
Meropenem-Vaborbactam Tested against
Contemporary Gram-Negative Isolates
Collected Worldwide during 2014,
Including Carbapenem-Resistant,
KPC-Producing, Multidrug-Resistant,
and Extensively Drug-Resistant
Enterobacteriaceae

Mariana Castanheira, Michael D. Huband, Rodrigo E. Mendes, Robert K. Flamm
JMI Laboratories, North Liberty, Iowa, USA

ABSTRACT We evaluated the activity of meropenem-vaborbactam against contem-
porary nonfastidious Gram-negative clinical isolates, including Enterobacteriaceae iso-
lates with resistance phenotypes and carbapenemase genotypes. Meropenem-
vaborbactam (inhibitor at 8 �g/ml) and comparators were susceptibility tested by
reference broth microdilution methods against 14,304 Gram-negative clinical isolates
collected worldwide during 2014. Carbapenemase-encoding genes were screened by
PCR and sequencing. Meropenem-vaborbactam (MIC50/90, �0.015/0.06 �g/ml) inhib-
ited 99.1 and 99.3% of the 10,426 Enterobacteriaceae isolates tested at �1 and �2
�g/ml, respectively. Meropenem inhibited 97.3 and 97.7% of these isolates at the
same concentrations. Against Enterobacteriaceae isolates displaying carbapenem-
resistant Enterobacteriaceae (CRE) (n � 265), multidrug-resistant (MDR) (n � 1,210), and
extensively drug-resistant (XDR) (n � 161) phenotypes, meropenem-vaborbactam dis-
played MIC50/90 values of 0.5/32, 0.03/1, and 0.5/32 �g/ml, respectively, whereas
meropenem activities were 16/�32, 0.06/32, and 0.5/32 �g/ml, respectively. Among
all geographic regions, the highest meropenem-vaborbactam activities were ob-
served for CRE and MDR isolates from the United States (MIC50/90, 0.03/1 and 0.03/
0.12 �g/ml, respectively). Meropenem-vaborbactam was very active against 135 KPC
producers, and all isolates were inhibited by concentrations of �8 �g/ml (133 iso-
lates by concentrations of �2 �g/ml). This combination had limited activity against
isolates producing metallo-�-lactamases (including 25 NDM-1 and 16 VIM producers)
and/or oxacillinases (27 OXA-48/OXA-163 producers) that were detected mainly in
Asia-Pacific and some European countries. The activity of meropenem-vaborbactam
was similar to that of meropenem alone against Pseudomonas aeruginosa, Acineto-
bacter spp., and Stenotrophomonas maltophilia. Meropenem-vaborbactam was active
against contemporary Enterobacteriaceae isolates collected worldwide, and this com-
bination demonstrated enhanced activity compared to those of meropenem and
most comparator agents against CRE isolates and KPC producers, the latter of which
are often MDR.
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Serious infections caused by Gram-negative bacilli are increasingly reported world-
wide, and these organisms contribute to infection mortality rates that range from

30 to 70% (1). Bacterial species within this group are among the pathogens that are
most difficult to treat, due to either intrinsic or acquired resistance mechanisms. Among
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Gram-negative species, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp. have been identified as organisms that should be
monitored due to limited treatment options and patient management challenges for
infections caused by these pathogens (2).

Pseudomonas aeruginosa and Acinetobacter spp. are intrinsically less susceptible to
many antimicrobial agents (3). Additionally, these organisms can acquire or develop
resistance at high frequencies through mutations and acquisition of foreign DNA (4).
Enterobacteriaceae species are usually more susceptible, but the rise of K. pneumoniae
and other organisms displaying multidrug-, extensively drug-, and pandrug-resistant
(MDR, XDR, and PDR, respectively) phenotypes are threatening the current treatment
protocols for serious infections caused by these species (2, 3, 5).

Carbapenems were often considered the last resource for treating serious infections
caused by MDR organisms or isolates producing �-lactamases, but these agents are
now often hydrolyzed by carbapenemases, which include KPC serine carbapenemases,
OXA-48, and class B metallo-�-lactamases (MBLs) that have become disseminated
worldwide. Isolates producing KPC enzymes have been detected in all but two states
in the United States according to the Centers for Disease Control and Prevention (CDC)
(http://www.cdc.gov/hai/organisms/cre/TrackingCRE.html), and isolates producing
these enzymes have high prevalences in the New York City area (6) and Texas (7).
KPC-producing isolates have also been reported in Germany, Poland, Belgium, Hungary,
Croatia, and the United Kingdom. The corresponding genes are considered endemic in
Greece and Italy (http://ecdc.europa.eu/en/publications/Publications/antimicrobial
-resistance-carbapenemase-producing-bacteria-europe.pdf), and these enzymes are
also very prevalent in other countries, such as Israel, China, and Brazil (5). KPC enzymes
hydrolyze virtually all �-lactams, and isolates producing these enzymes are often MDR,
and in some instances can be XDR or PDR (resistant to all available classes of antimi-
crobial agents).

Vaborbactam (formerly named RPX7009) is a cyclic boronic acid �-lactamase inhib-
itor that has activity against Ambler class A (including KPC) and C enzymes (8). This
inhibitor has been combined with meropenem, and vaborbactam enhances the activity
of this carbapenem against KPC-producing isolates compared to that of the �-lactam
tested alone (9, 10).

In this study, we evaluated the activities of meropenem-vaborbactam and compar-
ator antimicrobial agents against 14,304 nonfastidious Gram-negative bacillus clinical
isolates collected in 82 hospitals worldwide during 2014. We also analyzed Enterobac-
teriaceae isolates according to their resistance phenotypes and carbapenemase geno-
types.

RESULTS
Overall activity of meropenem-vaborbactam against isolates. Among 14,304

Gram-negative nonfastidious clinical isolates collected worldwide, 897 isolates were
from the Asia-Pacific region (6.3% overall), 7,033 from Europe (49.2%), 716 from Latin
America (5.0%), and 5,658 from the United States (39.6%). These isolates were collected
from the following specimen sources: bloodstream infections (3,299 [23.1%]), pneumo-
nia in hospitalized patients (4,174 [29.2%]), skin and skin structure infections (2,880
[20.1%]), urinary tract infections (2,603 [18.2%]), intra-abdominal infections (1,086
[7.6%]), and other, less prevalent or undetermined clinical specimen types (262 [1.8%]).
This collection comprised all Gram-negative isolates collected in 82 hospitals as part of
the SENTRY Antimicrobial Surveillance Program.

Overall, meropenem-vaborbactam (vaborbactam at 8 �g/ml; MIC50 and MIC90,
�0.015 and 0.06 �g/ml, respectively) (Table 1) inhibited 99.3% of all Enterobacteriaceae
isolates at �2 �g/ml and 99.1% of the isolates at �1 �g/ml (EUCAST and CLSI
susceptibility breakpoints, respectively, for meropenem tested alone [used for compar-
ison purposes only]) (Table 1). Using a tentative breakpoint of 8 �g/ml, based on the
proposed dosing scheme and modeled attainment for meropenem-vaborbactam (11),
this combination inhibited 99.6% of the Enterobacteriaceae isolates (Table 1). Mero-
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penem alone (MIC50 and MIC90, 0.03 and 0.06 �g/ml) inhibited 97.7 and 97.3% of the
isolates at the current EUCAST and CLSI susceptibility breakpoints of �2 and �1 �g/ml,
respectively (Table 2). Susceptibility rates for the comparator antimicrobial agents
tested against Enterobacteriaceae isolates ranged from 79.7 to 99.5% and from 78.2 to
96.2% by applying the CLSI and EUCAST breakpoints, respectively (Table 2). The lowest
susceptibility rates were noted for levofloxacin and the highest for tigecycline by
applying the U.S. FDA breakpoint (Table 2).

Meropenem-vaborbactam (MIC50 and MIC90, �0.015 and �0.015 �g/ml) (Table 1)
inhibited all but one Escherichia coli isolate (n � 4,238) at �4 �g/ml, and �99.9% of the
isolates were inhibited by this carbapenem–�-lactamase inhibitor combination at �2 or
�1 �g/ml. Selected comparator agents displayed good activity against E. coli isolates,
and meropenem (99.8% susceptible [CLSI interpretation]), amikacin (99.6% susceptible
[CLSI]), imipenem (99.7% susceptible [CLSI]), colistin (99.5% susceptible [EUCAST]), and
tigecycline (100.0% susceptible [U.S. FDA]) inhibited �90% of the isolates at current
breakpoints (data not shown). A total of 96.8 and 97.2% of the K. pneumoniae isolates
(n � 2,010) were inhibited by meropenem-vaborbactam (MIC50 and MIC90, 0.03 and
0.12 �g/ml) at �1 and �2 �g/ml, respectively, and 98.1% of the isolates tested were
inhibited by this combination at �8 �g/ml. Meropenem (MIC50 and MIC90, 0.03 and 4
�g/ml [data not shown]) inhibited 89.0, 89.9, and 92.6% of these isolates at the same
concentrations. Other comparator agents inhibiting �90.0% of isolates at current
breakpoints were limited to amikacin (92.6% susceptible [CLSI criteria]), tigecycline
(99.9% susceptible [U.S. FDA]), imipenem (90.3% susceptible [EUCAST]), and colistin
(94.2% susceptible [EUCAST]) (data not shown).

The activity of meropenem-vaborbactam (MIC90 range, 0.03 to 0.12 �g/ml) (Table 1)
was elevated against other Enterobacteriaceae species, and this combination inhibited
99.5% of Klebsiella oxytoca isolates (n � 429), 99.3% of Enterobacter cloacae isolates
(n � 950), 98.9% of Citrobacter freundii isolates (n � 276), 99.8% of the indole-positive
Proteeae sp. isolates (n � 585), and 98.9% of Serratia marcescens isolates (n � 666) at
�2 �g/ml. Meropenem-vaborbactam inhibited 99.8 to 100% of the isolates belonging
to these species at �8 �g/ml (Table 1). All Enterobacter aerogenes (n � 355), Citrobacter
koseri (n � 194), and Proteus mirabilis (n � 525) isolates were inhibited by meropenem-
vaborbactam at �2 �g/ml (Table 1).

The activity of meropenem-vaborbactam was similar to that of meropenem alone
(MIC50 and MIC90, 0.5 and 8 �g/ml, respectively, for both) (Tables 1 and 2) for 2,604 P.
aeruginosa isolates tested. The presence of vaborbactam slightly enhanced the activity
of meropenem: 78.4% of isolates were inhibited by meropenem alone at �2 �g/ml
(CLSI/EUCAST susceptibility breakpoint), and 79.1% were inhibited by meropenem-
vaborbactam at the same concentration (Tables 1 and 2). Additionally, this combination
inhibited 91.6% of the P. aeruginosa isolates tested at �8 �g/ml.

As observed with meropenem alone (MIC50 and MIC90, �8 and �8 �g/ml for both
groups [data not shown]), meropenem-vaborbactam had limited activity against Acin-
etobacter spp. (MIC50 and MIC90, 32 and �32 �g/ml) and Stenotrophomonas maltophilia
(MIC50 and MIC90, �32 and �32 �g/ml) (Table 1). These isolates were also resistant to
other �-lactams tested (data not shown).

Meropenem-vaborbactam testing against CRE. A total of 265 carbapenem-
resistant Enterobacteriaceae (CRE) isolates were observed in hospitals worldwide during
2014, including 167 in Europe (3.2% of isolates from this region), 65 (1.6%) in the United
States, 24 (4.8%) in Latin America, and 9 (1.5%) in Asia-Pacific countries. These isolates
were mostly K. pneumoniae (211/265 isolates [79.6%]), but there were also isolates of
Enterobacter cloacae (18 isolates), Serratia marcescens (10), E. coli (9), Citrobacter freundii
(7), Enterobacter aerogenes (3), K. oxytoca (4), Enterobacter kobei (1), Hafnia alvei (1), and
Providencia stuartii (1).

Meropenem alone displayed very limited activity against CRE isolates (MIC50 and
MIC90, 16 and �32 �g/ml), and only 1.9 and 7.9% of these isolates were categorized as
susceptible to this carbapenem by applying the CLSI and EUCAST criteria, respectively
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TABLE 2 Activities of meropenem-vaborbactam (inhibitor at fixed concentration of 8 �g/ml) and comparator antimicrobial agents against
Gram-negative isolates collected during 2014

Bacterial group (n) and antimicrobial
agent

MIC50

(�g/ml)
MIC90

(�g/ml)
MIC range
(�g/ml)

Susceptibility using
CLSI breakpointa

Susceptibility using
EUCAST breakpointa

% S % I % R % S % I % R

Enterobacteriaceae (10,426)
Meropenem-vaborbactam �0.015 0.06 �0.015–�32
Meropenem 0.03 0.06 �0.015–�32 97.3 0.3 2.3 97.7 0.8 1.5
Aztreonam �0.12 �16 �0.12–�16 81.6 1.9 16.5 78.9 2.7 18.4
Cefepime �0.5 16 �0.5–�16 85.2 3.3b 11.5 83.2 3.6 13.2
Ceftazidime 0.25 �16 �0.12–�16 83.1 2.7 14.3 79.2 3.9 16.9
Piperacillin-tazobactam 2 32 �0.5–�64 88.1 4.6 7.3 84.2 3.8 11.9
Amikacin 2 4 �0.25–�32 98.1 1.1 0.8 96.7 1.4 1.9
Colistin �0.5 �8 �0.5–�8 79.4 20.6
Levofloxacin �0.12 �4 �0.12–�4 79.7 1.9 18.4 78.2 1.5 20.3
Tigecyclinec 0.12 0.5 �0.015–4 99.5 0.5 0.0 96.2 3.2 0.5

CRE (265)
Meropenem-vaborbactam 0.5 32 �0.015–�32
Meropenem 16 �32 0.25–�32 1.9 6.0 92.1 7.9 32.1 60.0
Aztreonam �16 �16 �0.12–�16 9.1 1.5 89.4 7.2 1.9 90.9
Cefepime �16 �16 �0.5–�16 7.2 5.3b 87.5 5.7 5.3 89.1
Ceftazidime �16 �16 0.25–�16 6.4 1.5 92.1 5.7 0.8 93.6
Piperacillin-tazobactam �64 �64 1–�64 3.0 2.3 94.7 2.6 0.4 97.0
Amikacin 16 �32 0.5–�32 56.2 29.8 14.0 40.8 15.5 43.8
Colistin �0.5 �8 �0.5–�8 70.3 29.7
Levofloxacin �4 �4 �0.12–�4 18.9 1.9 79.2 15.9 3.0 81.1
Tigecyclinec 0.25 1 0.06–4 99.2 0.8 0.0 92.5 6.8 0.8

KPC producers (135)
Meropenem-vaborbactam 0.12 0.5 �0.015–8
Meropenem �32 �32 1–�32 0.7 4.4 94.8 5.2 15.6 79.3
Aztreonam �16 �16 2–�16 0.7 0.7 98.5 0.0 0.7 99.3
Cefepime �16 �16 �0.5–�16 1.5 3.0b 95.6 1.5 0.7 97.8
Ceftazidime �16 �16 0.25–�16 1.5 0.7 97.8 0.7 0.7 98.5
Piperacillin-tazobactam �64 �64 2–�64 0.7 0.7 98.5 0.7 0.0 99.3
Amikacin 32 �32 0.5–�32 39.3 48.9 11.9 26.7 12.6 60.7
Colistin �0.5 �8 �0.5–�8 72.4 27.6
Levofloxacin �4 �4 �0.12–�4 10.4 1.5 88.1 7.5 3.0 89.6
Tigecyclinec 0.25 1 0.06–2 100.0 0.0 0.0b 96.3 3.7 0.0

Non-KPC-producing CRE (129)
Meropenem-vaborbactam 4 �32 �0.015–�32
Meropenem 8 �32 0.25–�32 3.1 7.0 89.9 10.1 49.6 40.3
Aztreonam �16 �16 �0.12–�16 17.8 2.3 79.8 14.7 3.1 82.2
Cefepime �16 �16 �0.5–�16 13.2 7.8b 79.1 10.1 10.1 79.8
Ceftazidime �16 �16 0.25–�16 11.6 2.3 86.0 10.9 0.8 88.4
Piperacillin-tazobactam �64 �64 1–�64 5.4 3.9 90.7 4.7 0.8 94.6
Amikacin 8 �32 0.5–�32 73.6 10.1 16.3 55.0 18.6 26.4
Colistin 1 �8 �0.5–�8 68.0 32.0
Levofloxacin �4 �4 �0.12–�4 27.9 2.3 69.8 24.8 3.1 72.1
Tigecyclinec 0.25 2 0.06–4 98.4 1.6 0.0b 88.4 10.1 1.6

Carbapenemase-negative isolates (63)
Meropenem-vaborbactam 1 4 �0.015–32
Meropenem 4 16 0.25–�32 3.2 4.8 92.1 7.9 74.6 17.5
Aztreonam �16 �16 �0.12–�16 6.3 3.2 90.5 6.3 0.0 93.7
Cefepime �16 �16 �0.5–�16 12.7 6.3b 81.0 9.5 7.9 82.5
Ceftazidime �16 �16 0.25–�16 7.9 0.0 92.1 7.9 0.0 92.1
Piperacillin-tazobactam �64 �64 1–�64 9.5 6.3 84.1 7.9 1.6 90.5
Amikacin 8 32 1–�32 77.8 14.3 7.9 58.7 19.0 22.2
Colistin 1 �8 �0.5–�8 67.7 32.3
Levofloxacin �4 �4 �0.12–�4 25.4 0.0 74.6 23.8 1.6 74.6
Tigecyclinec 0.25 1 0.06–2 100.0 0.0 0.0 93.7 6.3 0.0

(Continued on next page)
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(Table 3). Meropenem-vaborbactam (MIC50 and MIC90, 0.5 and 32 �g/ml) inhibited 65.3
and 70.9% of the CRE isolates at �1 and �2 �g/ml, respectively, and 84.2% of these
isolates were inhibited at �8 �g/ml (Table 3). This combination was very active against
U.S. (MIC50 and MIC90, 0.03 and 1 �g/ml) and Latin American (MIC50 and MIC90, 0.12 and
4 �g/ml) CRE isolates, but limited activity was noted against isolates from the Asia-
Pacific region (MIC50, 32 �g/ml) (Table 3).

CRE isolates were highly resistant to comparator agents, and the highest sus-
ceptibility rates were observed for amikacin (56.2 and 40.8% susceptible by CLSI
and EUCAST criteria, respectively), colistin (70.3% susceptible by EUCAST criteria),
and tigecycline (99.2 and 92.5% susceptible by U.S. FDA and EUCAST criteria) (Table
2). Meropenem-vaborbactam was the most active �-lactam agent tested against
these isolates (Table 2).

Meropenem-vaborbactam testing against MDR and XDR Enterobacteriaceae.
Meropenem-vaborbactam (MIC50 and MIC90, 0.03 and 1 �g/ml) was very active against
1,210 Enterobacteriaceae isolates displaying an MDR phenotype (11.6% of all Entero-
bacteriaceae isolates), and the activity of this combination was higher than those of
meropenem (MIC50/90, 0.06/32 �g/ml) and other comparators (Table 2). Meropenem-
vaborbactam inhibited 68.9 and 74.5% of the 161 XDR isolates (1.5% of all Enterobac-
teriaceae isolates) at �1 and �2 �g/ml, respectively, whereas meropenem inhibited

TABLE 2 (Continued)

Bacterial group (n) and antimicrobial
agent

MIC50

(�g/ml)
MIC90

(�g/ml)
MIC range
(�g/ml)

Susceptibility using
CLSI breakpointa

Susceptibility using
EUCAST breakpointa

% S % I % R % S % I % R

MDR isolates (1,210)
Meropenem-vaborbactam 0.03 1 �0.015–�32
Meropenem 0.06 32 �0.015–�32 77.7 2.5 19.8 80.2 6.8 13.1
Aztreonam �16 �16 �0.12–�16 17.8 3.0 79.3 11.7 6.1 82.2
Cefepime �16 �16 �0.5–�16 21.6 9.7b 68.7 17.0 8.7 74.4
Ceftazidime �16 �16 �0.12–�16 18.3 8.9 72.8 11.7 6.5 81.7
Piperacillin-tazobactam 64 �64 �0.5–�64 36.6 20.6 42.8 28.7 7.9 63.4
Amikacin 4 32 �0.25–�32 84.2 8.5 7.3 75.5 8.7 15.8
Colistin �0.5 �8 �0.5–�8 73.7 26.3
Levofloxacin �4 �4 �0.12–�4 14.6 7.5 77.9 12.1 2.5 85.4
Tigecyclinec 0.25 1 0.03–4 97.9 2.1 0.0 90.6 7.3 2.1

XDR isolates (161)
Meropenem-vaborbactam 0.5 32 �0.015–�32
Meropenem 16 �32 �0.015–�32 13.0 6.8 80.1 19.9 28.6 51.6
Aztreonam �16 �16 �0.12–�16 7.5 1.2 91.3 5.6 1.9 92.5
Cefepime �16 �16 �0.5–�16 4.3 3.7b 91.9 3.1 3.7 93.2
Ceftazidime �16 �16 0.25–�16 4.3 1.9 93.8 3.1 1.2 95.7
Ceftriaxone �8 �8 2–�8 0.0 1.2 98.8 0.0 1.2 98.8
Piperacillin-tazobactam �64 �64 �0.5–�64 2.5 5.6 91.9 2.5 0.0 97.5
Amikacin 16 �32 0.5–�32 58.4 20.5 21.1 42.2 16.1 41.6
Colistin 4 �8 �0.5–�8 45.3 54.7
Levofloxacin �4 �4 0.25–�4 0.6 5.0 94.4 0.6 0.0 99.4
Tigecyclinec 0.5 2 0.06–4 96.3 3.7 0.0 88.2 8.1 3.7

P. aeruginosa (2,604)
Meropenem-vaborbactam 0.5 8 �0.015–�32
Meropenem 0.5 8 �0.015–�32 78.4 7.0 14.6 78.4 12.9 8.7
Aztreonam 8 �16 �0.12–�16 59.6 14.8 25.6 4.6 69.7 25.6
Cefepime 2 16 �0.5–�16 83.7 9.1 7.2 83.7 16.3
Ceftazidime 2 �16 �0.12–�16 79.0 5.6 15.4 79.0 21.0
Piperacillin-tazobactam 4 �64 �0.5–�64 79.2 10.3 10.5 79.2 20.8
Amikacin 2 16 �0.25–�32 94.0 2.2 3.8 89.6 4.5 6.0
Colistin 2 2 �0.5–4 98.3 1.7 0.0 100.0 0.0
Levofloxacin 0.5 �4 �0.12–�4 73.4 5.9 20.7 65.3 8.1 26.6
Tigecyclinec 4 8 0.06–�16

aAs published by CLSI (13) and EUCAST (14). S, susceptible; I, intermediate; R, resistant.
bIntermediate was interpreted as susceptible but dose dependent.
cBreakpoints for the CLSI column were from the U.S. FDA package insert (December 2014 revision).
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only 13.0 and 19.9% of these isolates at the same MIC values. Additionally, meropenem-
vaborbactam inhibited 82.0% of the XDR Enterobacteriaceae isolates at �8 �g/ml (Table
3). The activity of meropenem-vaborbactam was elevated against XDR isolates from U.S.
(MIC50 and MIC90, 0.03 and 0.5 �g/ml) and Latin American (MIC50 and MIC90, 0.12 and
2 �g/ml) hospitals, the latter of which displayed the highest XDR rate among the four
continents (4.4% versus 0.9 to 1.8% for the others) (Table 3).

Only one Enterobacteriaceae isolate displayed a PDR phenotype (�0.1%), and this
isolate had elevated MIC values for meropenem alone and meropenem-vaborbactam
(MIC, �32 �g/ml). This isolate was a VIM-1-producing Providencia stuartii isolate
recovered from the peritoneal fluid of a patient hospitalized in Greece.

Meropenem-vaborbactam testing against carbapenemase-producing Entero-
bacteriaceae. A total of 264 CRE isolates were screened for the presence of genes

encoding carbapenemases, and 201 (75.8%) isolates carried these resistance genes.
One isolate could not be recovered for further testing. A total of 135 (50.9% of the CRE
isolates; 1.3% of the overall population) isolates carried blaKPC genes, including 60
blaKPC-2, 74 blaKPC-3, and 1 blaKPC-4 gene (Table 4). KPC-producing isolates were
detected in five European countries (63/166 CRE isolates), namely, Greece (16/21 CRE
isolates), Italy (37/38 CRE isolates), Israel (4/4 CRE isolates), Poland (5/55 CRE isolates),
and the United Kingdom (1/2 CRE isolates). These isolates were also found in the United
States (51/65 CRE isolates), Brazil (15/15 CRE isolates), and Argentina (6/7 CRE isolates).

Genes encoding MBLs were detected among 41 isolates (15.5% of CRE isolates; 0.4%
of the overall collection), with the gene encoding NDM-1 being the most common (25
isolates), followed by blaVIM-1 (11 isolates), blaVIM-4 (4 isolates), and blaVIM-2 (1 isolate).
MBL-producing isolates belonged to the follow bacterial species: C. freundii (5 isolates),
E. cloacae (7 isolates), K. oxytoca (2 isolates), K. pneumoniae (25 isolates), P. stuartii (1
isolate), and S. marcescens (1 isolate). These isolates were collected in hospitals located
in Europe (32 isolates), Asia Pacific (7 isolates), Latin America (1 isolate), and the United
States (1 isolate). NDM-1 was detected among isolates from Malaysia (5 isolates),
Thailand (2 isolates), Poland (7 isolates), Romania (2 isolates), Russia (3 isolates), Turkey
(2 isolates), Ukraine (2 isolates), Mexico (1 isolate), and the United States (1 isolate).

OXA-48-like genes were detected among 27 isolates (10.2% of CRE isolates; 0.3% of
the overall collection), 2 of which also carried VIM-1. OXA-48 genes were detected
mainly in K. pneumoniae isolates (17/27 isolates) and were isolated primarily from
European countries (25/27 isolates [1 each from Germany, Ireland, Romania, Ukraine,
and Sweden, 11 from Turkey, and 9 from Russia]). The two remaining isolates were
observed in Argentina (OXA-163; K. pneumoniae) and the United States (E. cloacae
isolate from Rochester, NY).

Meropenem-vaborbactam (MIC50 and MIC90, 0.12 and 0.5 �g/ml) exhibited good
activity against KPC-producing isolates. All other �-lactam agents displayed limited
activity against KPC-producing isolates, and the most active non-�-lactam agents
against these isolates were tigecycline (100.0 and 96.3% susceptible by applying U.S.
FDA and EUCAST breakpoints, respectively) and colistin (72.4% susceptible by using
EUCAST breakpoints) (Table 2).

All but two KPC-producing isolates were inhibited by meropenem-vaborbactam at
�2 �g/ml. The other two isolates displayed MIC values of 4 and 8 �g/ml, were K.
pneumoniae isolates from Brazil and Italy, and displayed resistant MIC values for
meropenem (�32 �g/ml for both), imipenem (�8 �g/ml for both), doripenem (�4
�g/ml for both), levofloxacin (�4 �g/ml for both), and gentamicin (�8 �g/ml). The
isolate from Brazil was colistin resistant (MIC, �8 �g/ml [EUCAST breakpoint]) but was
susceptible to amikacin (MIC, 8 �g/ml), whereas the isolate from Italy was susceptible
to colistin (MIC, 0.5 �g/ml) and resistant to amikacin (MIC, �32 �g/ml). Both isolates
displayed low tigecycline MIC results (0.5 and 1 �g/ml). These isolates were recovered
from wound and blood specimens from 62- and 56-year-old male patients hospitalized
in renal and hematology wards, respectively.
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The activity of meropenem-vaborbactam against isolates harboring blaOXA-48-like
genes (MIC50/90, 16/�32 �g/ml) and/or MBL-encoding genes (MIC50/90, 32/�32 �g/ml)
was similar to that of meropenem (Table 4).

A total of 63 isolates yielded negative results for the carbapenemase-encoding
genes tested, including less frequent genes. These isolates were mainly K. pneumoniae
isolates from Europe (48/63 isolates [76.2%]) (Table 3). Meropenem-vaborbactam
(MIC50/90, 1/4 �g/ml) was 4-fold more active than meropenem alone (MIC50/90, 4/16
�g/ml) against these isolates (Table 3), which were also resistant to most comparator
agents tested (Table 2).

DISCUSSION

In this study, we evaluated the activities of meropenem-vaborbactam and compar-
ator antimicrobial agents against a large collection of clinical isolates including 10,426
Enterobacteriaceae isolates. These isolates represent all nonfastidious Gram-negative
organisms collected during 2014 as part of a large surveillance network collecting
consecutive isolates per infection type; thus, rates for different phenotypes and geno-
types are likely representative of the overall prevalences.

Among Enterobacteriaceae isolates, the worldwide rates for CRE, MDR, and XDR
isolates were 2.5, 11.6, and 1.5%, respectively. Although variations were observed in the
geographic regions analyzed, these isolates were detected in all four regions, high-
lighting the importance of developing therapeutic options that are efficacious against
these difficult-to-treat organisms.

KPC is still the most common carbapenemase (1.3% of the overall population; 50.9%
of CRE isolates) detected worldwide, and in certain surveyed countries, such as the
United States, Brazil, Italy, and Argentina, KPC producers are the dominant population
among CRE isolates. Vaborbactam is a potent KPC inhibitor, and in previous studies, the
combination of this inhibitor with various carbapenems reduced the MIC values 16- to
�64-fold for tested KPC-producing isolates (8). When vaborbactam was tested in
combination with biapenem against 300 Enterobacteriaceae isolates, this combination
was very active against KPC-producing isolates, but the activity of this combination was
variable against isolates with a combination of extended-spectrum �-lactamase (ESBL)
or derepressed AmpC genes and intrinsic resistance mechanisms or against isolates
producing Ambler class B or D enzymes (10). Against KPC-producing K. pneumoniae, E.
cloacae, P. aeruginosa, and Acinetobacter sp. isolates from New York City, meropenem-
vaborbactam enhanced the activity of carbapenems; however, decreased expression of
ompK36 reduced the effect of the �-lactamase inhibitor 8- to 16-fold compared to that
against isolates producing the same �-lactamases (9).

In this study, 133 of the 135 KPC-producing isolates detected were inhibited by
meropenem-vaborbactam at �2 �g/ml, and all isolates were inhibited by this combi-
nation at �8 �g/ml. These isolates are the main target for this combination, and
simulated human exposures of meropenem-vaborbactam against CRE isolates by use of
a hollow-fiber model demonstrated that a regimen of 2 g meropenem-2 g vaborbactam
every 8 h by 3-h infusion was highly efficacious against isolates producing KPC with
meropenem-vaborbactam MIC values of up to 8 �g/ml (11). Additionally, a phase 3
clinical trial for complicated urinary tract infection isolates was recently completed to
support this dosing regimen, and another is ongoing for the treatment of CRE (https://
clinicaltrials.gov/ct2/results?term�vaborbactam&Search�Search).

Meropenem-vaborbactam was active against contemporary Enterobacteriaceae
isolates collected worldwide, and this combination displayed good activity against
CRE, MDR, and XDR Enterobacteriaceae isolates with MIC50 and MIC90 values that
were lower than those for comparator agents (except tigecycline). Additionally, and
as reported by Lapuebla et al. (9), the activity of this combination was similar to that
of meropenem alone against other Gram-negative nonfastidious species. As with
other �-lactamase inhibitors that are clinically available or in late development
stages (18), vaborbactam does not inhibit MBL-producing isolates, and the
meropenem-vaborbactam combination displays limited activity against isolates
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producing class D oxacillinases associated with resistance to carbapenems. Isolates
producing MBLs and OXA-48-like enzymes were detected mainly in Asia-Pacific and
some European countries, but the worldwide spread of these resistance determi-
nants is a matter of great concern, and the development of treatment options for
these organisms is warranted.

MATERIALS AND METHODS
Bacterial isolates. A total of 14,304 Gram-negative bacterial clinical isolates were collected consec-

utively during 2014 in 82 hospitals, located in 31 countries and grouped into four regions: United States
(29 hospitals), Europe (35 hospitals), Latin America (8 hospitals), and Asia-Pacific (10 hospitals). Isolates
were collected consecutively according to standardized protocols, and only clinically significant isolates
were included in the study (1 per patient episode). Species identification was confirmed when necessary
by matrix-assisted laser desorption ionization–time of flight mass spectrometry, using a Bruker Daltonics
MALDI Biotyper (Billerica, Massachusetts, USA) following the manufacturer’s instructions.

Antimicrobial susceptibility testing. All isolates were susceptibility tested using the reference broth
microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI) (12), using
validated panels produced by ThermoFisher Scientific (formerly TREK, Cleveland, OH). Meropenem was
combined with vaborbactam at a fixed concentration of 8 �g/ml. Categorical interpretations for all
comparator agents were those found in CLSI document M100-S26 (13), at the EUCAST website (14),
or in U.S. Food and Drug Administration (FDA) package inserts. Quality control (QC) was performed
using Escherichia coli ATCC 25922 and ATCC 35218, K. pneumoniae ATCC 700603 and BAA-1705, and
P. aeruginosa ATCC 27853 as reference strains. All QC MIC results were within acceptable ranges as
published in CLSI documents (13).

Definitions. Carbapenem-resistant Enterobacteriaceae (CRE) isolates were defined as any isolates
exhibiting imipenem (Proteus mirabilis and indole-positive Proteeae were not included due to their
intrinsically elevated MIC values) and/or meropenem MIC values of �4 �g/ml.

MDR and XDR Enterobacteriaceae isolates were classified as such per recently recommended guide-
lines (15) and as adapted by Farrell et al. (16), using the following antimicrobial class representative
agents and CLSI interpretive criteria for Enterobacteriaceae: ceftriaxone (�2 �g/ml), meropenem (�2
�g/ml), piperacillin-tazobactam (�32 �g/ml-4 �g/ml), levofloxacin (�4 �g/ml), gentamicin (�8 �g/ml),
tigecycline (�4 �g/ml), and colistin (�4 �g/ml). Classifications were based on the following recom-
mended parameters: MDR if nonsusceptible to at least one agent in �3 antimicrobial classes and XDR
if nonsusceptible to at least one agent in all but �2 antimicrobial classes. PDR isolates were resistant to
all antimicrobial classes tested.

Carbapenemase screening. All CRE isolates were screened by PCR followed by DNA sequencing of
blaKPC, blaIMP, blaVIM, blaNDM, blaOXA-48, blaGES (blaGES-2, -4, -5, -6, and -8), blaNMC-A, blaSME, and blaIMI

amplicons as previously described (17). Isolates yielding negative results for these genes were tested for
less common carbapenemases, including FRI-1, BKC-1, GIM-1/-2, SIM-1, SPM-1, KHM-1, AIM-1, BIC-1, and
DIM-1.
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