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Abstract

A basic assumption for a meaningful diagnostic decision variable is that there is a monotone 

relationship between it and its likelihood ratio. This relationship, however, generally does not hold 

for a decision variable that results in a binormal ROC curve. As a result, receiver operating 

characteristic (ROC) curve estimation based on the assumption of a binormal ROC-curve model 

produces improper ROC curves that have “hooks,” are not concave over the entire domain, and 

cross the chance line. Although in practice this “improperness” is usually not noticeable, 

sometimes it is evident and problematic. To avoid this problem, Metz and Pan proposed basing 

ROC-curve estimation on the assumption of a binormal likelihood-ratio (binormal-LR) model, 

which states that the decision variable is an increasing transformation of the likelihood-ratio 

function of a random variable having normal conditional diseased and nondiseased distributions. 

However, their development is not easy to follow. I show that the binormal-LR model is equivalent 

to a bi-chi-squared model in the sense that the families of corresponding ROC curves are the same. 

The bi-chi-squared formulation provides an easier-to-follow development of the binormal-LR 

ROC curve and its properties in terms of well-known distributions.
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1. Introduction

Receiver operating characteristic (ROC) curve analysis is a well-established method for 

evaluating and comparing the performance of diagnostic tests [1, 2, 3]. Throughout I assume 

that the purpose of a diagnostic test is to classify subjects as diseased or not diseased, based 

on whether a decision variable (DV) exceeds a threshold value. The performance of a 

diagnostic test as a function of the threshold value is typically described by an ROC curve, 

which is a plot of sensitivity versus 1–specificity for all possible threshold values. Sensitivity 

and 1–specificity are often referred to as true positive fraction (tpf) and false positive 
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fraction (fpf), respectively. A commonly reported ROC-curve summary measure is the area 

under the ROC curve (AUC).

A parametric estimate of the ROC curve is often based on the assumption of a binormal 
ROC curve. A binormal ROC curve can be defined either in terms of its functional form or 

in terms of the distribution of a DV: (1) An ROC curve that plots as a straight line in probit 

space (i.e., a plot of Φ−1 (tpf) vs. Φ−1 (fpf)) is a binormal ROC curve with binormal 
parameters a and b, where a is the intercept and b is the slope. (2) Equivalently, a binormal 

ROC curve corresponds to a DV having a binormal distribution, i.e., the DV is normally 

distributed for nondiseased subjects as well as for diseased subjects. These two definitions 

are related by the equations a = (μ2 – μ1)/σ2 and b = σ1/σ2, where (μ2, ) and (μ1, ) 

denote the mean and variance parameter pairs for the nondiseased and diseased distributions 

for a binormal DV. In this paper I primarily utilize the second definition of the binormal 

ROC curve. Because an ROC curve is invariate to an increasing transformation of the DV, 

more generally a binormal ROC curve corresponds to a DV that follows the binormal model, 
which states that there exists an increasing transformation such that the transformed DV has 

a binormal distribution. For large samples the assumption of a binormal ROC curve has been 

shown to perform well for DV distributions that can vary greatly from the binormal 

distribution [4, 5, 6, 7].

For example, consider a study where a radiologist is asked to assign likelihood-of-disease 

confidence levels to images using a discrete five-level ordinal integer scale (e.g., 1 = 

“definitely not diseased”, . . . , 5 = “definitely diseased”); for this situation the investigator 

might assume that the observed ordinal ratings represent the binning of values of a latent 

(i.e., unobserved) continuous DV that represents the reader's likelihood-of-disease 

perception. A binormal ROC curve is appropriate if we assume that the latent DV has a 

binormal distribution or is an increasing transformation of a binormal DV.

In most situations a meaningful DV should be an increasing transformation of the likelihood 

ratio (likelihood of being diseased divided by likelihood of not being diseased) [2]. 

According to Egan [8, pp 19, 37], a DV having this property and its corresponding ROC 

curve are said to be proper; otherwise, they are said to be improper. A proper ROC curve is 

concave (down) everywhere and never crosses the chance line [2]. For a given test result, a 

proper DV provides the optimal criterion for classifying subjects in the sense that the 

resulting proper ROC curve is uniformly above all other ROC curves based on the test result 

[2].

The binormal ROC curve is improper unless the binormal DV conditional diseased and 

nondiseased distribution variances are equal. When it is improper, there is a single fpf value 

such that the ROC curve is concave on one side and convex (concave up) on the other side; 

there also is a single fpf value where the ROC curve crosses the chance line [2], resulting in 

a “hooked” ROC curve. For example, rating data [9] from a radiologist that result in a 

hooked estimated binormal ROC curve estimate are presented in Table 1, with the hooked 

ROC curve displayed in Figure 1a (solid line).
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For the typical situation where the binormal DV diseased-distribution variance is larger, the 

binormal ROC curve is convex for large fpf values and exhibits a hook in the upper right 

corner, as in Figure 1a, resulting in a threshold below which the likelihood ratio increases as 

the DV decreases. In practical terms, the convexity implies that below this threshold, the 

more “normal” an image appears the more likely it is to be diseased. Although for many 

situations the region of convexity and the hook and chance-line crossing are not noticeable, 

for some situations they can be noticeable enough to call into question the validity of 

conclusions based on the fitted curve. In addition, for some data sets, which Metz [10] refers 

to as degenerate data sets, the binormal likelihood is maximized when one or more of the 

parameter estimates is on the border of the parameter space, resulting in binormal ROC 

curves which have unacceptable zigzag shapes.

To circumvent these problems, Metz and Pan [11, 12] proposed estimating the ROC curve 

under the assumption that the DV is an increasing transformation of the likelihood-ratio 

transformation of a binormal random variable. The resulting ROC curve is always proper. 

Although they refer to their model as the proper binormal model, I find this name misleading 

since the underlying assumed decision-variable model is not binormal; thus, I will instead 

use the terminology of Hillis and Berbaum [13] and refer to their model as the binormal 
likelihood-ratio model (binormal-LR model).

Today this approach is often used for ROC analysis of radiologic imaging data. If the 

maximum-likelihood binormal ROC curve does not exhibit a noticeable hook, then typically 

the corresponding maximum-likelihood binormal-LR ROC curve is virtually identical to it. 

On the other hand, when the binormal hook is noticeable, the binormal-LR ROC curve 

provides a more acceptable curve because it is concave and hence has no hook. Thus this 

approach is appealing for researchers familiar with the binormal-model approach, but who 

want to avoid its problems.

However, the Metz and Pan [12] development is not easy to follow, especially for 

researchers that do not have extensive statistical training, and contains several important 

omissions: they do not provide an equation expressing tpf as an analytic function of fpf and 

vice versa and do not provide proofs for area-under-the-ROC curve (AUC) and partial area-

under-the-ROC curve (pAUC) formulas. I show that the binormal-LR model is equivalent to 

a bi-chi-squared model in the sense that both models result in the same family of ROC 

curves. The bi-chi-squared model approach allows for specification of tpf and fpf as analytic 

functions of each other, straightforward derivation of AUC and pAUC formulas and other 

properties, and an easier-to-follow development of the binormal-LR ROC curve.

An outline of this paper is as follows. I define the binormal-LR ROC curve and 

corresponding notation in Section 2. I show in Section 3 that, provided b ≠ 1, the family of 

binormal-LR ROC curves is equivalent to the family based on a proper bi-chi-squared 

model. Formulas for the binormal-LR ROC curve, AUC, and pAUC are derived in Section 4 

using the bi-chi-squared model. I compare the bi-chi-squared and Metz and Pan approaches 

in Section 5, and discuss estimation using the bi-chi-squared approach in Section 6. 

Examples are presented in Section 7, followed by concluding remarks.
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2. Binormal likelihood-ratio ROC curve definition and notation

Let ROCLR;a,b denote a binormal-LR ROC curve based on the likelihood ratio 

transformation of a binormal random variable having binormal parameters a and b, where –

∞ < a < ∞, b > 0. For example, let Y be a binormal random variable with conditional 

distribution (Y|D = 0) ~ N (0, 1), where D is an indicator of disease status, with D = 1 

denoting diseased and D = 0 denoting nondiseased. It follows that (Y|D = 1) ~ N(a/b, 1/b2). 

Let LRY (·) denote the likelihood ratio function for Y; i.e.

where fY (·|D = d) denotes the density function for Y conditional on disease status d and ϕ(·) 

is the standard normal density function. Then ROCLR;a,b is based on the DV LRY (Y). As 

noted in the previous section, ROCLR;a,b is proper and hence also concave.

Because the ROC curve corresponding to LRY (Y) is invariant to increasing transformations 

of LRY (Y), ROCLR;a,b can also be defined by

(1)

More generally, if Ỹ is a binomial random variable with binormal parameters a and b and 

conditional distributions (Ỹ|D = 0) ~ N(μ1, ) and (Ỹ|D = 1) ~ N(μ2, ), then it is 

straightforward to show that the log-likelihood function can be written in the form

which has the same form as (1) but with Y replaced by (Ỹ – μ1)/σ1. It is easy to show that 

((Ỹ – μ1)/σ1|D = 0) ~ N(0, 1) and ((Ỹ – μ1)/σ1|D = 1) ~ N(a/b, 1/b2). It follows that ln 

[LRỸ(Ỹ)] and ln [LRY(Y)] have the same conditional distributions, and hence define the 

same binormal-LR ROC curve. Thus we see that ROCLR;a,b is uniquely determined by a and 

b.

When estimating the binormal-LR ROC curve, Metz and Pan assume that the DV has the 

same distribution as the likelihood-ratio transformation of a binormal random variable (or 

more generally, as an increasing transformation of the likelihood-ratio transformation of a 

binormal random variable). Although each binormal-LR ROC curve is defined by a pair of a 
and b parameters of a corresponding binormal random variable, the role of the 

corresponding binormal random variable is only to define the distribution of the binormal-

LR DV and of itself is generally not useful for practical purposes. A common 

misunderstanding among researchers is that Metz and Pan estimate binormal a and b 
parameters under the assumption that the DV has a binormal distribution and then use the 
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corresponding binormal-LR ROC curve (i.e., having the same a and b values) as the estimate 

– this is not what they do. Instead, they estimate the binormal-LR ROC curve a and b 
parameters under the assumption that the DV has a binormal-LR distribution. Thus for a 

given data set, the estimated binormal-LR ROC curve a and b values will in general differ 

from the estimated binormal ROC curve a and b values.

3. Relationship between binormal-LR and bi-chi-squared ROC curves

In this section I show for b ≠ 1 that ROCLR;a,b can be defined by a DV having a noncentral 

bi-chi-squared distribution with 1 degree of freedom, up to a scale factor. For b = 1 I show 

that ROCLR;a,b is the same as the binormal ROC curve. Throughout I assume that Y is a 

binormal random variable with binormal parameters a and b. Because a and b uniquely 

determine ROCLR;a,b, I will without loss of generality assume Y has conditional 

distributions (Y|D = 0) ~ N(0, 1) and (Y|D = 1) ~ N(a/b, 1/b2).

3.1. Results for b ≠ 1

It is straightforward to show that U (1) can be written in the form

(2)

where

(3)

For b < 1 it follows from (2) that u = ln [LRY (y)] is quadratic in y and attains its minimum 

value at y = c1. Hence

is an increasing transformation of U and ROCLR;a,b can be equivalently defined based on Y * 

as the DV. (Note that here and elsewhere, the term increasing transformation refers to a 

strictly increasing transformation.)

Figure 1b displays the conditional distributions for Y , where Y has a binormal distribution 

with parameters a = 1.06, b = 0.464; this is the binormal distribution corresponding to the 

hooked binormal ROC curve displayed in Figure 1a. The relationship between U and Y is 

displayed in Figure 1c.

Let  denote a noncentral chi-square distribution with 1 degree of freedom and 

noncentrality parameter ν. It is well known that  is the distribution of a squared normal 
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random variable having unit variance and mean . Because 

and , it follows that

(4)

A parameterization that I will use for derivations and computational formulas is

(5)

where the unconstrained parameter space is given by

From (4-5) it follows that

(6)

Thus the (λ, θ) parameter space corresponding to {(a, b) : 0 < b < 1} is

From (3) and (6) it follows that

and hence θ can be interpreted, in terms of Y, as the squared difference between the 

nondiseased mean and the threshold where the likelihood ratio attains its minimum.

The conditional distributions for Y* are displayed in Figure 1d and the binormal-LR ROC 

curve defined by Y* is displayed as the dashed line in Figure 1a. To create the plot of the 

ROC curve in Figure 1a, θ and λ were computed with a = 1.06, b = 0.464 using (6), and 

then tpf was computed as a function of fpf using formula (13), derived in Section 4.1.

Using well-known results for the noncentral chi-square distribution, the conditional means 

and variances are given by
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(7)

In summary I have shown for b < 1 that ROCLR;a,b can be defined by Y*, which has 

conditional noncentral chi-square distributions with 1 degree of freedom (d.f.), up to a scale 

factor. In addition, Y* is proper because it is an increasing transformation of the likelihood 

ratio function of Y. Hence Y* has a proper bi-chi-squared distribution.

If b > 1 then it follows from (2) that u = ln [LRY (y)] is quadratic in y, attains its maximum 

value at y = c1, and –Y* = –(Y – c1)2 is an increasing transformation of U. Thus –Y* is 

proper and ROCLR;a,b can be equivalently defined based on –Y* as the DV. The conditional 

distributions for Y* are again given by (5) with equations (6-7) still applicable, but now with

Hence –Y* has a proper negative bi-chi-squared distribution.

Figure S1a (available in the online Supporting Materials) displays the ROC curve defined by 

a binormal random variable Y with parameters a = 8.65, b = 4.40. For this curve the hook 

occurs in the lower left corner of the graph and is barely discernible. The conditional 

distributions for Y, the relationship between U and Y, and the conditional distributions of –

Y* are displayed in Figures S1b, S1c, and S1d, respectively. The corresponding binormal-

LR ROC curve, defined by –Y*, is displayed as the dashed line in Figure S1a.

No constraints were placed on a in deriving the distribution of Y*. From (4) we see that the 

conditional distributions of Y* are invariant to the sign of a. It follows that the binormal-LR 

curve is invariant to the sign of a :

(8)

Metz and Pan [12, p. 5] state that “Without loss of generality, we assume that a ≥ 0 and b > 

0 . . . ” but do not give any particular reason for this assumption; in particular, they do not 

note that the binormal-LR curve is invariant to the sign of a. It is natural to assume a ≥ 0 for 

performing binormal ROC curve estimation because a < 0 represents the unlikely situation 

that a DV performs worse than chance. However, because the binormal-LR ROC curve 

corresponds to a proper DV, it cannot depict a DV that performs worse than chance, and 

hence it would at first appear that we should not constrain a ≤ 0 in order to obtain the most 

inclusive set of binormal-LR curves. However, the invariance result (8) shows that the set of 

binormal-LR ROC curves remains unchanged by the constraint a ≥ 0.
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3.2. Summary

I now formally summarize the results from Section 3.1.

Result 1—The family of binormal-LR ROC curves for –∞ < a < ∞, b ≠ 1, is given by

Result 1 follows from the invariance property (8).

Motivated by the results from Section 3.1, I now formally define the particular one-degree-

of-freedom two-parameter bi-chi-squared distribution that is utilized in this paper. Although 

a bi-chi-squared distribution could more generally have more than one degree of freedom 

and more or less than two parameters, for simplicity I refer to this particular form as the bi-
chi-squared distribution.

Definition 1—A decision variable X has a bi-chi-squared distribution with parameters λ 
> 0, θ ≥ 0 if its conditional distributions are given by

Note that the noncentrality parameter θ functions as a shape parameter for the nondiseased-

case distribution. For the diseased-case distribution, λ functions in the dual role of both a 

shape (through its effect on the noncentrality parameter) and scale parameter. As λ increases 

for a given value of θ, the mean and variance of the diseased distribution increase, with λ = 

1 corresponding to equal conditional distributions.

Definition 2—The bi-chi-squared model states that the decision variable is an increasing 

transformation of a decision variable having either a positive (with λ > 1) or negative (with 
λ < 1) bi-chi-squared distribution. That is, the decision variable is an increasing function of 

W, defined by

(9)

where Y* has a bi-chi-squared distribution with parameters θ and λ. The corresponding bi-
chi-squared ROC curve is defined by W and will be denoted by ROCχ2;λ,θ.

Theorem 1 below states that a binormal-LR ROC curve (with b ≠ 1) can be defined by a bi-

chi-squared DV, as was shown in Section 3.1.

Theorem 1—Fix a ≥ 0, b > 0 with b ≠ 1. Define θ and λ by (6). Then
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(10)

Because (6) defines a one-to-one mapping from {(a, b) : a ≥ 0, b > 0, b ≠ 1} to {(λ, θ) : θ ≥ 

0, λ > 0, λ ≠ 1} with

(11)

it follows that the family of binormal-LR ROC curves with b ≠ 1 is equal to the family of bi-

chi-squared ROC curves with λ ≠ 1, as formally stated in the following Corollary. Thus the 

binormal-LR model and bi-chi-squared model are equivalent in the sense that they result in 

the same families of ROC curves.

Corollary 1—

Table 2 provides a summary of the main results from Sections 3.1-2

3.3. Results for b = 1

3.3.1. Case: a ≠ 0—The condition b = 1 implies that Y has conditional distributions (Y|D 
= 0) ~ N (0, 1) and (Y|D = 1) ~ N (a, 1). Then from (1), U = ln [LRY (Y)] takes the form

Let ROCBin;a,b denote a binormal ROC curve with binormal parameters a and b. It follows 

that if a > 0 then U is an increasing transformation of Y; hence ROCLR;a,b=1 = ROCBin;a,b=1. 

If a < 0 then U is an increasing transformation of –Y; because –Y is binormal with binormal 

parameters |a| and b = 1, it follows that ROCLR;a<0,b=1 = ROCBin;|a|,b=1. Thus, as was true for 

b ≠ 1, the binormal-LR ROC curve is invariant to the sign of a.

3.3.2. Case: a = 0—For a = 0 and b = 1 the conditional distributions of Y are the same and 

U = ln [LRY (Y)] = 0, which defines a discrete ROC curve with only two points, (0, 0) and 

(1, 1); hence depending on the threshold chosen, all subjects are classified either as diseased 

or nondiseased. In contrast, the ROC curve based on Y is the chance line tpf = fpf. Noting 

that the binormal-LR curve converges to the chance line as a approaches 0 for b = 1, I 

arbitrarily define ROCLR;a=0,b=1 to be the chance line, i.e.,
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This situation is not discussed in the Metz and Pan development.

3.3.3. Inclusion of λ = 1 in the bi-chi-squared parameter space—Setting λ = 1 for 

any value of θ in (5) results in both conditional distributions of Y* (5) having 

distributions and a chance-line ROC curve. It follows that

Thus the chance line is the only concave binormal ROC curve (i.e., b = 1) that can be exactly 

represented by a bi-chi-squared ROC curve.

4. Formulas

In this section I derive basic formulas for the bi-chi-squared curve. Results from this section 

are presented in Table 3.

4.1. Tpf for fixed fpf

4.1.1. Derivation and results for λ > 1—Letting Fν denote the distribution function for 

a random variable having a chi-squared distribution with one degree of freedom and 

noncentrality parameter ν, it follows from (9) that

(12)

From (12) we can express c in terms of fpf: . Substituting into (12) yields

Thus

(13)

4.1.2. Derivation and results for λ < 1—It follows from (9) that

(14)

Expressing c in (14) in terms of fpf results in the equivalent expression
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Thus

Formulas expressing fpf as a function of tpf, which are included in Table 3, can be derived 

from the above results.

4.2. AUC

4.2.1. Derivation and results for λ > 1—Fix λ > 1. Let AUCχ2 denote the area under 

the bi-chi-squared ROC curve. Let  and  denote independent random variables with the 

same distributions as Y*|(D = 0) and Y*|(D = 1), respectively. That is,

Bamber [14] shows that the probability of a continuous diseased test result exceeding a 

continuous nondiseased test result is equal to the AUC. It follows from (9) that

Let XD̄ and XD be independent random variables such that

(15)

Then

Thus
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It follows that

where the mutually exclusive events A1 and A2 are defined by

The contour plot of the bivariate (XD̄, XD) density function and subspaces corresponding to 

A1 and A2 are graphically displayed in Figure 2a. Note that XD̄ and XD are notated as X1 

and X2, respectively, in the figure. Also displayed are the subspaces corresponding to A3 and 

A4, defined by

Let FBVN(·, ·, ρ) denote the distribution function for a standardized bivariate normal 

distribution with correlation ρ, and let MVN (μ1, μ2, , , σ12) denote a bivariate normal 

distribution with means μ1, μ2, variances , , and covariance σ12. Writing A1 and A2 in 

the form

and noting that

it follows that

Hence

Hillis Page 12

Stat Med. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(16)

where

(17)

4.2.2. Derivation and results for λ < 1—Fix λ < 1. From (9) and Bamber's result [14] 

we have

It follows that

(18)

Since the derivation for Pr( ) in Section 4.2.1 did not depend on the value of λ, it 

follows that the formula for Pr( ) for λ < 1 is the same as for λ > 1. Hence

(19)

where u1, u2, and ρ are given by (17). Because A1, A2, A3 and A4 are mutually exclusive 

with , it also follows from (18) that

(20)

Although a formula similar to (16) could be derived from this expression, for our purposes 

(20) will be used for deriving the alternative AUC expression (discussed below) in Appendix 

A.

4.2.3. Alternative AUC expression—Metz and Pan [11, 12] present an alternative 

expression for AUCχ2, expressing it as the sum of the AUC of the corresponding binormal 

ROC curve plus a nonnegative term. However, they do not provide a proof for their results. 

For completeness I derive their result in Appendix A. I show in Section 5 that their result, in 

terms of the bi-chi-squared parameterization, is given by
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(21)

The first term on the right side is the AUC of the corresponding binormal ROC curve.

4.3. Partial AUC

Two different partial areas under the ROC curve have been proposed [15, 16, 17]: the area 

under the ROC curve over an fpf interval (fpf1 < fpf2), which I denote by pAUCfpf (fpf1, 

fpf2), and the area to the right of the ROC curve over a tpf interval (tpf1 < tpf2), which I 

denote by pAUCtpf (tpf1, tpf2). Both partial areas are often normalized by dividing by the 

length of the interval, which allows the partial area to be interpreted as the average value of 

tpf or fpf over their respective intervals. Furthermore, it is easy to geometrically show

Because pAUCfpf (fpf1, fpf2) = pAUCfpf (0, fpf2) – pAUCfpf (0, fpf1) and pAUCtpf (tpf1, 

tpf2) = pAUCtpf (tpf1, 1) – pAUCtpf (tpf2, 1), it suffices to derive only the formula for 

pAUCfpf (0, fpf0), which is derived in Appendix B and presented in Table 3.

Pan and Metz [11] provide partial AUC formulas but do not provide proofs. Although their 

formulas are different from the ones in this paper, I was able to empirically demonstrate 

equality of their partial AUC formulas with the formulas derived in this paper by comparing 

partial AUC results from PROPROC with those computed using the formulas in this paper. I 

do not include analytical proofs showing equivalence because their formulas have no clear 

conceptual advantage and require the use of numerical methods.

5. Comparison with Metz and Pan approach

5.1. Metz and Pan approach

Metz and Pan [12] derive results for ROCLR;a,b based on the DV

(22)

which is an increasing transformation of LRY (Y). They use the (da, c) parameterization for 

V , given by

(23)
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(24)

The positive density support of V is given by

Metz and Pan [11, 12] do not write tpf as an analytic function of fpf or vice versa. Instead, 

for c ≠ 0 they give the following formulas for fpf and tpf corresponding to threshold vc:

(25)

(26)

where H (c) = 0 if c < 0 and H (c) = 1 if c < 0.

Metz and Pan [11, 12] give the following AUC formula without proof:

(27)

Using the relationships between the bi-chi-squared (λ, θ) and Metz and Pan (da, c) 

parameterizations discussed below, in terms of the (λ, θ) parameterization (27) takes the 

form of equation (21).

5.2. Parameterization relationships

It follows from (23-24) that

(28)

Using (28) and (11) it is straightforward to derive the relationships between the bi-chi-

squared (λ, θ) and Metz and Pan (da, c) parameterizations, c ≠ 0 and λ ≠ 1:
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and

It follows that c is a strictly decreasing function of λ and da is a strictly increasing function 

of θ for fixed λ.

According to Metz and Pan [12, p. 12], an important computational reason they preferred the 

(da, c) parameterization was because for fixed da there is a one-to-one relationship between 

AUC and c in each of the {c < 0} and {c < 0} regions; specifically, AUC is an increasing 

(decreasing) function of c if c < 0 (c < 0). Similarly, for fixed θ, AUC in an increasing 

(decreasing) function of λ if λ < 1 (λ < 1); a proof is provided in Appendix C. It can also be 

shown for fixed λ ≠ 1 that AUC is an increasing function of θ. Figure 3 illustrates how the 

AUC changes with increasing or decreasing theta or lambda, given the value of the other 

parameter.

5.3. Advantages of the bi-chi-squared approach

The bi-chi-squared approach has two important advantages over the Metz and Pan approach. 

First, it is conceptually easier to explain and understand: because the log likelihood-ratio 

function of a binormal random variable Y is symmetric about c1, it follows that either Y* = 

(Y – c1)2 or –Y* is an increasing transformation of LRY (Y) and hence can be used as the 

DV for defining the binormal-LR ROC curve.. In contrast, it is not immediately obvious that 

V (22) is an increasing transformation of LRY (Y). The second advantage is that the 

conditional distributions of Y* are familiar chi-squared distributions, which allows for easy 

derivation of statistical properties with no further need to consider the relationship between 

Y* and Y. In contrast, the conditional distributions of V are not familiar and have support 

boundaries that are functions of the distribution parameters, making derivations more 

tedious. The conditional densities of V are not described analytically or graphically by Metz 

and Pan. For example, Metz and Pan derive results for tpf and fpf by determining the 

conditional probabilities of regions of Y that map into (V > vc), rather than working directly 

with the conditional distributions of V .

6. Estimation

Software for estimating the binormal-LR ROC curve has been extensively developed by 

Charles Metz and colleagues [11, 12, 18] at the University of Chicago, with much of the 

work undertaken in collaboration with Kevin Berbaum and colleagues at the University of 

Iowa. This software was originally called PROPROC, but recently has been renamed PBM; 

however, the program has remained essentially the same (personal communications with 
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Charles E. Metz, June 3, 2012, and Lorenzo L. Pesce, March 13, 2014). The algorithm is 

extremely fast and has undergone extensive testing. It can be downloaded in various formats 

from websites at either university (http://metz-roc.uchicago.edu/ and http://
perception.radiology.uiowa.edu/). PROPROC is used with the stand-alone multireader ROC 

software OR-DBM MRMC 2.5 [19] as well as the program OR/DBM MRMC 3.0 for SAS 
[20], both freely available at http://perception.radiology.uiowa.edu/.

In this section I show that the bi-chi-squared model makes it is possible to estimate ROC-

curve parameters for discrete rating data using standard statistical software to maximize the 

likelihood function; I refer to such an algorithm as a bi-chi-squared algorithm. Specifically, I 

describe a bi-chi-squared algorithm that uses the SAS procedure NLMIXED to maximize 

the likelihood.

I emphasize that the bi-chi-squared algorithm developed in this section is not intended for 

general use, but rather for empirically validating the bi-chi-squared approach. In Example 1 

in Section 7 I show that AUC estimates for a real data set obtained using the bi-chi-squared 

algorithm are virtually identical to those obtained using the PROPROC algorithm.

6.1. Assumptions

The basic assumption when estimating the binormal-LR ROC curve is that the DV, explicit 

or implicit, has the same distribution as the likelihood-ratio transformation of a binormal 

random variable (or more generally, as an increasing transformation of the likelihood-ratio 

transformation of a binormal random variable); this is the approach taken by Metz and Pan. 

As discussed in Section 2, it is important to note that they do not assume the DV has a 

binormal distribution. Similarly, for estimation purposes using the bi-chi-squared approach, I 

assume the DV follows the bi-chi-squared model, not the binormal model.

6.2. Bi-chi-squared algorithm

6.2.1. Likelihood function—I assume that a reader's ordinal likelihood-of-disease ratings 

represent the binning of values of a latent bi-chi-squared model DV; i.e., the DV has either a 

positive (with λ ≥ 1) or negative (with λ < 1) bi-chi-squared distribution. Specifically, 

letting R denote an observed rating variable having p distinct values r1 < ... < rp and letting L 
denote the latent DV, it is assumed that Pr (R = ri) = Pr (ci–1 < ci), where –∞ = c0 < c1 < ... < 

cp–1 < cp = ∞; i.e., (ci–1, ci) is the latent bin corresponding to R = ri.

Furthermore, I assume that the reader assigns likelihood-of-disease ratings independently to 

n0 nondiseased and n1 diseased case images. Let n0i and n1i denote the number of 

nondiseased and diseased cases assigned rating ri, respectively; thus  and 

. The log likelihood, after deleting terms that do not depend on model 

parameters, is given by

Hillis Page 17

Stat Med. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://metz-roc.uchicago.edu/
http://perception.radiology.uiowa.edu/
http://perception.radiology.uiowa.edu/
http://perception.radiology.uiowa.edu/


Define

i = 1,..., p and

Then

(29)

A bi-chi-squared algorithm maximizes ll with respect to {λ, θ, c1,..., cp–1}, or alternatively 

with respect to another parameterization such as  or 

 , where Δi = fpfi – fpfi+1. Here the bi-chi-squared parameter space is λ < 

0, θ ≥ 0. Note that I have included λ = 1 in the parameter space, which for any value of θ 
corresponds to the chance-line ROC curve as discussed in Section 3.3.3.

With this approach, maximum likelihood estimation excludes the subset of proper binormal 

ROC curves. This approach is justified because any proper binormal ROC curve (thus b = 1) 

can be approximated by a bi-chi-squared curve with arbitrary precision. I note that 

PROPROC and PBM take a similar approach (Lorenzo L. Pesce, personal communication, 

April 18, 2014.)

6.2.2. Maximizing the likelihood using PROC NLMIXED—Using the 

parameterization {λ, θ, Δ1,..., Δp}, where Δi = fpfi – fpfi+1 (and thus ), I use the 

SAS procedure NLMIXED to compute parameter estimates that maximize ll (29) for the 

data set in Example 1 in Section 7. There are five possible ratings: ri = i, i = 1,..., 5. For 

initial 1 in Section set , i = 1,2,3,4, where  is the empirical 

estimate (i.e., proportion of nondiseased subjects assigned rating i). The algorithm sets 

. To avoid  < .0001, if  < 0.999 then I 

modify  i = 1,2,3,4 by subtracting a small constant from one of them to ensure that 

. This process results in initial Δi = fpfi – fpfi+1 estimates close to the 

empirical estimates, but with no estimates less than .001 for each of the ten modality-reader 

combinations. Initial estimates for λ and θ are computed using (6) with a and b replaced by 

binormal-model estimates. The log-likelihood function is computed using equation (29) with 

tpfi replaced by
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(30)

where the fpfi are computed from the Δi. Note that (30) combines the expressions for tpf(fpf) 

for λ < 1 and b < 1 from Table 3b and also includes λ = 1 for which the expression reduces 

to tpfi = fpfi.

The SAS code used for computing the ROC parameter estimates for Example 1 is provided 

in Appendices S1 and S2, available in the online Supporting Materials. Two version of the 

codes are provided: a simple version without macros in Appendix S1 that estimates the bi-

chi-squared ROC curve for one reader-treatment combination, and a more extensive version 

with macros in Appendix S2 that does the complete Example 1 analysis. The code is 

somewhat similar to that provided by Gönen [21, Chapter 5], who discusses estimating the 

binormal ROC curve using the SAS NLMIXED procedure. The main difference is that the 

bi-chi-squared code involves deltas rather than thresholds in the parameterization; this 

seemed to be a more natural approach because of the need to accommodate both the positive 

and negative bi-chi-squared distributions. Gönen [21, Appendix] provides a short 

introduction to PROC NLMIXED, which I recommend for the reader who is not familiar 

with PROC NLMIXED.

Although the code in Appendix S2 works well for the Example 1 data in the next section, 

again it should be noted that it is not intended for general use, but rather for validation of the 

bi-chi-squared approach. In particular, a program for general use would need a more 

rigorous approach for selecting starting values and need to be more thoroughly tested. For 

example, Pesce et al. [18] describe a rigorous method for selecting initial estimates for 

PROPROC.

6.3. Continuous data

For continuous data, Metz et al. [22] propose defining categories of the observed data that 

correspond to vertical or horizontal jumps in the empirical ROC curve and then applying the 

approach used for ordinal discrete data to the defined categories. Specifically, they state that 

“ML estimation of an ROC curve from continuously-distributed data is equivalent to ML 

estimation from ordinal category data if truth state runs in the rank-ordered data (described 

next) are interpreted as categorical data.” This method of categorization is referred to as the 

LABROC4 categorization scheme and is discussed in the context of fitting binormal-LR 

models by Metz and Pan [12] and by Pesce and Metz [18]. Similarly, the bi-chi-squared 

algorithm for discrete data can be applied to continuous data.

6.4. Relationship between bi-chi-squared and PROPROC/PBM algorithms

Both the bi-chi-squared and PROPROC/PBM estimation algorithms maximize the same log-

likelihood function (29), but with different formulas used for fpf and tpf. Bi-chi-squared uses 

(30), derived from the bi-chi-squared model, to estimate tpf as a function of fpf, whereas 

PROPROC/PBM uses (25) and (26), derived from the relationship between V (22) and Y, to 
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compute fpf and tpf as functions of a threshold. Of course, the bi-chi-squared algorithm 

could also have computed tpf and fpf as functions of a threshold. Thus the log-likelihood 

functions are the same but parameterized differently.

From a computational perspective neither parameterization appears to have a substantive 

advantage if similar starting values and likelihood maximization techniques are used. This 

conjecture is based on the similarities between the parameterizations as discussed in Section 

5.2, but further study is needed. Furthermore, it appears that the initial estimates and 

optimization approach discussed by Pesce and Metz [18] could be adapted for the bi-chi-

squared parameterization. From my perspective, the main advantage of the bi-chi-squared 

approach is not computational, but as previously discussed, easier conceptual understanding 

and derivation of properties.

7. Examples

7.1. Example 1: Comparison of binormal, bi-chi-squared, PROPROC algorithm results

In this example I estimate the AUC for ten ROC curves using the PROPROC and bi-chi-

squared algorithms under the assumption of a binormal-LR/bi-chi-squared model for the DV. 

The PROPROC algorithm estimates are computed using OR/DBM MRMC 3.0 for SAS [20] 

and the bi-chi-squared estimates are computed using the bi-chi-squared algorithm discussed 

in Section 6.2, as implemented by SAS code provided in Appendix S2 in the online 

Supporting Materials. Binormal estimates of a and b, computed using OR/DBM MRMC 3.0 
for SAS [20], are used to compute initial λ and θ estimates for the bi-chi-squared algorithm 

using relationship (6).

The data are from a study [9] that compares the relative performance of single spin-echo 

magnetic resonance imaging (MRI) and cine MRI in detecting thoracic aortic dissection. 

There are 114 patients, 45 with an aortic dissection and 69 without. Five radiologists 

independently interpret all of the images using a five-point ordinal scale. Data for one of the 

reader-modality combinations (reader 5, cine MRI) are presented in Table 1.

Table 4 presents the AUC estimates for both algorithms and parameter estimates resulting 

from the bi-chi-squared algorithm. The AUC values in Table 4 are the same for both 

algorithms except for reader 3 and modality 1, for which the AUCs are 0.908 (PROPROC) 

and 0.929 (bi-chi-squared) with the PROPROC solution having the higher likelihood. This 

discrepancy for reader 3 and modality 1 was resolved by running the bi-chi-squared 

algorithm again but with several other starting values, which resulted in a value of AUC 

equal to the PROPROC value; the revised bi-chi-squared values are shown within 

parentheses.

7.2. Example 2: Comparison of estimated binormal and bi-chi-squared ROC curves and 
latent distributions

Figure 4a shows the binormal and bi-chi-squared maximum-likelihood estimated (MLE) 

ROC curves for the data in Table 1a. The corresponding binormal and bi-chi-squared latent 

distributions are displayed in Figures 4b and 4c. (Note that the binormal MLE ROC curve 

and its latent DV distribution are also shown in Figures 1a and 1b, respectively.)
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Figure 4b includes the binormal MLE estimates: a = 1.06 and b = 0.46. Figure 4c includes 

the bi-chi-squared (λ θ) estimates and the corresponding estimates a = 0.67 and b = 0.33 

computed using (11). Thus the a and b estimates for the binormal MLE curve are different 

than those for the bi-chi-squared MLE curve, as is generally the case. In contrast, in Figure 

1a the binormal and bi-chi-squared (or binormal-LR) ROC curves have the same (a = 1.06, b 
= 0.46) parameter values because only the binormal ROC curve is estimated from the data; 

the purpose of Figure 1a is to display the binormal-LR ROC curve that is defined by that 

same a and b values. The distinction between these two graphs is important: although each 

possible binormal ROC curve defines a corresponding binormal-LR ROC curve having the 

same a and b values, as illustrated by Figure 1a, if binormal and binormal-LR ROC curves 

are estimated from the same data then the parameter values will typically differ, as 

illustrated in Figure 4 and previously discussed in Section 2.

Both ROC curves in Figure 4a are similar for fpf values less than that of the last empirical 

operating point. However, for greater fpf values the ROC curves are discernibly different: the 

binormal curve has a hook in the upper right corner in contrast to the binormal-LR curve, 

which has no hook because it is concave. As a result, the binormal-LR curve has the higher 

AUC (0.841 vs. 0.833).

7.3. Example 3: Interpretation of bi-chi-squared parameters in terms of similarity with 
corresponding binormal ROC curve

When presented with bi-chi-squared estimation results such as in Table 4, it is natural to ask 

if it is possible to know which of the bi-chi-squared ROC curves is approximated by its 

corresponding binormal curve from an examination of the (λ, θ) values. One way to answer 

this question is to determine if the corresponding binormal ROC curve has discernible 

improperness; if it does not, then the bi-chi-squared curve will be closely approximated by 

it. Along these lines, Metz and Pan [12, pp 15-16] write “For a given pair of curve parameter 

values, the corresponding proper and conventional binormal ROC curves are 

indistinguishable if and only if no ‘hook’ is evident in the conventional binormal ROC ... 

Empirically, this occurs if and only if .”

The degree of improperness of the corresponding binormal ROC curve can be measured by 

the binormal mean-to-sigma ratio, defined by

(31)

Hillis and Berbaum [13] note that Φ (r) is the unique fpf where the binormal ROC curve 

crosses the chance line. Based on this result, they classify the improperness of a binormal 

ROC curve as indiscernible if |r ≥ 3, noticeable if |r| ≤ 2, and slight if 2 < |r| < 3. From (11) 

and (31) it follows that
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and hence

Figure 5 displays a contour map of |r| in the bi-chi-squared parameter space. This figure 

shows the region where the bi-chi-squared ROC curves are similar to their corresponding 

binormal curves. For example, we see that if λ < 1 and θ ≥ 2V25 then the two curves are 

similar because |r| ≥ 3.

Alternatively, I could have rewritten the Metz and Pan inequality da ≤ 6 |c| in terms of the bi-

chi-squared parameterization. However, the advantage of the proposed method is that it is 

based on an interpretable index of improperness for the corresponding binormal ROC curve.

8. Discussion

The binormal-LR model assumption is attractive to researchers because it always results in 

proper estimated ROC curves, including curves similar to “acceptable” binormal ROC 

curves, i.e., binormal curves that are not noticeably nonconcave. For this reason binormal-

LR ROC curve estimation has become common in radiologic diagnostic studies.

Metz and Pan [11, 12] provide a detailed development of the binormal-LR ROC curve; 

however, their development is not easy to follow, especially for researchers that do not have 

extensive statistical training. The main contribution of this paper is the recognition that the 

binormal-LR model (with equal-variance ROC curves excluded) is equivalent to a bi-chi-

squared model. The bi-chi-squared approach is easier to explain and understand, and allows 

for easier derivation of statistical properties. This paper develops the bi-chi-squared 

approach and uses it to fill in some of the omissions in the Metz and Pan papers, such as 

writing tpf and fpf as analytic functions of each other and providing proofs for the AUC and 

partial AUC formulas; furthermore, it illustrates how the approach makes it possible to fit 

ROC curves using standard statistical software. It is important to note the bi-chi-squared 

model discussed in this paper involves only one-degree-of-freedom noncentral bi-chi-

squared distributions.

In my opinion the terms proper binormal ROC curve and proper binormal model used by 

Metz and Pan are misnomers because the only way an ROC curve can be both proper and 

binormal is for it to be an equal-variance (b = 1) binormal curve. Thus I recommend that 

these terms not be used, but instead suggest the terms binormal-LR ROC curve and 

binormal-LR model. Although it might seem reasonable to alternatively use the terms bi-chi-
squared ROC curve and bi-chi-squared model, in general I do not recommend these terms 

because they involve a particular form of the bi-chi-squared distribution and hence are not as 

specific as binormal-LR ROC curve and binormal-LR model. However, I do recommend 

these terms when it is important to indicate that the bi-chi-squared distribution was used for 

conceptualization, estimation or derivation of results.

Because a bi-chi-squared distribution looks much different than a binormal distribution, it 

might at first seem that the assumption of a bi-chi-squared model is a major change from the 
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assumption of a binormal model in terms of the underlying DV. In this paper I derived 

results by showing that a binormal-LR curve with parameters (a, b < 1) can be based on the 

bi-chi-squared random variable Y* = (Y – c1)2 where Y is binormal with parameters (a, b) 

and c1 is the point where its likelihood ratio attains its minimum. Alternatively, because Y* 

is an increasing transformation of |Y – c1|, I could have derived results based on |Y – c1| as 

the DV, which has a bi-folded-normal distribution [23]. When the binormal DV is not visibly 

improper, the shape of the distribution of |Y – c1| is similar to that of the corresponding 

binormal DV, except for the left tail where both distributions end at zero. Thus we can 

consider the DVs of the bi-chi-squared and binormal models to be similar after an increasing 

transformation when improperness is not visible in the corresponding binormal model. The 

reason I chose the bi-chi-squared approach over the bi-folded-normal approach was because 

the chi-squared distribution is more familiar.

Other two-parameter proper ROC models that have been proposed include the two-

parameter bigamma model proposed by Dorfman et al. [24], a contaminated binormal model 

[25], a weighted power-function ROC curve model [26], and more generally a method for 

constructing pairs of diseased and nondiseased distributions that have a specified monotonic 

likelihood ratio [27]. Although these models have been extensively compared with the 

binormal model, there has been little study devoted to comparing them with each other; this 

is an area for future research.

Because a central chi-squared distribution is a particular form of a gamma distribution, it 

might seem that the proposed bi-chi-squared model would be closely related to the bigamma 

model proposed by Dorfman et al. [24]. For their model the two parameters are the 

conventional shape and scale parameters. The conditional nondiseased and diseased 

distributions have gamma distributions with the same shape parameter but different scale 

parameters. Their model includes bi-chi-squared (now using the term more generally) 

models where the two conditional distributions have central chi-squared distributions with 

the same degrees of freedom (which can be any positive integer) but different scale 

parameters. In contrast, the binormal-LR bi-chi-squared conditional distributions are 

noncentral chi-squared with one degree of freedom, but do not have the same shape (unless 

λ = 1 which results in the chance-line ROC curve). The bigamma model assumes that the 

diseased distribution variance is not less than that of the nondiseased distribution, but the bi-

chi-squared model in this paper does not have this limitation. Comparison of these two 

approaches is an area for future research.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the 
National Institutes of Health under Award Number R01EB013667. I thank Carolyn Van Dyke, M.D. for sharing her 
data set. I thank two reviewers for their very helpful suggestions for revising this paper.

Hillis Page 23

Stat Med. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Alternative AUC formula derivation

In this section I derive the alternative AUC formula (21), which I restate below:

Notation and definitions are the same as in Section 4.2. Recall that XD̄ and XD are 

independent random variables such that XD̄ ~ N ( , 1) and XD ~ N (λ , λ), and A1, A2, 

A3 and A4 are mutually exclusive events defined by

(A1)

with their corresponding (XD̄, XD) subspaces graphically displayed in Figure 2a. In Section 

(4.2.1) I showed that

(A2)

Define X = XD̄ if D = 0, X = XD if D = 1. It is easy to show that X has a binormal 

distribution with a and b defined by (11), i.e., X is a binormal DV that corresponds to a bi-

chi-squared ROC curve with parameters λ and θ. The binormal AUC for X is given by

(A3)

It follows from (A2) and (A3) that

Thus to prove (21) I only need to show

(A4)
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To prove (A4) I first define the transformation

(A5)

where

Note that Σ is the covariance matrix of (XD̄, XD) and .

The transformation defined by (A5) consists of two steps: (1) The product 

results in a rescaling of XD̄ and XD, resulting in independent standard normal random 

variables V1 = XD̄ and . This transformation is illustrated in Figure 2b, which 

shows the contour lines for the (V1, V2) density function; the subspaces corresponding to 

events A1, A2, A3 and A4; and the orthogonal column vectors of the P matrix (up to a scale 

constant), denoted by w1 and w2. Note that w2 coincides with the line , which is 

the transformed XD = XD̄ line from Figure 2a. (2) Multiplying by P′ results in a 

counterclockwise rotation of the (V1, V2) axes such that W1 and W2 are the components of 

the projections onto the w1 and w2 vectors (after unit-length normalization), respectively, in 

Figure 2b; i.e.,  and .

It follows from (A5) that

(A6)

The independence of W1 and W2 and E (W2) = 0 imply that the density of (W1, W2), 

denoted by f(W1, W2), is symmetric about the line w2 = 0; i.e., f(W1, W2) (w1, w2) = 

f(W1, W2) (w1, –w2) for all (w1, w2).

A.1. Derivation for λ > 1

Figure 2c shows the contour lines for the (W1, W2) density function and the subspaces 

corresponding to the events A1, A2, A3 and A4 in the (W1, W2) space. Comparing Figure 2c 

to Figure 2a shows that the x2 = x1 and x2 = –x1 lines in Figure 2a correspond to the w2 = 0 

and  lines in Figure 2c. In Figure 2c, A2 has been partitioned 

into two mutually exclusive subsets, A21 and A22 with the added line 

 separating the two subsets: 
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 and 

with Pr (A1) = Pr (A11) + Pr (A12).

It follows from the symmetry of f(W1, W2) about the line w2 = 0 that

Thus

and hence we can write

(A7)

From (A6) it follows that

(A8)

From (A7) and (A8) it follows that

A.2. Derivation for λ < 1

Figure 2d is similar to Figure 2c, with the difference being that λ = 4 for Figure 2c and λ = .

25 for Figure 2d. For this reason, the line  has a positive slope in 

Figure 2d, whereas it had a negative slope in Figure 2c. In Figure 2d, A4 has been 

partitioned into two mutually exclusive subsets, A41 and A42 with the added line 

 separating the two subsets: 

 and , 

with Pr (A4) = Pr (A41) + Pr (A42).

It follows from the symmetry of f(W1, W2) about the line w2 = 0 that
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Thus

and hence we can write

(A9)

Note that the right side of (A9) is identical in form to the right side of (A7). From (A9) and 

(A8) it follows that

B. Partial AUC derivation

In this section I derive the formula for the partial area under the bi-chi-squared partial ROC 

curve, pAUC (0, fpf0), where 0 < fpf0 < 1. For the derivations I use the following result [2, 

28].

Result 2

Let Y denote a decision variable having continuous conditional distributions, and let YD ̄ and 

YD denote independent random variables having the same distributions as the nondiseased 

and diseased conditional distributions of Y, respectively. Let ξfpf0 denote the threshold 

corresponding to fpf0; i.e., Pr (YD̄ > ξfpf0) = fpf0. Then

(B1)

Let ρ, , , XD̄, XD be defined as in Section 4.2.1, and again let Fν denote the distribution 

function for a random variable having a  distribution.
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B.1. Derivation and results for λ > 1

Define ξfpf0 by , or equivalently

It follows from (15) and (B1) that the bi-chi-squared partial AUC is given by

or equivalently,

(B2)

Noting that

and defining

it follows from (B2) that

Hillis Page 28

Stat Med. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B3)

Let u1 and u2 be defined by (17) and define

(B4)

From (B3) and (B4) it follows that

(B5)

B.2. Derivation and results for λ < 1

It follows from (B1) that

where  is such that . It follows that

and
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We have

(B6)

Because the derivations for  and  for λ > 1 in 

Sections 4.2.1 and B.1, respectively, do not depend on the value of λ, it follows that 

 and  in (B6) can be replaced by the right side of 

equations (16) and (B5), respectively, with fpf0 replaced by 1 – fpf0 in the definitions of y1 

and y2 (B4). It follows that

(B7)

where u1 and u2 are defined by (17) and

C. Relationships between λ, θ and AUC for the bi-chi-squared ROC curve

In this section I show for fixed θ that AUC in an increasing (decreasing) function of λ if λ > 

1 (λ < 1).

To show this result for λ > 1, fix θ > 0 and let λ1 and λ2 be such that 0 < λ1 < λ2. Let Y1 

and Y2 denote bi-chi-squared DVs having parameter pairs (θ, λ1) and (θ, λ2), respectively, 

and let AUC1 and AUC2 denote their corresponding AUCs. Let c > 0 denote an arbitrary 

threshold and let fpfi (c) and tpfi (c) denote the corresponding fpf and tpf values: fpfi (c) = Pr 
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(Yi > c|D = 0), tpfi (c) = Pr (Yi > c|D = 1) for i = 1, 2. Note that fpf1 (c) = fpf2 (c) because 

. Thus tpf2 (c) > tpf1 (c) for all c < 0 implies AUC2 > AUC1, and 

hence it suffices to show tpf2 (c) > tpf1 (c).

Let Vξ denote a random variable having a  distribution. It is straightforward to show

(C1)

and

(C2)

To show (C2), note that , i = 1, 2, where Z 
is a standard normal random variable. Using (C1) and (C2) we can write tpf2 (c) = Pr (Y2 > 

c|D = 1) = Pr (λ2Vλ2θ > c) > Pr (λ1Vλ2θ < c) = Pr (Vλ2θ > c/λ1) > Pr (Vλ1θ > c/λ1) = Pr 

(λ1Vλ1θ > c) = Pr (Y1 > c|D = 1) = tpf1 (c); thus we have shown tpf2 (c) > tpf1 (c) for 

arbitrary c. The proof for λ < 1 is similar.

It can similarly be shown for fixed λ ≠ 1 that AUC is an increasing function of θ.
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Figure 1. 
Binormal ROC curve (with b < 1) and related plots. The binormal ROC curve (solid line) in 

(a) is the maximum likelihood estimate for the data given in Table 1; the circle indicates the 

hook in it. For the corresponding binormal random variable Y, the binormal conditional 

densities and the log-likelihood ratio are displayed in (b) and (c), respectively. where c1 = –

ab/(1 – b2) is the threshold where the log-likelihood ratio attains its minimum. The bi-chi-

squared conditional densities for Y* = (Y – c1)2 are displayed in (d), and the binormal-LR 

ROC curve, based on Y*, is the dashed line in (a). Notes: the nondiseased and diseased 
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densities are denoted by the dashed and solid lines, respectively, in (b) and (d); χ2 (1, ν) 

denotes a chi-squared distribution with one degree of freedom and noncentrality parameter 

ν; LR: likelihood ratio function; λ = 1/b2; θ = a2b2/(1 – b2)2.
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Figure 2. 
Plots related to AUC proofs. X1 and X2 are independent random variables such that 

 and ; thus  and . For plots (a), (b) 

and (c), θ = 2.25, λ = 4; for plot (d) θ = 2.25, λ = 0.25. Plot (a) shows the contour plot of 

the (X1, X2) density function and the subspaces corresponding to events A1, A2, A3 and A4. 

Plot (b) shows the transformed contour plot and subspaces in the (V1, V2) space, where V1 = 

X1 and . Plot (b) also shows the column vectors of the orthogonal matrix 

, denoted by w1 and w2, up to a scaling constant. Plot (c) 

shows the transformed contour plot and subspaces in the (W1, W2) space, where (W1, W2)′ 
= P′ (V1, V2)′; i.e. W1 and W2 are the components of the projections onto the normalized 

w1 and w2 vectors in (b). Plot (d) is similar to (c), except that λ = 0.25.
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Figure 3. 
Contour map of AUC in the bi-chi-squared parameter space. There is a one-to-one 

relationship between the values of λ and AUC for each value of θ in the region λ > 1 and 

also in the region λ < 1. Notes: for λ = 1 the ROC curve is the chance line with AUC = 0.5; 

the λ-axis is scaled logarithmically.
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Figure 4. 
Maximum-likelihood estimated binormal and bi-chi-squared ROC curves with 

corresponding latent decision variable distributions for Table 1a data (reader 5, modality 1). 

Note: MLE: maximum likelihood estimated.
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Figure 5. 
Improperness of the binormal model corresponding to a bi-chi-squared model. Improperness 

categories are defined in terms of |r|, where r = a/(1 – b)) is the mean-to-sigma ratio for the 

corresponding binormal model, as discussed by Hillis and Berbaum [13]. Notes: a and b 
define the binormal model corresponding to the bi-chi-squared model defined by (θ, λ), i.e., 

 and ; the λ-axis is scaled logarithmically; values of r for λ = 1 

are not included because r is not defined if λ = 1.
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Table 1

ROC rating data for a radiologist [9].

Rating

Status 1 2 3 4 5 Total

Nondiseased 39 19 9 1 1 69

Diseased 7 7 3 5 23 45

The estimated binormal ROC curve is displayed in Figure 1a.
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Table 2

Binormal likelihood-ratio ROC curve: original definition and corresponding bi-chi-squared formulation.

a) Original definition of ROCLR;a,b (based on log-likelihood-ratio):

U = ln LRY Y = g a, b +
1 − b2

2 Y − c1
2

ROCLR;a,b = {(Pr (U ≥ c|D = 0), Pr (U ≥ c|D = 1)) : –∞ < c < ∞}

b) Bi-chi-square formulation:

Y* ≡ (Y – c1)2

Y∗ ∣ D = 0 ∼ χ1; θ
2

Y∗ ∣ D = 1 ∼ λχ1; λθ
2

             ROC
χ2; λ, θ

=
Pr Y∗ ≥ c ∣ D = 0 , Pr Y∗ ≥ c ∣ D = 1 :c ≥ 0 , λ ≥ 1

Pr − Y∗ ≥ c ∣ D = 0 , Pr − Y∗ ≥ c ∣ D = 1 :c ≤ 0 , λ < 1
    or equivalently,

ROCχ2;λ,θ = {(Pr (W > c|D = 0), Pr (W > c|D = 1)) : –∞ < c < ∞}

    where

W = Y∗, λ ≥ 1
−Y∗, λ < 1

c) Relationship (b ≠ 1):

ROCLR;a,b = ROCχ2;λ,θ

    where

θ = a2b2

1 − b2 2

                                                                      λ = 1
b2

Notes: Y is binormal with conditional distributions Y | (D = 0) ~ N (0, 1), Y| (D = 1) ~ N (a/b, 1/b2); LRY (·) is the likelihood ratio function for Y; 

c1 = –ab/ (1 – b2) is the threshold where LRY (·) attains its minimum (b < 1) or maximum (b > 1); ROCLR;a,b is the binormal likelihood-ratio 

ROC curve with parameters a and b; ROCχ2;λ,θ is the bi-chi-squared ROC curve with parameters λ > 0 and θ ≥ 0.
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Table 4

Maximum likelihood parameter estimates for binormal-LR ROC curves for Van Dyke [9] data for comparing 

spin-echo and cine MRI in detecting thoracic aortic dissection. For the bi-chi-squared algorithm, initial 

estimates of λ and θ are functions of binomial parameter estimates and initial delta estimates are empirically 

estimated.

AUC Bi-Chi parameter estimates

Modality Reader PROPROC Bi-Chi λ θ 

1 1 0.934 0.934 3.418921 1.706011

1 2 0.891 0.891 3.172872 1.324854

1 3 0.908 0.929 (0.908) 2.532216 (46.929408) 3.239197 (0.006334)

1 4 0.977 0.977 786.713272 0.000017

1 5 0.841 0.841 9.366031 0.059426

2 1 0.952 0.952 3.788983 1.697356

2 2 0.926 0.926 73.205625 0.000024

2 3 0.930 0.930 3.940212 1.234458

2 4 1.000 1.000 1.283937 780.544368

2 5 0.943 0.943 12.075745 0.217397

Notes: Modality 1 = spin-echo MRI, 2 = cine MRI; PROPROC and Bi-Chi are the PROPROC and bi-chi-squared algorithms, respectively. The 
discrepancy between the PROPROC and bi-chi-squared AUC values for reader 3, modality 1 was resolved by rerunning the bi-chi-squared 
algorithm using several other starting values, which resulted in the values shown in parentheses.
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