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ABSTRACT Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and
responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glyco-
protein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1,
and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact
with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (�DG) and
lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within
GP1 that interact with the cellular receptors, we implemented insertional mutagenesis,
carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were
engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to
mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 con-
structs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and trans-
duction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially
produce the �DG cell surface receptor. Seven constructs retained efficient transduction
in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are in-
volved in �DG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted
central core of the trimeric interface and are important for GP-�DG interaction. Addition-
ally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both
HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations
may interfere with interactions with the endosomal receptor LAMP1 or interfere at an-
other stage in entry that is common to both cell lines. Insight gained from these data
can aid in the development of more-effective entry inhibitors by blocking receptor inter-
actions.

IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Le-
one, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from
December to March. Currently, there is neither a preventative vaccine nor a thera-
peutic available to effectively treat severe Lassa fever. One way to thwart virus infec-
tion is to inhibit interaction with cellular receptors. It is known that the GP1 subunit
of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our
results highlight a region within the Lassa virus GP1 protein that interacts with the
cellular receptor alpha-dystroglycan. This information may be used for future devel-
opment of new Lassa virus antivirals.
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Lassa fever is a hemorrhagic disease caused by an Old World (OW) arenavirus known
as Lassa virus (LASV). The virus was first isolated in Nigeria in 1969 and is currently

endemic in West Africa (1). Serological studies suggest that hundreds of thousands of
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people are infected each year (2). While most infections are mild or asymptomatic, 15
to 20% of cases require hospitalization and result in approximately 5,000 deaths
annually (3–5). The rodent host for LASV is the multimammate rat, Mastomys natalenis
(6). Recently, the virus has been isolated from Hylomyscus pamfi and Mastomys eryth-
roleucus, potentially increasing its geographic range (7). Human exposure occurs
through direct contact with the infected rodents or rodent excrement or close contact
with infected patients (8). Due to the high morbidity and mortality associated with
Lassa hemorrhagic fever, LASV is classified as a category A pathogen (9).

Lassa virus is an enveloped ambisense RNA virus with a bisegmented genome. Viral
particles are covered in mature glycoprotein (GP) trimeric spikes, which mediate viral
entry. Like other class 1 viral fusion proteins, the envelope glycoprotein precursor (GPC)
is translated as a single polypeptide and is proteolytically cleaved into three subunits.
Processing occurs first in the endoplasmic reticulum (ER) by a cellular signal peptidase.
GPC is then trafficked to the cis-Golgi apparatus and processed by cellular proprotein
convertase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) to produce a nonco-
valent stable-signal peptide (SSP)/GP1/GP2 heterotrimer (Fig. 1A and B) (10–13). Unlike
other class I fusion proteins, the relatively long signal peptide of GPC is not degraded;
it serves a chaperone-like function necessary for the correct trafficking and processing
of GP (14–16). SSP interacts with the cytoplasmic domain of GP2 and is involved in pH
sensing (17–19). GP1 is responsible for binding to cellular receptors (20, 21), while GP2
mediates membrane fusion during viral entry (22–24).

Cellular entry of LASV is a multistep process involving multiple GP1-receptor inter-
actions. First, GP1 interacts with a cell surface receptor on the plasma membrane,
mainly alpha-dystroglycan (�DG) (21). Additional surface receptors can mediate LASV
entry in the absence of �DG, including heparin sulfate, dendritic cell-specific intercel-
lular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and Tyro3/Axl/Mer (TAM)
family members (20, 25, 26). This initial GP1-receptor interaction induces viral internal-
ization through a clathrin-, caveolin-, and dynamin-independent process (20, 27, 28).
Once within the low-pH environment of the endolysosomal compartment, GP under-
goes conformational changes that reduce its affinity for �DG and increase its affinity to
a second receptor, lysosome-associated membrane protein 1 (LAMP1) (29, 30). Engage-
ment of LAMP1 by LASV GP1 is hypothesized to lower the activation energy needed to
mediate GP2 conformational changes that fuse the viral and cellular membranes,
completing the entry pathway (31).

Previous studies have provided new structural information for both the prefusion
conformation and pH-induced changes in the LASV glycoprotein. Recently, the trimeric
prefusion GP1/GP2 crystal of LASV was solved (32). This structure provides novel insight
into the LASV GP complex, including trimer organization, glycosylation, and potential
receptor binding sites. The LASV GP1 monomeric protein was previously crystallized
under low-pH conditions (pH 5) (33). The low-pH-purified protein was unable to interact
with �DG but interacted with LAMP1, suggesting that the crystal structure resembles
GP1 in the lysosome (33). Comparison of the prefusion GP1 crystal (isolated at pH 8) and
the pH 5 GP1 crystal structure highlights several low-pH-induced conformational
changes required for LAMP1 interactions (32).

In addition to the crystallization studies, a cryo-electron tomography (cryo-ET) study
was able to construct three-dimensional structures of LASV GP trimers under increas-
ingly acidic pH conditions (pH 7, 5, and 3) (31). Tomographic reconstructions suggest
that the GP1 subunit undergoes conformational changes at pH 5, opening a putative
LAMP1 binding crevice at the GP1 trimeric interface (31, 33). Pseudoatomic models fit
both prefusion GP1/GP2 and low-pH GP1 crystal structures into the low-resolution
cryo-ET densities, providing three-dimensional models of GP trimer organization (22,
31–33).

LASV entry is most efficient when GP1 interacts with �DG and LAMP1. While the GP1
binding interface has been mapped in both �DG and LAMP1, the corresponding
receptor-binding sites in GP1 have yet to be elucidated. Utilizing the new crystal
structure as a model, we used carbohydrate shielding, insertional mutagenesis, and
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alanine scanning mutagenesis to identify regions within GP1 important for receptor
interactions (Fig. 1D).

RESULTS

With the overarching goal of understanding the functional and spatial organization
of the arenavirus prefusion glycoprotein structure, we utilized the trimeric GP prefusion
crystal structure (32) to identify residues involved in receptor interactions.

Function of GPC N-linked glycans. Arenavirus GP N-linked glycans play significant
biochemical roles in virus-cell interactions (34, 35). Previous studies found that specific
N-linked glycans in LCMV GP1 were necessary for GP trafficking, fusion activity, and
infectivity (34). LASV GP1 contains seven conserved N-linked glycosylation sites. Re-
moving glycans at positions 81, 91, 101, and 121 was previously shown to inhibit GPC
processing into GP1 and GP2 (35), although receptor binding and fusion activity were
not evaluated. We reproduced the seven N-glycan mutants by changing glycosylation
site motifs from N-X-S/T to N-X-A. To examine the level of processed GP on the cell
surface, surface proteins were biotinylated, concentrated using streptavidin Sepharose
beads, and subjected to immunoblot analysis (Fig. 2A). All mutated GPs migrated faster
than parental GP, confirming that all seven sites are glycosylated. We similarly found
that removing the N-linked sites at T81 and S91 resulted in GPC processing defects (Fig.
2A and C). However, we found that the remaining five N-glycan mutations resulted in
detectable levels of GP1-GP2 processing, including T101 and S121. Our use of a
codon-optimized expression construct and examining surface material 36 h after
transfection, rather than 24 h, may have enabled T101A and S121A mutants to reach
detectable steady-state levels of processed GP1-GP2 at the cell surface (35).

To determine if the constructs lacking N-glycans produce functional GP, we deter-
mined if they could produce syncytia, or multinucleated cells, in a cell-to-cell-based
fusion assay. Incubating LASV GP-transfected cells with a low-pH buffer results in
efficient GP activation and robust syncytium formation (Fig. 2B). By comparing the
extent of syncytium formation between mutant and parental GPs, we can determine
the fusion efficiency of each mutant. The fusion activity of the N-glycan mutants closely
correlated with the cleavage efficiency (Fig. 2C), suggesting that the glycans are not
required for productive cell-to-cell fusion.

ssp GP1 GP2

A

B C

D

FIG 1 Subunits and structure of the Lassa virus glycoprotein complex. (A) The LASV glycoprotein complex
consists of the membrane-integrated stable-signal peptide (SSP) (blue), the GP1 subunit (purple), and the
noncovalently attached GP2 subunit (green). The GPC is cleaved by the signal peptidase (red arrow) and
SKI-1/S1P (yellow arrow) during protein processing. (B) Cartoon of the SSP, GP1, and GP2 heterotrimer
complex in the lipid bilayer. (C) Trimeric LASV GP1-GP2 crystal structure, viewed from the top down; GP1
is in purple and GP2 in green (PDB 5vk2) (32). (D) LASV GP1-GP2 crystal structure, side view (PDB 5vk2). The
engineered GP1 constructs are color coded as follows: pink, glycosylation site removals and additions;
orange, HA-tagged sites; yellow, alanine scanning of charged residues; blue, alanine scanning of hydro-
phobic residues; red, additional targeted residues. Note that many of the targeted residues were found in
regions of the structure that did not crystallize. All structures were rendered with PyMol.
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Cell-to-cell fusion assays do not completely recapitulate the process that occurs
when a viral particle fuses with an endosomal membrane. Virus-to-cell entry requires
the viral glycoprotein to facilitate interactions with cellular receptors to initiate endo-
cytosis. Once trafficking to the proper cellular compartment occurs, LASV must undergo
a receptor switch in the endolysosome before membrane fusion. In order to determine
if the GP1 constructs can mediate viral entry, vesicular stomatitis virus (VSV) pseu-
dotyped particles were produced containing LASV GP on their surface. Particle trans-
duction was monitored in two haploid cell lines, HAP1 and HAP1-ΔDAG1. LASV entry
into HAP1 cells and HAP1-ΔDAG1, a cell line deficient in �DG, has been thoroughly
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FIG 2 Processing and functional characteristics of surface-expressed GP1 N-glycosylation sites. (A) Vero cells were
transfected with the indicated FLAG-tagged LASV GP variant or the negative control. After 36 h, cells were subjected to
surface biotinylation. Surface-expressed biotinylated proteins were concentrated using streptavidin Sepharose beads.
Precipitated proteins were separated by SDS-PAGE. Immunoblot assays were carried out to detect LASV GP surface-
expressed protein using an anti-FLAG antibody, M2. The immunoblot shown is representative of four trials. (B) Micropho-
tographs of Vero cells cotransfected with plasmid DNA encoding LASV GP construct and GFP. Cell-to-cell fusion was
assessed 3 h following low-pH-medium shock; magnification, �20. Representative fields of view are shown. (C) Fusion data
for each construct was quantified by counting unfused cells and comparing the numbers to those in mock-transfected
wells. Quantified fusion data for each construct were normalized to LASV wt-GPC-3xFLAG. Cleavage efficiency was
normalized to FLAG-tagged GP using densitometry analysis. (D) Parental GP transduction efficiency in HAP1 and
HAP1-ΔDAG1 cells. VSVΔG-GFP pseudoparticles containing LASV GP were added to both cells, and the GFP-positive cells
were enumerated in a flow cytometer. The percentage of the cell population that was GFP positive is shown. (E)
VSVΔG-GFP pseudoparticles containing LASV GP or N-glycosylation mutants were used to transduce HAP1 and HAP1-
ΔDAG1 cells. The GFP-positive cells were enumerated in a flow cytometer. Transduction efficiencies were normalized to
parental LASV GP particle transduction values in each respective cell type. All data are based on the averages and standard
errors of the means from at least three replicate experiments.
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documented by recent genetic screens (20, 36). Gene trap screening of HAP1 cells
reconfirmed that LASV GP’s interaction with properly glycosylated �DG significantly
enhances cell entry (36). A second genetrap screen in HAP1-ΔDAG1 cells identified an
additional, lysosomal receptor, LAMP1 (20). Because efficient HAP1 entry of LASV occurs
through �DG interactions and HAP1-ΔDAG1 cell entry occurs through other cell surface
receptors, such as heparin sulfate receptors (20), we propose that constructs exclusively
demonstrating reduced transduction efficiency into HAP1 cells are inefficiently engag-
ing �DG. In order to demonstrate the entry enhancement by �DG, we added the same
volume of pseudotyped particles coated with LASV GP on both cell lines (Fig. 2D). LASV
GP entry into HAP1 cells produced 8.4 � 0.83 times more green fluorescent protein
(GFP)-positive cells than the same volume of particles added to HAP1-ΔDAG1 cells. To
compensate for the decreased entry into HAP1-ΔDAG1 cells, we increased the volume
of particles used to transduce this cell type. When examining the transduction efficien-
cies, each mutant GP was compared to parental GP in each cell type, so that specific
defects in HAP1 cell entry would highlight mutations that facilitated viral uptake
through �DG interactions.

Because GP can only fuse if GP1-GP2 processing occurs, we examined transduction
efficiency for constructs with at least 50% cleavage efficiency. Five glycosylation
removal GP1 constructs were examined in transduction assays, T101A, S111A, S121A,
S169A, and T226A mutants. All five constructs efficiently transduced both cell types,
suggesting that GP missing a single N-glycan retains cell entry (Fig. 2E).

Engineering N-linked glycosylation sites onto GP1. Carbohydrate shielding, or
glycosylation site additions, can be used to map glycoprotein structural domains
(37–39). We engineered seven additional glycosylation sites throughout GP1 (Fig. 3). All
glycosylation sites were predicted to be present on the surface of the GP1 model,
although H141N, N148S, V187T, and Y253N had potential to impede trimer formation
based on the new trimeric structure (32). The mutants were evaluated for the incor-
poration of the glycan, as well as processing with surface biotinylation assays (Fig. 3A).
Glycosylation additions were confirmed by the slow mobility pattern of GP1-GP2 on an
immunoblot compared to that of parental GP, which was observed for H141N, V187T,
D211S, and Q232N mutants (Fig. 3A). The remaining constructs, K116S, N148S, and
Y253N mutants, were not glycosylated, suggesting that these motifs were not recog-
nized by cellular glycotransferases. The trimeric structure predicts N148 and Y253 to be
located at the center of the trimer, possibly making these residues inaccessible. K116
was also not glycosylated, despite its predicted location on top of the trimer with clear
access to glycotransferases. The natural glycosylation site at N119 may sterically
prevent neighboring glycan additions.

Cleavage was reduced for all glycosylated constructs except for the D211S mutant,
indicating that the additional glycans reduced SKI-1/S1P recognition or efficient GP
trafficking to the Golgi apparatus in most cases. Cell-to-cell fusion activity was propor-
tional to cleavage efficiency, suggesting that the additional glycans did not prevent
GP2 activation at low pH if GP1-GP2 processing occurred (Fig. 3B). Although Y253N did
not appear to be glycosylated, the mutation decreased fusion relative to the amount of
cleaved GP, suggesting that the point mutation alone may decrease the efficiency of GP
refolding and completing the fusion process.

Transduction assays were performed with K116S, N148S, D211S, and Y253N mu-
tants, which demonstrated �50% GP processing (Fig. 3C). Both D211S and Y253N
mutants reduced transduction compared to parental GP, yet transduction levels be-
tween HAP1 and HAP1-ΔDAG1 cells were similar. This suggests that mutations were not
altering interactions with �DG but inhibiting an entry step common in both cell types.
The Y253 construct’s reduced fusion activity may account for reduced transduction
levels, while the additional glycan on D211S may have decreased transduction effi-
ciency in both cell lines.

Characterization of GP1 using insertional mutagenesis. Few of the additional
N-linked glycosylation sites that we engineered were efficiently glycosylated (Fig. 3).
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Therefore, we employed insertional mutagenesis to add bulky epitope tags throughout
GP1 to impede receptor binding (Fig. 4). The nine-amino-acid hemagglutinin (HA)
epitope tag (YPYDVPDYA) was inserted at 21 positions along the length of GP1.
Insertion sites were chosen to avoid perturbation or disruption of protein tertiary
structures. To increase the flexibility of the HA tag, 14 insertions included Gly-Gly-Ser
linkers (lHA) flanking the insertion.

Surface expression of HA insertion constructs varied. Most constructs were pro-
duced, but the majority of insertions resulted in processing defects, evidenced by the
lack of cleaved GP2 in surface biotinylated material (Fig. 4A). Although the HA insertion
sites were added to unstructured surface loops, the insertions appeared to alter protein
folding in the majority of the constructs, preventing GPC processing by SKI-1/S1P.
Overall, only 7 of the 21 mutants displayed appreciable cleavage compared to parental
GP (Fig. 4A).

To test for GP fusion activity, the mutant constructs were expressed in Vero cells and
incubated with a low-pH buffer to trigger conformational changes. As expected,
mutations that inhibited GPC cleavage did not display any fusion activity (Fig. 4B).
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Constructs that retained GPC processing all produced syncytia, suggesting that the HA
insertions did not prevent the low-pH conformational changes when SKI-1/S1P recog-
nition occurred (Fig. 4B).

Transductions were carried out for 7 of the 21 insertion constructs. Only one
construct, 61HA, was able to transduce both cell lines (Fig. 4C). The GP1/GP2 crystal
structure indicates that the N-terminal region of GP1 produces an extended �-sheet
that interacts with GP2 (32) (Fig. 1D). Therefore, the HA epitope tag addition after
residue 61 would be near the viral membrane and separated from the main body of
GP1. Three constructs, 146HA, 227HA, and 250HA, were able to transduce HAP1-ΔDAG1
cells but were unable to efficiently transduce HAP1 cells, suggesting that these inser-
tions inhibit �DG utilization (Fig. 4C). As expected, HAP1 transduction was not com-
pletely eliminated. Lassa virus entry into HAP1 can occur through an alternative
pathway that does not require �DG (20, 36). Therefore, particles that have reduced
affinity for �DG may still be able to enter HAP1 cells through the alternative, albeit less
efficient pathway. The remaining three constructs, 150HA, 172HA, and 230HA, showed
low to no transduction in both HAP1 cell lines, suggesting that the inserts inhibited a
step in the entry process that is common to both cell lines, such as LAMP1 interaction
(Fig. 4C).

Alanine scanning of hydrophobic and charged residues. Large insertions and
glycan additions tended to block GP cleavage, preventing full GP characterization. To
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FIG 4 Insertional mutagenesis of LASV GPC blocks entry in specific cell lines. (A) Surface-expressed
HA-tagged mutants and immunoblot analysis using anti-FLAG antibody M2. (B) Cleavage efficiency and
cell-to-cell fusion data. (C) Transduction of HAP1 and HAP1-ΔDAG1 cells using VSV-pseudotyped particles.
All data are based on the averages and standard errors of the means from at least three replicate
experiments. ***, P � 0.001.

Mapping Lassa Virus GP Receptor Binding Site Journal of Virology

September 2017 Volume 91 Issue 18 e00574-17 jvi.asm.org 7

http://jvi.asm.org


increase the chances of producing GP trimers that are trafficked to the cell surface in
a processed state, we introduced single-amino-acid substitutions. Hydrophobic and
charged residues can be critical for virus glycoprotein-receptor interactions and entry
(40–44). To locate possible �DG binding sites in LASV GP1, alanine scanning was used
to mutate conserved hydrophobic and charged residues. Of 16 hydrophobic mutants,
11 demonstrated a �50% reduction in cleavage efficiency and/or fusion activity
compared to that of parental GP (Fig. 5A and B). Several of the hydrophobic residues
were located in secondary structures of GP1, and presumably alanine substitutions
resulted in protein misfolding. For the remaining mutants, those that produced cleaved
GP2 were able to form syncytia. The L133A mutant produced little protein and, along
with the decreased cleavage efficiency (60% of parental GP), resulted in very low fusion
activity.

Six hydrophobic mutants were examined in transduction assays. The majority of the
hydrophobic mutations transduced both cell lines as well as wild-type GP (Fig. 5C). The
low protein level seen with L133A did not significantly impact transduction efficiency.
While the F147A mutant was able to transduce HAP1-ΔDAG1 cells at a level similar to
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that of wild-type GP, transduction in HAP1 cells was reduced to 42%. The transduction
defect in HAP1 cells with no defect in HAP1 ΔDAG1 cells suggests that F147 is
important for efficient �DG utilization.

Fourteen conserved charged residues were mutated to alanine, including a de-
scribed histidine triad (H92, H93, and H230), which has been implicated in LAMP1
interaction (30, 33). All mutated GPs were cleaved and transported to the cell mem-
brane at levels greater than 60% of parental GP (Fig. 6A). The charged residue mutants
also displayed high levels of cell-to-cell fusion activity (Fig. 6B). Only the GP R248A-
R250A mutant demonstrated reduced fusion.

We produced VSV pseudoparticles expressing all 14 charged mutations and tested
their ability to transduce HAP1 and HAP1-ΔDAG1 cells (Fig. 6C). The H92A-H93A mutant
was unable to transduce either cell type tested. The H230A (third residue of the
described histidine triad) mutant showed relatively high levels of transduction. K125A-
K126A, H141A, and R248A-R250A mutants demonstrated a reduced transduction in
HAP1 cells compared to HAP1-ΔDAG1 cells. Although transduction into HAP1 cells was
not completely inhibited, the data suggest that the mutations may decrease efficient
interaction with �DG.
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Additional targeted mutations. The transduction data suggested that residues
located near the center of the GP1 trimer were key for efficient �DG entry. To more fully
examine this region, an additional 15 point mutations that focused on the regions
surrounding the top of the GP1 trimer and residues adjacent to mutations that reduced
transduction in HAP1 cells were created (Fig. 7). To determine if combining some of the
individual mutations that modestly decreased HAP1 entry would synergistically elimi-
nate �DG binding, two double mutants that incorporated mutations at GP residues 141
and 147 were made. Constructs with H92Y-H93Y and H230Y mutations were also made
to compare the effects of alanine versus tyrosine substitutions and to reproduce similar
constructs tested in the study by Cohen-Dvashi et al. (30, 33). Overall, surface expres-
sion and processing of the additional targeted mutants were near wild-type LASV GP
levels with the exception of H92Y-H93Y and H141N-F147A mutants. Both of these
double mutants were produced but were poorly processed (Fig. 7A). When the aspar-
agine at position H141 in the double mutant was changed to alanine, surface expres-
sion, processing, and fusion increased. Histidines at positions 92 and 93, when changed
to alanines, retained processing and fusion activity (Fig. 6B), but tyrosine substitution
led to GPC processing defects (Fig. 7A). Previous work by Cohen-Dvashi et al. tested
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individual mutations H92Y, H93Y, and H230Y for processing, surface expression, and
fusion activity (30). When they individually changed each histidine to tyrosine, they
found a reduction in the level of cleaved, surface-expressed GP but no significant
changes in cell-cell fusion. Our H92Y-H93Y double mutant completely inhibited GP
processing as well as fusion (Fig. 7A and B). Similar to what was seen in the previous
study, H230Y was efficiently processed and induced cell-to-cell fusion at levels greater
than wild-type GP. In general, fusion activity, with the exception of that seen with
A177S, again closely correlated with cleavage efficiency (Fig. 7B).

Of the 15 constructs made, 13 were tested in transduction assays. Only two constructs,
Y150A and H141A/F147A mutants, showed reduced transduction in HAP1 cells com-
pared to HAP1-ΔDAG1 cells (Fig. 7C). The combination of H141A and F147A had an
additive effect. Individual changes dropped HAP1 transduction to 40% of parental GP,
and the double mutant dropped HAP1 transduction to 10% of parental GP while
retaining near-wild-type levels of HAP1-ΔDAG1 transduction. All other constructs were
able to transduce HAP1 and HAP1-ΔDAG1 cells with similar efficiencies (Fig. 7C). While
H230Y did not result in cell type-specific transduction defects, this mutation moderately
reduced transduction in both cell lines, similar to the observations in the previous study
(30).

GP incorporation onto VSV particles. While many of the constructs produced
particles that transduced both cell types, some constructs did not efficiently transduce
either cell line, or they displayed a deficiency in a specific cell type. To ensure that the
low-transducing constructs incorporated sufficient levels GP on the particle, immuno-
blot assays were performed (Fig. 8). All particles incorporated the mutated GP con-
structs, including those constructs that failed to transduce both cell lines. Constructs
with K125A-K126A and Y150A mutations, two mutants that demonstrated a reduction
in HAP1 transduction and an enhancement in HAP1-ΔDAG1 cells, were consistently
found on VSV particles at higher levels than wild-type GP. Similarly, the R248-R250A
mutant was found on particles at a higher rate that parental GP, although it did not
transduce better than the wild type.

Residues H141-F147 and R248-R250 are critical for �DG interaction. In order to
directly assess the ability of GP mutants to bind with �DG, we performed a coimmu-
noprecipitation experiment. Beads coated with �DG were incubated with VSV-
pseudotyped particles containing either parental or mutant GP. We examined GP-
H141A-F147A and GP-R248A-R250A, because they each contained point mutations that
resulted in HAP1 entry defects. In addition, we evaluated GP-H230Y, a construct
implicated in LAMP1 binding. Parental GP and GP-H230Y were efficiently precipitated
by �DG, whereas we were unable to biochemically detect GP-H141A-F147A and
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GP-R248A-R250A (Fig. 9A). These data further support our conclusions that the central
core of GP mediates interaction with �DG (Fig. 9B).

DISCUSSION

Here we provide data highlighting LASV GP1 residues important for receptor
interactions. We produced and characterized a library of 80 constructs. Transduction
was monitored in cell lines that differentially express the LASV receptor �DG. Biochem-
ical characterization grouped GP1 mutants into various categories based on their
transduction phenotypes (Table 1). The data implicate regions of GP1 that facilitate
entry through �DG, as well as residues involved with LAMP1 interaction.

We tested all of the constructs in cell-to-cell fusion assays, and those that were
efficiently processed were tested in pseudotype particle entry assays. A number of
mutants, including H92A-H93A, 150lHA, 172HA, and 230lHA mutants, produced large
syncytia in cell-to-cell fusion assays, yet were unable to facilitate entry when incorpo-
rated onto VSV particles. This suggests that the requirements for cell-to-cell fusion and
virus-to-cell fusion are different. The luminal pH of most lysosomes ranges from 4.5 to
5 (45). In contrast, we utilized phosphate-buffered saline (PBS) at pH 4 in the cell-to-cell
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fusion assay because this pH produced the most syncytia (46, 47; data not shown). We
speculate that LAMP1 may facilitate fusion pore formation at a more alkaline pH,
thereby increasing the efficiency of LASV entry (30). The fusion assay may be able to
circumvent the LAMP1 requirement with a more acidic environment, triggering fusion
pore formation without LAMP1 interaction. This would explain why mutants can
produce large syncytia when exogenous buffer is added yet are unable to productively
enter cells on a pseudotyped particle. Removal of LAMP1 from cells dramatically
decreases LASV entry efficiency but does not eliminate it (20). Perhaps some virions

TABLE 1 Summary of fusion, GP cleavage, and transductionsa

Mutant Classification Fusion
Activity

Cleavage
Efficiency

Transduction Efficiency
Class

HAP1 HAP1-ΔDAG
L61HA HA insertion 62.4 ± 12.1 49.4 ± 19 73.6 ± 11.5 67.9 ± 8.6 III
K63A Charged 89.8 ± 9.1 91.3 ± 9.3 102.1 ± 3.8 114.5 ± 19.7 III
E67A Charged 100.8 ± 5.4 104.9 ± 3.8 98.7 ± 5.2 102.9 ± 1.4 III

H92A-H93A Charged 75.0 ± 10.9 99.1 ± 5.0 3.4 ± 0.8 2.3 ± 0.6 I
T101A N-gly removal 92.8 ± 0.1 98.9 ± 13.2 96.5 ± 8.7 96.3 ± 17.6 III
E104A Charged 93.7 ± 4.8 95.5 ± 3.4 102.8 ± 0.5 102.4 ± 14.2 III
S111A N-gly removal 77.1 ± 6.1 79.4 ± 17.5 101.2 ± 3.9 112.9 ± 12.8 III
H115A Charged 95.5 ± 5.9 91.3 ± 10.7 69.6 ± 10.9 39.9 ± 2.7 III
K116S N-gly addition 83.6 ± 6.0 82.1 ± 11.5 103.5 ± 6.6 93.9 ± 8.8 III
F117A Hydrophobic 89.4 ± 2.2 96.3 ± 1.8 101.1 ± 0.6 116.1 ± 1.7 III
S121A N-gly removal 64.0 ± 5.5 86.8 ± 12.5 98.6 ± 4.4 121.0 ± 9.8 III

K125A-K126A Charged 76.0 ± 10.6 89.5 ± 10.2 75.6 ± 11.4 137.2 ± 18.4 II
L128A Hydrophobic 70.8 ± 5.0 107.0 ± 11.1 88.3 ± 3.5 107.8 ± 12.4 III
D130A Charged 85.0 ± 4.8 102.3 ± 9.0 93.7 ± 7.3 81.0 ± 12.4 III
L133A Hydrophobic 19.0 ± 4.2 61.0 ± 11.2 94.7 ± 6.7 75.0 ± 15.6 III
H141A Charged 92.7 ± 1.7 87.8 ± 8.3 50.3 ± 8.7 103.7 ± 17.5 II
F147A Hydrophobic 82.0 ± 5.9 102.1 ± 7.0 42.2 ± 15.1 104.5 ± 13.7 II

H141A-F147A Targeted 82.8 ± 3.3 81.6 ± 11.4 17.4 ± 2.8 93.5 ± 21.5 II
N146lHA HA + linker 73.7 ± 3.1 99.4 ± 4.8 23.0 ± 3.8 100.5 ± 11.7 II
N148S N-gly addition 63.8 ± 7.1 83.3 ± 7.9 96.7 ± 4.9 97.9 ± 11.0 III
Q149A Targeted 99.6 ± 10.2 66.5 ± 8.5 83.1 ± 4.9 70.1 ± 21.8 III
Y150A Targeted 75.5 ± 6.7 105.9 ± 11.6 62.2 ± 2.3 117.9 ± 4.4 II

Y150lHA HA + linker 86.6 ± 7.2 105.8 ± 3.9 26.0 ± 10.1 5 ± 0.8 I
E151A Targeted 94.1 ± 8.7 75.1 ± 10.1 64.1 ± 9.0 70.9 ± 20.8 III
D156A Charged 75.4 ± 1.4 66.1 ± 8.5 87.0 ± 9.8 81.4 ± 4.6 III
K161A Charged 98.6 ± 2.1 96.1 ± 1.8 92.2 ± 2.6 93.0 ± 8.6 III
S169A N-gly removal 63.7 ± 9.9 58.4 ± 18.4 87.6 ± 4.7 112.8 ± 15.3 III
H170A Targeted 91.2 ± 7.5 91.5 ± 13.8 80.0 ± 10.0 72.7 ± 18.2 III
Y172A Targeted 50.0 ± 4.3 66.6 ± 13.8 89.3 ± 7.9 85.5 ± 19.0 III

Y172HA HA insertion 77.9 ± 7.6 95.4 ± 5.9 4.3 ± 1.8 4.6 ± 2.5 I
D175A Targeted 86.6 ± 9.1 74.4 ± 9.5 95.1 ± 7.9 85.6 ± 8.0 III
A177S Targeted 51.4 ± 12.8 92.7 ± 17.2 60.1 ± 13.4 48.6 ± 14.3 III
N178A Targeted 81.1 ± 6.1 65.9 ± 13.3 86.9 ± 2.4 73.2 ± 21.8 III
H179A Targeted 92.6 ± 11.4 115.3 ± 6.1 71.9 ± 9.8 54.5 ± 13.3 III
R193A Charged 87.5 ± 1.9 99.7 ± 3.7 103.9 ± 2.9 98.5 ± 15.6 III
I201A Hydrophobic 93.3 ± 1.6 108.0 ± 14.8 97.1 ± 2.3 108.8 ± 8.9 III
R207A Targeted 83.4 ± 10.2 65.8 ± 6.7 85.4 ± 7.2 74.2 ± 12.9 III
D211S N-gly addition 72.3 ± 6.3 99.5 ± 8.9 64.1 ± 18.5 44.7 ± 9.7 III
T226A N-gly removal 58.6 ± 7.5 82.4 ± 20.7 75.3 ± 10.6 85.9 ± 6.6 III

W227lHA HA + linker 79.5 ± 2.9 58.5 ± 16 24.3 ± 4.8 103.7 ± 4.1 II
E228A Charged 77.7 ± 13.4 109.7 ± 5.8 104.6 ± 0.3 97.8 ± 15.0 III
H230A Charged 97.7 ± 4.8 87.6 ± 13.5 87.3 ± 2.1 75.4 ± 13.0 III
H230Y Targeted 106.7 ± 9.7 102.3 ± 10.3 64.1 ± 3.5 39.4 ± 3.9 III

H230lHA HA + linker 103.8 ± 7.3 75.8 ± 13 5.9 ± 2.2 5.3 ± 3.1 I
R250HA HA insertion 72.3 ± 8.6 86.2 ± 4 10.2 ± 2.6 82.5 ± 7 II
D251A Targeted 55.7±3.9 50.9 ± 5.4 76.6 ± 3.9 83.2 ± 5.2 III

R248A-R250A Charged 43.4 ± 12.3 128.9 ± 4.9 30.2 ± 8.5 68.5 ± 15.0 II
I252A Hydrophobic 70.5 ± 7.5 50.5 ± 8.3 88.3 ± 1.6 91.8 ± 4.3 III
Y253N N-gly addition 47.7 ± 8.3 84.9 ± 7.2 54.4 ± 15.0 47.2 ± 10.9 III

aI, transduction reduced in both cell types; II, transduction reduced in HAP1 cells compared to HAP1-ΔDAG cells; III, no
receptor binding defects.
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encounter lysosomes with lower pH ranges, and the extra-acidic environment over-
comes the LAMP1 requirement, similar to what is observed in the cell-to-cell fusion
assay.

LASV entry requires interactions with both cell surface receptors and an internal
receptor, LAMP1 (20). As previously mentioned, we identified a number of constructs
that blocked entry into both cell types tested: H92A-H93A, 150lHA, 172HA, and 230lHA
mutants. Both H92-H93 and H230 have been previously implicated in GP1-LAMP1
interaction (33). Protonation of the histidine residues may facilitate conformational
changes that expose the LAMP1 binding site (30), which cryo-ET reconstructions
suggest occurs in grooves between GP1 monomers that form under low-pH conditions
(31). While histidines at positions 92, 93, and 230 may facilitate the low-pH conforma-
tional changes, 150lHA and 172HA fall on the opposite face of the crystal structure. If
LAMP1 binding is occurring in a low-pH-induced groove, both 150lHA and 172HA may
sterically prevent LAMP1 binding or cause premature shedding of GP1 from the
glycoprotein complex. We did not identify any individual point mutations that pre-
vented entry into both cell lines that were not previously associated with inducing
low-pH conformational changes, suggesting that further work is required to locate the
specific residues directly involved in LAMP1 interaction.

While most constructs efficiently entered both cell lines, those containing mutations
between amino acids 141 and 150 and between amino acids 248 and 250 of GP1
demonstrated reduced transduction in HAP1 cells expressing �DG. A coimmunopre-
cipitation using VSV-pseudotyped particles confirmed the role of residues H141, F147,
R248, and R250 in direct �DG binding. Residues H141, N146, F147, and Y150 face the
3-fold axis of the trimer, forming a putative receptor binding site (Fig. 9B, shown in red).
A similar region within lymphocytic choriomeningitis virus (LCMV) has been implicated
in LCMV GP1-�DG interaction (22). Previous biochemical studies show that the Old
World (OW) arenavirus monomeric GP1 is unable to interact with �DG, which supports
a binding site that requires an intact trimer (20, 22, 33). Residues R248 and R250 also
face this center axis but are located deeper in the core (Fig. 9B, shown in orange).
Presumably, �DG would not be interacting with the buried center of the trimer, but
removal of the charged residues may alter the conformation of the domain above.
K125A-K126A and 227HA modestly reduced HAP1 transduction and are located further
away from the trimeric center. These mutations may exert long-range conformational
changes that alter the �DG binding site (Fig. 9B, shown in yellow). For example, K125
and K126 line the GP1-GP1 interface within the trimer and therefore may play a role in
maintaining the center conformation.

In 2015, the largest screen of LASV genomes revealed that isolates are highly
heterogeneous and group by geographic distribution (48). The GP1 subunit had the
highest sequence diversity of the four viral proteins, presumably due to continuous
immune selection. When comparing the GP1 subunit among the 180 sequences
collected, 68% of the amino acid sequence was conserved. However, the regions that
we identified in this study that mediate �DG entry were 98 to 100% conserved,
suggesting that these residues are important for the structure or function of GP1. The
few residues that differed contained conservative amino acid substitutions. Several
additional Old World arenaviruses, including LCMV, Mopeia virus (MOPV), and Mobala
virus (MOBV), use �DG as their primary surface receptor (49). A GP1 sequence align-
ment of these four viruses reveals that the regions that we identified in LASV-�DG
engagement are similar among these Old World arenaviruses (Fig. 9C). Furthermore,
LCMV shares 63% sequence identity with LASV, and similar regions on GP1 have been
implicated in LCMV’s GP1-�DG binding site (22). Five residues that enhance LCMV GP1
binding to �DG have been identified: H136, S153, Y155, R190, and L260 (22, 50–54).
Residues S153, Y155, R190, and L260 are located in the same region on GP1, which
faces the 3-fold trimer axis (22), further supporting this region’s importance in �DG
binding.

In summary, our data suggest that the �DG binding site on LASV GP1 is found at the
top central core of the GP trimer. These data correlate with the hypothesized �DG
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binding regions within LCMV GP1 (22). Our data support the hypothesis that the
histidine triad plays a role in the pH conformational changes required for LAMP1
interaction. In addition, we identify two HA insertion mutants, 150HA and 172HA, that
may sterically block LAMP1 binding. Knowledge gained by this study will aid the
development of small-molecule inhibitors to block LASV entry through its receptors
�DG and LAMP1.

MATERIALS AND METHODS
Cell lines and transfections. Vero (African green monkey kidney) cells stably expressing human

SLAM were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% (vol/vol)
fetal bovine serum (FBS) at 37°C and 5% CO2 (55). HAP1 and HAP1-ΔDAG1 cells (Horizon Discovery) were
maintained in Iscove’s medium supplemented with 10% (vol/vol) FBS at 37°C and 5% CO2. All transient
transfections were performed using GeneJuice (Millipore) as per the manufacturer’s instruction.

Molecular biology. The LASV GPC protein coding sequence was codon optimized for mammalian
expression and cloned into a pcDNA3.1intron vector. Gene expression was initiated by a cytomegalovirus
(CMV) promoter, and the �-globin intron was engineered in the 5= untranslated region (UTR) to increase
protein production. A carboxy-terminal 3� FLAG tag was added to the cytoplasmic tail of the GP2
subunit for biochemical detection. The HA tag coding sequence (YPYDVPDYA) was added to the plasmid
at the indicated locations using PCR-based insertional mutagenesis with Q5 polymerase (NEB). Point
mutations were introduced with QuikChange mutagenesis and PfuTurbo-HS polymerase (Agilent). The
plasmid DNA of each construct was sequenced, and the presence of each mutation was confirmed.
Complete sequence information is available upon request.

Surface biotinylation. Vero cells were transfected with plasmid DNA encoding the indicated Lassa
virus GPC mutants. Thirty-six hours following transfection, cells were washed with cold PBS and
biotinylated with 0.5 mg/ml sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate (Thermo) for 30
min on ice. The reaction was quenched using Tris-HCl, and cells were lysed in M2 lysis buffer (50 mM Tris
[pH 7.4], 150 mM NaCl, 1 mM EDTA, 1% Triton X-100) at 4°C and clarified with centrifugation (20,000 �
g, 15 min). Lysate was incubated with streptavidin Sepharose beads (GE Healthcare) for 60 min while
rotating. Following incubation, the streptavidin Sepharose beads were washed in buffer 1 (100 mM Tris
[40], 500 mM lithium chloride, 0.1% Triton X-100) and then in buffer 2 (20 mM HEPES [pH 7.2], 2 mM
EGTA, 10 mM magnesium chloride, 0.1% Triton X-100), incubated in urea buffer (200 mM Tris [pH 6.8],
8 M urea, 5% sodium dodecyl sulfate [SDS], 0.1 mM EDTA, 0.03% bromophenol blue, 1.5% dithiothreitol
[DTT]) for 30 min at 55°C, and subjected to immunoblot analysis.

Antibodies and immunoblots. Surface biotinylated material was fractionated by gel electrophoresis
on 10% Tris-glycine gels (ThermoFisher) and transferred to polyvinylidene difluoride (PVDF) membranes
(GE Healthcare). GP was detected with specific antibodies directed against the Flag epitope tag (M2;
Sigma). Immunoblots were developed using mouse IgG horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies (Jackson) and a ChemiDoc digital imaging system (Bio-Rad). Each experiment was
repeated at least three independent times, and representative data or images are shown in the figures.
Trichloroacetic acid (TCA)-precipitated pseudotyped particles were fractionated as described for biotin-
ylated material. Protein was detected with specific antibodies directed against LASV GP2 (22.5D), kindly
provided by James Robinson (Tulane University), and against VSV matrix (23H12; courtesy of Douglas
Lyles; Kerafast) (56, 57). Alpha-dystroglycan was detected with IIH6 monoclonal antibody (EMD Millipore).
Immunoblots were developed using HRP-conjugated human IgG and mouse IgG (Jackson) secondary
antibodies, respectively, and a ChemiDoc digital imaging system (Bio-Rad). Immunoblot data were
quantified using ImageLab software.

Cell-to-cell fusion assay. Vero cells were cotransfected with Lassa virus GP mutants and pmaxGFP
(4:1 ratio). Forty hours following transfection, medium was removed and replaced with Dulbecco’s PBS
(DPBS) (pH 4) and incubated (37°C and 5% CO2) for 30 min to allow glycoprotein triggering. The DPBS
was replaced with DMEM, and cells were incubated for an additional 3 h to enable membrane
rearrangement and clear syncytium formation. Four representative pictures of the fusion were taken
using the Zoe microscope (Bio-Rad) (magnification, �20), and unfused cells were counted. Quantification
of fusion was calculated using the following equation: fusion � [(unfused cells in mock transfected �
unfused cells in mutant transfected)/(unfused cells in mock transfected � unfused cells in WT GPC
transfected)] � 100.

Each mutant was assessed in the fusion assay in three independent experiments.
VSV pseudotype production and transductions. GP constructs lacking the C-terminal 3� Flag tag

were used to make the vesicular stomatitis virus (VSV)-pseudotyped particles. Vero cells were transfected
with LASV GP DNA. Thirty-six hours following transfection, the cells were transduced with VSVΔG-GFP
particles pseudotyped with VSV-G (multiplicity of infection [MOI], 1) for 1 h (courtesy of Michael Whitt;
KeraFAST) (58). The particle-containing medium was then replaced with fresh DMEM. VSVΔG-GFP
particles displaying the LASV GP were collected 12 h following the transduction. These particles were
applied onto HAP1 and HAP1-ΔDAG1 cells in volumes of 0.25 ml and 1 ml, respectively. A higher volume
of particles was used to transduce HAP1-ΔDAG1 cells in order to overcome the decreased transduction
efficiency when the cells are missing the primary receptor (20). The number of GFP-positive cells was
determined in a flow cytometer. Results are displayed as the percentage of GFP-positive cells present in
a population of 10,000 live cell events compared to GP wild-type transduction. To monitor GP incorpo-
ration onto the VSV particles, 1 ml of precleared VSV transduction particles was precipitated using 10%
(wt/vol) TCA. The TCA-treated proteins were pelleted (20,000 � g, 30 min, 4°C), washed with acetone,

Mapping Lassa Virus GP Receptor Binding Site Journal of Virology

September 2017 Volume 91 Issue 18 e00574-17 jvi.asm.org 15

http://jvi.asm.org


dried, and denatured using SDS-urea buffer (200 mM Tris [pH 6.8], 8 M urea, 5% SDS, 0.1 mM EDTA, 0.03%
bromophenol blue). Particles were subjected to immunoblot analysis for both VSV matrix levels and
incorporated GP2.

Coimmunoprecipitation. Sheep polyclonal anti-human dystroglycan antibodies (R&D Systems) were
bound to protein G beads (Bio-Rad) and incubated with �DG purified from rabbit muscle (59). The
prepared beads were then divided equally into VSV-pseudotyped particles containing a normalized
amount of GP and incubated for 1 h. Protein complexes were precipitated and washed three times with
PBS. Bound proteins were eluted by incubating beads with urea-SDS plus DTT, heat denatured (56°C for
30 min), and separated on SDS-PAGE. Immunoblot analysis examined the amount of precipitated �DG
and associated GP2.
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