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Results  A combined, representative metabolic profile 
describing differences between systemic lupus erythemato-
sus (SLE) patients and controls was obtained and used for 
elucidation of metabolic pathways that could be disturbed 
in SLE.
Conclusion  Design of experiment based representative 
sample selection ensured diversity and minimized bias that 
could be introduced at this step. Combined metabolic profile 
enabled unified analysis and interpretation.

Keywords  OPLS · Metabolomics · Multi-batch analysis · 
Representative sample selection

1  Introduction

Increased availability of modern high-throughput ‘omics’ 
technologies resulted in the potential for generating massive 
amounts of chemical data. At the same time, availability of 
large cohorts of samples with related metadata has increased 
in recent years, providing scientists with extensive and well-
described material for studies. These developments place 
additional requirements on study planning and execution, for 
which selection of relevant samples, extraction and integra-
tion of useful information from obtained data are important 
(Bictash et al. 2010; McCarthy et al. 2008).

When planning to analyze samples from large cohorts, 
the cost of analysis and/or the potential for sparing samples 
for future research are critical issues to consider. These con-
straints usually result in the need for representative sample 
selection. Representative samples are the samples whose 
characteristics or inferences from their analysis approximate 
population values and as such provide similar conclusions 
as would be obtained from the investigation of all available 
samples. While random sampling strategies are commonly 

Abstract 
Introduction  Availability of large cohorts of samples with 
related metadata provides scientists with extensive mate-
rial for studies. At the same time, recent development of 
modern high-throughput ‘omics’ technologies, including 
metabolomics, has resulted in the potential for analysis of 
large sample sizes. Representative subset selection becomes 
critical for selection of samples from bigger cohorts and 
their division into analytical batches. This especially holds 
true when relative quantification of compound levels is used.
Objectives  We present a multivariate strategy for repre-
sentative sample selection and integration of results from 
multi-batch experiments in metabolomics.
Methods  Multivariate characterization was applied for 
design of experiment based sample selection and subsequent 
subdivision into four analytical batches which were analyzed 
on different days by metabolomics profiling using gas-chro-
matography time-of-flight mass spectrometry (GC–TOF–
MS). For each batch OPLS-DA® was used and its p(corr) 
vectors were averaged to obtain combined metabolic profile. 
Jackknifed standard errors were used to calculate confidence 
intervals for each metabolite in the average p(corr) profile.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s11306-017-1248-1) contains supplementary 
material, which is available to authorized users.

 *	 Johan Trygg 
	 johan.trygg@umu.se

1	 Computational Life Science Cluster (CLiC), Department 
of Chemistry, Umeå University, 901 81 Umeå, Sweden

2	 Sartorius Stedim Data Analytics AB, 907 19 Umeå, Sweden
3	 Rheumatology Unit, Department of Medicine, Solna, 

Karolinska Institutet, Karolinska University Hospital, 
171 76 Stockholm, Sweden

http://orcid.org/0000-0003-3799-6094
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-017-1248-1&domain=pdf
http://dx.doi.org/10.1007/s11306-017-1248-1


	 I. Surowiec et al.

1 3

114  Page 2 of 12

used, lowering of possible selection bias can be obtained by 
application of the supervised sample selection approaches. 
Matched pairs comprise a reliable method for use when 
there are few clinical parameters (e.g. gender, age, BMI) 
to consider (Hulley 2013; Wuolikainen et al. 2016), but are 
inadequate approach when tens to hundreds of clinical and 
personal parameters describing the samples (sample descrip-
tors) are available. As samples and their descriptors create 
a multivariate data set, they can form the basis for sample 
selection using a multivariate characterization approach 
(Eriksson et al. 2013). Multivariate characterization is an 
essential application of principal component analysis (PCA), 
which is a basis for representative sample selection with 
design-based approaches. Multivariate characterization 
creates a low-dimensional map from the study samples and 
their descriptors using PCA. PCA scores adequately summa-
rize the properties of the study samples. The notable feature 
of the scores is that they are mathematically independent 
of each other (orthogonal) and usually limited in number 
(between two and four). Multivariate characterization is 
especially useful for quantifying changes in discrete multi-
level factors (factors that can take only finite, higher than 
two, number of values), and has been successfully used in 
several fields for selecting sets of compounds and substitu-
ents representative for the question of the study, e.g. in syn-
thetic organic chemistry (Carlson and Nordahl 1993), medic-
inal chemistry (Eriksson et al. 2004; Giraud et al. 2000), 
environmental chemistry (Ramos et al. 1997; Tysklind et al. 
1995) and microbiology (Marvanova et al. 2001).

When data complexity is reduced with multivariate char-
acterization, several approaches for representative sampling 
from a multivariate space can be used. One possible method, 
the space-filling design, targets even distribution of the 
design points throughout the space of interest (Thysell et al. 
2012). Other possible methods involve statistical, experi-
mental design schemes such as factorial or fractional facto-
rial designs (Box et al. 1978), D-optimal designs (deAguiar 
et al. 1995), or the onion design (Olsson et al. 2004). Any 
set of samples selected according to an appropriate multi-
variate design will have the best diversity and spread among 
the latent variables that can be achieved with the available 
samples. Multivariate characterization can also be used to 
divide selected samples into analytical batches if all sam-
ples cannot be analyzed concurrently (e.g. at the same day), 
which is inevitable with larger cohorts. Sample division into 
representative batches ensures a controllable analysis and 
enables treatment of each individual batch as an independent 
study (Thysell et al. 2012).

Integration of data from these representative analytical 
batches corresponds in the classical statistics to the gen-
eral problem of randomized block designs and application 
of blocking factors to reduce variation not related to the 
studied effect (Box et al. 1978). It presents a big challenge 

especially for untargeted profiling experiments (like metabo-
lomics, proteomics, and transcriptomics) (Leek et al. 2010), 
because, contrary to targeted approaches, compounds sub-
jected to profiling methods are not absolutely quantified, and 
data interpretation is based on relative comparison of com-
pound levels. These levels are influenced by instrument drift 
and other analytical errors that are inevitably part of each 
analysis, and which can introduce bias and hinder provision 
of biologically relevant information (Burton et al. 2008). 
Within particular analysis analytical drift can be removed 
by data normalization, with application of different scaling 
factors (Cairns et al. 2008; Wang et al. 2003), internal stand-
ards (Redestig et al. 2009; Sysi-Aho et al. 2007), optimally 
selected endogenous compounds (De Livera et al. 2012; 
Warrack et al. 2009) or quality control samples (De Livera 
et al. 2015; Fernandez-Albert et al. 2014). Several methods 
were also presented for correction of peak intensity drift in 
multi-batch metabolomics studies, with the batch-corrected 
data being subsequently concatenated and analyzed (Dra-
isma et al. 2010; Wang et al. 2013). The main advantage of 
such approach is easier data handling and increased power 
of statistical analysis of the obtained data matrix compared 
to analysis of separate datasets. Batch correction methods 
have big potential in metabolomics studies, which still has to 
be verified for experiments performed in large time intervals 
and for integration of data obtained from different research 
groups. New solutions for combined data analysis are needed 
for the situations where drift removal approaches are not 
applicable or not sufficiently effective. One possibility would 
be to, instead of combining data sets, concatenate study-
relevant results obtained from analysis of separate batches/
studies.

Statistical evaluation of metabolomics data can be 
achieved by application of univariate or multivariate meth-
ods such as support vector machines (SVM) (Mahadevan 
et al. 2008), neural networks (Taylor et al. 2002), principal 
components analysis (PCA) (Jackson 2003), cluster analy-
sis (Li et al. 2009), partial least squares (PLS) (Wold et al. 
2001) or orthogonal PLS (OPLS) (Trygg and Wold 2002). 
OPLS separates the systematic variation in the metabolite 
data into two parts, one part that is correlated (predictive) 
to the response (Y, e.g. class belonging) and one part that is 
uncorrelated (orthogonal). The main benefits include model 
transparency and interpretation. In OPLS, relevant informa-
tion about the metabolic profile is stored in a correlation-
scaled predictive loading vector (p(corr)), with p(corr) val-
ues ranging from −1.0 to 1.0. A high absolute p(corr) value 
indicates that a given metabolite is more abundant in one 
group [e.g. disease, positive p(corr) value] than in another 
[e.g. controls, negative p(corr) value]. The p(corr) vector 
values are independent on the scaling of the data. These 
properties allow p(corr) vectors to be directly comparable 
between studies, as long as the same variables were included 
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in the OPLS models (Wiklund et al. 2008). OPLS p(corr) 
vectors were already applied for example in evaluation of 
treatment effects (Stenlund et al. 2009).

Herein we present a strategy based on multivariate meth-
odology for sample selection and integration of experimental 
data from multi-batch experiments in metabolomics. The 

strategy is summarized at Fig. 1 and comprises of the fol-
lowing steps: (1) representative selection of samples from 
each of the studied sample classes based on available clini-
cal and personal sample descriptors with the application of 
multivariate characterization and DOE approach; (2) appli-
cation of the same strategy for subdivision of samples in 

Fig. 1   Overview of the 
experimental strategy applied in 
this study comprising of the fol-
lowing steps: (1) representative 
selection of samples from each 
of the studied sample classes 
(SLE subgroups) based on 
available clinical and personal 
sample descriptors with the 
application of multivariate char-
acterization and DOE approach; 
(2) application of the same strat-
egy for subdivision of samples 
in the representative analytical 
batches; (3) chemical analysis 
of samples; (4) OPLS mod-
eling of samples in each batch 
respectively to the question of 
the study; (5) averaging of the 
OPLS p(corr) vectors from all 
batches to obtain combined 
metabolic profile
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the representative analytical batches; (3) chemical analysis 
of samples; (4) OPLS modeling of samples in each batch 
respectively to the question of the study; (5) averaging of the 
OPLS p(corr) vectors from all batches to obtain combined 
metabolic profile. The methodology is presented using a 
clinical study of SLE as an example.

2 � Experimental

2.1 � Patients

Systemic lupus erythematosus (SLE) is a chronic autoim-
mune disease predominantly diagnosed in women with 
very diverse manifestations as well as disease onset. It is 
a connective-tissue disorder characterized by immunologi-
cal abnormalities and the involvement of a variety of organ 
systems, like skin, joints, kidneys, heart and the central 
nervous system (D’Cruz et al. 2007). It is currently defined 
by Systemic Lupus International Collaborating Clinic, 
or SLICC-criteria (Petri et al. 2012). The criteria involve 
clinical assessment supported by immunological manifesta-
tions criteria, including detection of various autoantibodies. 
Because SLE is a very heterogeneous condition present-
ing diverse manifestations from almost all organ systems 
it is often mistaken for other diseases and the biomarkers 
used today to diagnose and to monitor disease activity are 
far from perfect with respect to sensitivity and specificity 
(Liu and Ahearn 2009). The lack of good disease markers 
undermines also efforts to monitor and evaluate the effects 
of novel therapeutics in clinical trials. All this drives the 
search for new diagnostic tools and treatments, which could 
also bring increased understanding of the underlying disease 
factors.

Patients that fulfilled four or more classification cri-
teria for SLE were included in the Karolinska Institutet 
SLE cohort. A total of 320 SLE patients and 320 popula-
tion controls were enrolled at the time of study initiation. 
Controls were population-based individuals identified 
through the population registry and individually matched 
to each patient according to age, gender and region of liv-
ing. The only exclusion criterion was a SLE diagnosis. 
Patients and controls were evaluated in person by a rheu-
matologist. Extensive personal and basic clinical data were 
collected together with serological and urinary markers, 
kidney parameters, medications, disease activity scores, 
genetic factors, antibody levels, treatments, environmental 
exposures and information about previous and concurrent 
diseases and SLE manifestations. Fasting ethylenediami-
netetraacetic acid (EDTA) plasma samples were collected 
from all study participants according to standardized pro-
tocols and stored at −80 °C. All participants gave written 

informed consent to participate in the study which was 
approved by the ethical board at Karolinska University 
Hospital, Sweden.

2.2 � Sample selection and subdivision into batches

In this paper a multivariate approach was used to select a 
subset of samples from the entire Karolinska SLE cohort. 
Two hundred and five sample descriptors formed the basis 
for sample selection with the multivariate characteriza-
tion approach. Since SLE predominantly affects women, 
only female samples were used in this study. The cohort 
was divided into five subgroups based on the patients’ 
antibody profiles. This division was inspired by previous 
observations (Artim-Esen et al. 2014; To and Petri 2005) 
that lupus patients can be divided into groups that differ 
by symptoms and prognosis. Patients were assigned to the 
following SLE subgroups: antinuclear antibody negative 
(ANA neg, patients in this group were negative for anti-
bodies investigated at the time of sampling); antiphospho-
lipid positive SLE [aPL, patients that tested positive for 
at least two of the following antibodies: anti-cardiolipin 
antibodies (aCL IgG, aCL IgM and aCL IgA) and β-2-
glycoprotein-1 antibodies (or apolipoprotein H antibod-
ies, B2GP1IgG, B2GP1IgM, and B2GP1IgA)]; anti-Sm/
anti-RNP antibodies [SM/RNP, patients that tested posi-
tive for at least two of the following: anti-Smith antibod-
ies (Sm) and/or anti-ribonucleoprotein antibodies (RNP 
A, RNP 68)]; Sjögren’s syndrome antigens (A/B) positive 
[SS, patients that tested positive for at least two antibod-
ies against Sjögren’s syndrome A antigen (Ro60 or Ro52) 
and Sjögren’s syndrome B antigen (La)]; and other SLE 
(patients in this group did not fit into any of the previous 
groups or overlapped between two or more of them).

For each group we used PCA modelling on available 
personal and clinical parameters to summarize samples 
into a low-dimensional hyperplane, visualized as a two-
dimensional score scatter plot. A full two-level factorial 
experimental design was applied to the PCA score plot, 
with five samples selected from each of the four corners 
of the design and three from the design’s center point (see 
Fig. S1). This procedure was repeated for each SLE sub-
group and the control group, resulting in the selection of 
23 samples from each subgroup. Only 22 samples were 
available from the aPL positives subgroup, and all were 
included for analysis. Sample selection produced 114 SLE 
samples and 23 controls for the study. This PCA-based 
sample selection procedure was repeated for sub-division 
of samples into four analytical batches analyzed at differ-
ent days, with five to six samples from each SLE-subgroup 
and controls included in each batch.
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2.3 � GC–TOF–MS analysis and data processing

Plasma samples were extracted, derivatized, and analyzed 
using GC–TOF–MS as previously described (Jiye et al. 
2005) and as summarized in the Supplementary Material. 
Non-processed files from GC–TOF–MS analysis were 
then exported in NetCDF format to a MATLAB-based in-
house script where all data pre-treatment procedures such 
as baseline correction, chromatogram alignment, and peak 
deconvolution were performed. Metabolite identification 
was implemented within the script and was based on the 
comparison of retention index (RI) values and MS spectra 
of the deconvoluted metabolites with the ones from the in-
house mass spectra library established at the same instru-
ment by the Swedish Metabolomics Centre (Umeå, Swe-
den) [Level 1 identification according to MSI (Salek et al. 
2013)]. Seventy-three metabolites were identified using this 
procedure. Peak areas obtained were normalized using the 
areas from eleven internal standards that eluted during the 
entire chromatograph according to the following procedure. 
A PCA model with unit variance scaling [UVN scaling; for 
each variable (metabolite) the standard deviation (sk) is cal-
culated and then each value for this variable is multiplied 
by 1/sk, average is not subtracted], and using peak areas of 
internal standards, was calculated. The t1-score vector from 
this model was used for normalization of the data which was 
done by dividing the all peak areas in each sample by its cor-
responding t1-score value (Redestig et al. 2009).

2.4 � Statistical analysis of the metabolomics data

All multivariate modelling was performed using SIMCA 
version 14 (MKS Data Analytics Solution, Umeå, Sweden). 
PCA was used for the sample selection procedure, and 
OPLS-DA® was used to elucidate the metabolomics differ-
ences between various groups of subjects. Column centering 
and scaling to unit variance was used for all models, and 
model significance was found by means of sevenfold cross-
validation. Number of model components was evaluated by 
a cross-validation procedure, but no more than two compo-
nents were selected to avoid over-fitting.

For each batch run order effect was checked by calculat-
ing a 1 + 1 OPLS model with all metabolite signals as X var-
iables and sample run order as Y variable. For batch 4 high 
run order effect was observed (20%) as compared to other 
batches (12, 8 and 8% for batch 1, 2 and 3 respectively), 
which could be explained by the visible, uncontrollable drop 
in instrument sensitivity during the analysis.

Metabolites significant for the OPLS-DA models between 
SLE and controls were identified using confidence inter-
vals calculated by multiplying the jackknife standard errors 
by the t-value (α = 0.05, two-tailed) corresponding to the 
N − 1 degrees of freedom, where N is the number of the 

cross-validation groups. Jackknifing is a method for finding 
the precision of an estimate, by iteratively keeping out parts 
of the underlying data, making estimates from the subsets 
and comparing these estimates (Efron and Gong 1983). 
The p(corr) values from each batch’s OPLS-DA model for 
metabolites that had the same sign of p(corr) vector in all 
batches were averaged to obtain an average/combined meta-
bolic profile characterizing SLE versus controls. The average 
standard error for each metabolite in the combined profile 
was calculated according to the following formula:

where SEavg is the average standard error obtained from jack-
knife standard errors from each batch (SE1 − SE3). Results 
were presented as average p(corr) vector, with average con-
fidence interval defining the significance of the metabolite 
in this vector. The average confidence interval was calcu-
lated by multiplying average standard error via the t-value 
(α = 0.05, two-tailed) corresponding to the N − 3 degrees of 
freedom, where N is the total number of the cross-validation 
groups from all batches included in the study.

3 � Results and discussion

In the following sections we apply the strategy presented in 
Fig. 1 to study the SLE samples from the Karolinska SLE 
cohort.

3.1 � Representative selection: sample selection 
and subdivision into batches based on clinical 
and personal data

Patients’ personal and clinical data were used to calculate 
separate PCA models for each of the five subgroups and 
the control group. In our study, from each PCA model, 23 
samples were selected so that they spanned the multivari-
ate space defined by all the samples and their associated 
(available) clinical descriptors (see Sect. 2). Figure 2 shows 
sample selection from the control group as an example of 
the applied sampling procedure. Fig. S1 shows the selection 
principle. Two principal components were used since they 
accounted for the highest amount of variation in the data, 
with third component in most cases being not significant 
according to the cross-validation procedure. Other compo-
nents, if significant, could be also used and subset selection 
could be performed for example with the application of the 
generalized subset designs (Surowiec et al. 2017). Obtain-
ing a perfect design fit (for example square for the two level 
two factors full factorial design) for the PCA score plot is 
not always possible, especially if many samples (relative to 
all samples available) are taken at each of the design points. 

SEavg =
((

SE1
2 + SE2

2 + SE3
2
)/

3
)1∕2
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However, the goal of representative selection is to be as 
close to the selected design as possible.

The size of the virtual square (full two-level factorial 
design) that should fit into the score plot is based on whether 
a smaller space with less variation (smaller square) or one 
covering wider variation within the samples available (wider 
square) is desired. The smaller square removes all outliers 
that could introduce unwanted variation in the subsequent 
data analysis, and is therefore the more optimal approach for 
pilot and exploratory studies. The wider square represents a 
wider spread of variation in the data and is better suited for 
more comprehensive studies with larger amount of analyzed 
samples (Fig. S1).

The samples were further separated into four batches 
using the same approach described above because of 
the limited, maximum, daily sample throughput of the 
GC–TOF–MS instrument. Five to six samples from each 
subgroup and the control group were analyzed in each batch. 

An uncontrollable drop in instrument’s sensitivity during 
the analysis was observed for batch 4, which was therefore 
excluded from further analysis.

The selection method we used ensured that samples rep-
resented the multivariate space defined as samples and their 
related descriptors and hence were representative for the 
studied cohort. Dividing the samples into four batches rep-
resentatively allowed for treatment of each batch as an indi-
vidual study and gave the basis for independent data analy-
sis. This approach provided full control over the analytical 
pipeline and ensured that, despite the exclusion of one batch 
from study analysis due to problems with instrument stabil-
ity, remaining batches still carried information required by 
the study. If the samples had not been divided in a controlled 
manner, loss of samples due to uncontrollable factors could 
result in the need for a whole new analysis.

3.2 � Analytical data evaluation of the SLE multi‑batch 
data

To get a general overview and understanding of the spread 
of variability in the data, we performed combined analysis 
of all batches with PCA. In our study, the score plot from 
the PCA model of normalized data from three batches (4 
components, 105 samples, 73 variables, R2X = 0.4) revealed 
sample separation based on day of analysis as the main 
source of variation in the data (Fig. S2). This finding sug-
gested the need for individual analysis of each batch. Here 
we present multivariate approach for performing results 
compilation from different batches. We have focused on the 
differences between SLE patients and controls, since this 
was the first aim of the study, with the main assumption 
being that analysis of the metabolic profile differentiating 
SLE patients from the control would improve both disease 
diagnosis, as well as understanding of its pathology. With 
the balanced and representative number of samples from 
each disease sub-class, finding metabolic profile character-
izing SLE is expected to be a reliable approach.

We applied OPLS-DA modelling to evaluate differences 
between SLE and control. OPLS-DA models were created 
for each individual batch. Table 1 provides the parameters 
of the models studied and the p(corr) values obtained are 
presented in Table 2. Significance of the metabolites accord-
ing to jackknife confidence intervals in individual OPLS-
DA models varied between batches, with twenty-one com-
pounds being significant in at least one batch, two of them 

Fig. 2   Sample selection from controls. From the PCA model 
(R2X[1] = 0.107, R2X[2] = 0.044), 20 samples from the full two-level 
factorial design corners (5 from each) + 3 center points were selected 
so that they spanned the entire multivariate space defined by samples 
and their associated clinical data. Selected samples are marked in 
green (design corners) and red (center points); samples that were not 
selected are marked in gray 

Table 1   Parameters of the 
OPLS-DA models used to 
discriminate between the SLE 
and population-based control 
groups

Batch A p(1) (%) N R2X R2 (cum) Q2 CV-ANOVA

Batch 1 1 + 1 + 0 9.1 35 0.24 0.75 0.42 p = 0.002
Batch 2 1 + 0 + 0 7.3 36 0.07 0.52 −0.10 p = 1
Batch 3 1 + 1 + 0 6.0 34 0.18 0.81 0.42 p = 0.003
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Table 2   P(corr) loadings from the OPLS-DA models between SLE and control groups in each batch and in averaged profile

Compound name HMDB Compound class Batch 1 Batch 2 Batch 3 Average 
p(corr) value

Average confi-
dence interval

1-5-Anhydro-d-glucitol HMDB03911 Carbohydrate 0.324 −0.106 −0.045
2-Oxoisocaproic acid HMDB00695 Organic acid −0.560 −0.527 −0.652 −0.579 0.387
3-Hydroxybutanoic acid HMDB00357 Organic acid −0.308 −0.122 −0.104 −0.178 0.614
4-Hydroxyphenylacetic acid HMDB00020 Organic acid 0.212 0.196 0.078 0.162 0.340
Adenosine-5-monophosphate HMDB00045 Nucleotide −0.318 −0.395 −0.039 −0.251 0.497
Alanine HMDB00161 Amino acid 0.150 0.267 −0.335
Allothreonine HMDB60878 Amino acid 0.126 0.251 −0.492
α-Aminobutyric acid HMDB00452 Organic acid −0.027 −0.080 −0.350 −0.152 0.412
α-Ketoglutaric acid HMDB00208 Organic acid 0.297 −0.104 0.169
α-Linolenic acid (ALA) HMDB02181 Fatty acid −0.647 −0.268 −0.159 −0.358 0.684
α-Tocopherol HMDB01893 Sterol 0.048 −0.088 0.046
Arachidonic acid HMDB01043 Fatty acid −0.411 −0.343 −0.176 −0.310 0.526
Arginine HMDB00517 Amino acid 0.382 0.320 0.147 0.283 0.352
Asparagine HMDB00168 Amino acid 0.090 0.098 −0.293
β-Sitosterol HMDB00852 Sterol 0.100 0.050 0.207 0.119 0.383
Caffeine HMDB01847 Nucleotide 0.105 −0.182 0.138
Campesterol HMDB02869 Sterol 0.247 0.050 0.091 0.129 0.418
Cholesterol HMDB00067 Sterol 0.004 0.090 0.004 0.033 0.465
Citric acid HMDB00094 Organic acid −0.189 −0.183 −0.315 −0.229 0.498
Creatinine HMDB00562 Amino ketone 0.384 0.241 0.201 0.275 0.388
Cystathionine HMDB00099 Amino acid 0.216 0.161 0.087 0.155 0.370
Cysteine HMDB00574 Amino acid −0.275 −0.050 −0.124 −0.150 0.548
Cystine HMDB00192 Amino acid 0.313 0.409 0.156 0.293 0.379
Docosahexaenoic acid (DHA) HMDB03581 Fatty acid −0.292 −0.540 −0.201 −0.344 0.565
Elaidic acid HMDB00573 Fatty acid −0.682 −0.301 −0.178 −0.387 0.626
Erythronic acid HMDB00613 Carbohydrate −0.043 −0.267 0.258
Galactitol HMDB00107 Carbohydrate 0.388 0.317 0.103 0.269 0.430
γ-Tocopherol HMDB01492 Sterol −0.152 0.332 0.180
Gluconic acid HMDB00625 Organic acid −0.029 −0.034 −0.514 −0.193 0.363
Glucosamine HMDB01514 Carbohydrate −0.010 0.051 −0.280
Glucose HMDB00122 Carbohydrate −0.403 −0.108 −0.307 −0.272 0.335
Glutamic acid HMDB00148 Amino acid 0.096 0.056 0.280 0.144 0.259
Glutamine HMDB00641 Amino acid 0.176 0.338 0.108 0.208 0.282
Glyceric acid HMDB00139 Organic acid 0.388 0.023 0.210 0.207 0.445
Glycerol HMDB00131 Polyol −0.122 −0.218 0.246
Glycerol-3-phosphate HMDB35909 Organic acid 0.154 −0.041 0.248
Glycine HMDB00123 Amino acid 0.264 0.256 0.097 0.206 0.340
Hexadecanoic acid HMDB00220 Fatty acid −0.640 −0.385 −0.278 −0.434 0.620
Hippuric acid HMDB00714 Amino acid 0.299 −0.194 0.332
Histidine HMDB00177 Amino acid −0.045 0.185 −0.633
Inosine HMDB00195 Nucleoside −0.104 −0.370 −0.203 −0.225 0.535
Lactic acid HMDB00190 Organic acid 0.159 0.037 0.034 0.077 0.361
Lactose HMDB00186 Carbohydrate −0.418 0.240 0.235
Lauric acid HMDB00638 Fatty acid −0.550 −0.236 −0.133 −0.307 0.391
Linoleic acid HMDB00673 Fatty acid −0.509 −0.233 −0.330 −0.357 0.698
Lysine HMDB00182 Amino acid 0.162 0.347 −0.371
Malic acid HMDB00156 Organic acid 0.114 −0.216 −0.037
Maltose HMDB00163 Carbohydrate −0.632 −0.307 −0.013 −0.317 0.637
Methionine HMDB00696 Amino acid 0.170 0.174 −0.445
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(ornithine and tryptophan) significant in two batches and one 
(2-oxoisocaproic acid) significant in all batches.

To compare similarity of metabolic profiles between 
batches, we further investigated shared and unique structure 
plots (SUS-plots) (Wiklund et al. 2008) with p(corr) vectors 
from the OPLS-DA models between SLE and control groups 
for each batch (Fig. 3). For identical profiles, the SUS-plot 
should have all the points on the diagonal line from the lower 
left corner to the upper right corner, with R2 = 1.0. Figure 3 
shows that the correlation between p(corr) vectors from 
each batch was low, and this was confirmed when correla-
tion coefficients were calculated (R2 = 0.454 for Batch 1 and 
Batch 2, R2 = 0.177 for Batch 1 and Batch 3, and R2 = 0.055 
for Batch 2 and Batch 3). A low correlation between p(corr) 
vectors showed that there were no strong metabolic differ-
ences between SLE and controls, what was especially seen 
in the weak model for the Batch 2. Still, obtaining a com-
mon metabolic profile could give relevant information about 
perturbations in metabolite levels between SLE and controls.

After further SUS-plot analysis, forty two compounds 
with the same change direction [sign of p(corr) vector] in 
all the OPLS-DA models were selected. These metabolites 

were considered reliable, and formed a combined meta-
bolic profile describing differences between SLE patients 
and controls. Their p(corr) values and jackknife standard 
errors were used to calculate the average p(corr) values and 
corresponding confidence intervals respectively, as summa-
rized in Table 2. Three metabolites had averaged confidence 
intervals that were lower than the absolute value of the aver-
age p(corr) value (2-oxoisocaproic acid, ornithine and tryp-
tophan), and these metabolites were considered significant 
in the combined profile differentiating SLE patients from 
controls which is portrayed in Fig. 4. This profile was further 
used for elucidation of metabolic pathways that could be 
disturbed in SLE.

3.3 � Biological relevance of the SLE versus controls 
metabolic profile

In multivariate approach interpretation of the metabolic pro-
file is based on an assumption that if metabolites involved 
in a certain metabolic pathway demonstrate changes that 
would not be anticipated by random chance, then this path-
way is probably biologically or metabolically important. 

Underlined metabolites significant according to jackknifing. Positive values represent metabolite increased in SLE patients compared to the 
population-based controls

Table 2   (continued)

Compound name HMDB Compound class Batch 1 Batch 2 Batch 3 Average 
p(corr) value

Average confi-
dence interval

Methyl linoleate HMDB34381 Fatty acid methyl ester 0.391 0.162 0.289 0.281 0.313
Nonanoic acid HMDB00847 Fatty acid −0.039 −0.066 0.057
o-Phosphoethanolamine HMDB00224 Organic phosphoric acid −0.391 −0.341 −0.060 −0.264 0.475
Ornithine HMDB00214 Amino acid 0.431 0.489 0.093 0.338 0.323
Oxalic acid HMDB02329 Organic acid −0.218 0.180 0.033
Palmitoleic acid HMDB03229 Fatty acid 0.289 0.205 −0.037
Phenylalanine HMDB00159 Amino acid 0.062 −0.021 −0.212
Phosphoric acid HMDB02142 Inorganic acid −0.105 −0.032 0.209
Proline HMDB00162 Amino acid 0.102 0.476 −0.065
Pyroglutamic acid HMDB00267 Amino acid −0.053 0.215 0.181
Scyllo-inositol HMDB06088 Polyol 0.275 0.312 0.085 0.224 0.410
Serine HMDB00187 Amino acid 0.192 0.069 0.254 0.172 0.240
Squalene HMDB00256 Carbohydrate −0.114 0.336 0.015
Stearic acid HMDB00827 Fatty acid −0.592 −0.495 −0.073 −0.387 0.497
Sucrose HMDB00258 Carbohydrate 0.165 0.355 0.040 0.187 0.407
Taurine HMDB00251 Amino acid −0.340 −0.577 0.103
Threonic acid HMDB00943 Organic acid −0.003 −0.050 0.262
Threonine HMDB00167 Amino acid 0.251 −0.130 0.332
Tryptophan HMDB00929 Amino acid −0.197 −0.364 −0.448 −0.336 0.258
Tyrosine HMDB00158 Amino acid 0.097 0.242 −0.118
Uric acid HMDB00289 Purine 0.309 0.250 0.186 0.248 0.508
Valine HMDB00883 Amino acid −0.168 0.022 −0.436
Xylitol HMDB02917 Polyol 0.430 0.416 0.054 0.300 0.385
Xylose HMDB00098 Carbohydrate 0.180 0.475 0.238 0.298 0.304
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Fig. 3   SUS plot analysis of p(corr) vectors from the first and second 
batch (a), the second and third batch (b), and the third and first batch 
(c). Metabolites with the same change direction from all batches stud-

ied are indicated in black; the dashed line is the regression line; R2 
regression coefficient

Fig. 4   Combined metabolic profile of SLE versus controls. The p(corr) value presented is the average p(corr) value of the three batches for the 
metabolites that showed the same change direction relative to SLE in all batches studied
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This assumption is valid even if a few single metabolites do 
not show significant changes.

Our study showed decrease in levels of most free, long-
chain fatty acids in SLE patients compared to controls. These 
results confirm the ones presented by Wu et al. (Wu et al. 
2012), who connected this change to increased β-oxidation 
in SLE patients. Reduced fatty acid levels could also indi-
cate decreased lipolysis in SLE patients (Borba et al. 2000). 
Reduction of levels of unsaturated fatty acids could, on the 
other hand, result from accelerated lipid peroxidation, as 
previously demonstrated in SLE (Frostegard et al. 2005), or 
from increased synthesis of inflammatory mediators which 
are products of polyunsaturated fatty acid oxidation (Dennis 
and Norris 2015).

In the averaged metabolic profile we obtained, SLE 
patients had higher levels of most amino acids in their 
plasma, except for: cysteine and tryptophan, which was sig-
nificant according to jackknifing. This contradicts findings 
described by others (Ouyang et al. 2011). Lower levels of 
tryptophan were observed in SLE patients before (Bengtsson 
et al. 2016) and could be connected to changes in kynure-
nine pathway and activation of immune response (Lood et al. 
2015; Perl et al. 2015). Arginine and ornithine had higher, 
although not significant according to jackknifing, levels in 
SLE patients compared to controls, which have been also 
reported by others (Wu et al. 2012). This finding could be 
related to nitrogen oxide (NO) production and to urea cycle 
disorders, since the urea cycle is the sole source of endoge-
nous arginine, ornithine, and citrulline in humans. Increased 
NO synthase activity has already been associated with SLE 
(Wigand et al. 1997). In general, understanding the role of 
amino acids in SLE requires more effort.

4 � Conclusions

In this study we presented a strategy for representative sam-
ple selection and OPLS-based integration of results from 
multi-batch experiments in metabolomics. We applied this 
strategy in the clinical study of SLE. Design of experiment-
based sample selection allowed obtaining a representative 
subset of samples spanning all the physicochemical variabil-
ity contained within the cohort studied, defined by the avail-
able samples along with their associated personal and clini-
cal descriptors. Presented approach is valid for controlled 
selection of subgroups of samples from larger cohorts in 
which samples are characterized by number of clinical, per-
sonal, environmental etc. parameters. It is also applicable for 
representative division of such samples into smaller groups 
for chemical analysis in situations where all samples can-
not be analyzed concurrently. Controlled sample selection 
reduces the risk of bias and is a first step towards obtaining 
reliable and robust results.

Profiling data from each batch of samples were analyzed 
separately with application of OPLS modelling. Obtained 
metabolic profiles in form of p(corr) vectors were subse-
quently averaged to provide combined metabolic profile 
differentiating SLE patients from controls, which was later 
evaluated in relation to metabolic pathways that could be 
disturbed in SLE.

Because of the applied methodology, which was based 
on strict control of each experimental step, we were able 
to obtain a reliable metabolic profile that characterized 
the comparison between SLE patients and controls. The 
work presented in this paper emphasizes the importance 
of applying multivariate approaches for representative 
sample selection and subsequent integration of ‘omics’ 
results obtained from different analytical batches. The 
applied data analysis approach may be used for compila-
tion of results from different analytical batches and for 
combination of results from different studies. We believe 
that this methodology will lead to more reliable results and 
will enable not only comparison of data analyzed at differ-
ent times, but also ones obtained from different research 
groups.
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