution exposures as well as being at greater risk for childhood obesity. 

We also acknowledge some limitations. While we found significant interactions between 

prenatal PM2.5 exposure and sex for BMI-z, fat mass, and WHR, we did not find statistically 

significant associations on other anthropometric measures, which may be due to our sample 

size. Also, while we were able to control for postnatal air pollution exposure as well as 

several factors known to be important for child growth, we did not have data on dietary or 

other parenting practices that may influence child growth. However, controlling for SES-

related variables including education and race/ethnicity which are correlated with dietary 

intakes and parenting practices may in part account for these other factors. Finally, our 

results may be more generalizable to lower SES racial/ethnic minority populations. Larger 

studies examining sex-specific time-varying effects of prenatal particulate air pollution are 

thus warranted to corroborate these findings and consider additional confounders or 

moderators. Moreover, integrating epidemiological findings using analytic methods to more 

objectively identify sensitive windows with knowledge regarding developmental pathways 

and processes involved in prenatal programming of obesity that may be disrupted in these 
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time periods as summarized in recent reviews (Berry et al., 2013; Gesta et al., 2007; 

MacKay and Abizaid 2014) can better inform future mechanistic research in this area.

In summary, this study utilized a data-driven method to objectively elucidate sensitive 

windows and examined sex differences for the association between prenatal PM2.5 and body 

composition outcomes in early childhood. We found that increased prenatal PM2.5 exposure, 

particularly at early-to-mid pregnancy, may be more strongly associated with increased 

whole body size in boys, whereas it may be more strongly associated with an indicator of 

body shape (i.e., WHR) in girls. Advanced statistical methods combined with highly 

temporally resolved exposure data facilitates the more objective identification of 

susceptibility windows and enhances the ability to detect associations as well as to identify 

vulnerable groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CDC Centers for Disease Control

DLM distributed lag model
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PAHs polyaromatic hydrocarbons

ROS reactive oxygen species

SES socioeconomic status

SS subscapular skinfold

TS triceps skinfold

WHR waist-to-hip ratio
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Highlights

• Implementation of a novel data-driven approach to objectively identify 

sensitive windows of prenatal PM2.5 on childhood anthropometry.

• Time-dependent associations and effect modification by sex were found based 

on different anthropometric indices.

• Understanding such sex difference in temporal associations may provide 

insights into underlying mechanisms.
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Figure 1. Associations between weekly PM2.5 levels over gestation and BMI-z: interaction by sex
This figure demonstrates the association between PM2.5 exposure over pregnancy and BMI 

z-scores using BDLIM assuming week-specific effects. Models were adjusted for maternal 

age, race/ethnicity, education, pre-pregnancy BMI, and child’s age at anthropometric 

measurement. The y-axis represents the change in BMI z-scores corresponding to per μg/m3 

increase in PM2.5; the x-axis is gestational age in weeks. Solid lines show the predicted 

change in BMI z-score. Gray areas indicate 95% confidence intervals (CIs). A sensitive 

window is identified for the weeks where the estimated pointwise 95% CI (shaded area) 

does not include zero.
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Figure 2. Associations between weekly PM2.5 levels over gestation and fat mass: interaction by 
sex
This figure demonstrates the association between PM2.5 exposure over pregnancy and fat 

mass (kg) using BDLIM assuming week-specific effects. Models were adjusted for maternal 

age, race/ethnicity, education, pre-pregnancy BMI, and child’s age at anthropometry 

measurement. The y-axis represents the change in fat mass corresponding to per μg/m3 

increase in PM2.5; the x-axis is gestational age in weeks. Solid lines show the predicted 

change in fat mass. Gray areas indicate 95% confidence intervals (CIs). A sensitive window 

is identified for the weeks where the estimated pointwise 95% CI (shaded area) does not 

include zero.
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Figure 3. Associations between weekly PM2.5 levels over gestation and waist-to-hip ratio: 
interaction by sex
This figure demonstrates the association between PM2.5 exposure over pregnancy and waist-

to-hip ratio using BDLIM assuming week-specific effects. Models were adjusted for 

maternal age, race/ethnicity, education, pre-pregnancy BMI, and child’s age at 

anthropometric measurement. The y-axis represents the change in waist-to-hip ratio 

corresponding to per μg/m3 increase in PM2.5; the x-axis is gestational age in weeks. Solid 

lines show the predicted change in waist-to-hip ratio. Gray areas indicate 95% confidence 

intervals (CIs). A sensitive window is identified for the weeks where the estimated pointwise 

95% CI (shaded area) does not include zero.
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