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ABSTRACT The pharmacokinetics (PK) of drugs are known to be significantly al-
tered in patients receiving extracorporeal membrane oxygenation (ECMO). However,
clinical studies of the PK of drugs administered during ECMO are scarce, and the
proper dosing adjustment has yet to be established. We developed a population PK
model for teicoplanin, investigated covariates influencing teicoplanin exposure, and
suggested an optimal dosing regimen for ECMO patients. Samples for PK analysis
were collected from 10 adult patients, and a population PK analysis and simulations
were performed to identify an optimal teicoplanin dose needed to provide a >50%
probability of target attainment at 72 h using a trough concentration target of >10
ug/ml for mild to moderate infections and a trough concentration target of >15
ug/ml for severe infections. Teicoplanin was well described by a two-compartment
PK model with first-order elimination. The presence of ECMO was associated with a
lower central volume of distribution, and continuous renal replacement therapy (CRRT)
was associated with a higher peripheral volume of distribution. For mild to moder-
ate infections, an optimal dose was a loading dose (LD) of 600 mg and a mainte-
nance dose (MD) of 400 mg for ECMO patients not receiving CRRT and an LD of 800
mg and an MD of 600 mg for those receiving CRRT. For severe infections, an opti-
mal dose was an LD of 1,000 mg and an MD of 800 mg for ECMO patients not re-
ceiving CRRT and an LD of 1,200 mg and an MD of 1,000 mg for those receiving
CRRT. In conclusion, doses higher than the standard doses are needed to achieve
fast and appropriate teicoplanin exposure during ECMO. (This study has been regis-
tered at ClinicalTrials.gov under identifier NCT02581280.)

KEYWORDS teicoplanin, population pharmacokinetics, pharmacokinetics, cardiogenic
shock, extracorporeal membrane oxygenation

enoarterial extracorporeal membrane oxygenation (VA ECMO) is a mechanical

cardiopulmonary bypass that serves a role in bridging patients to cardiac recovery
after refractory cardiogenic shock (1). Patients on ECMO are prone to severe hemody-
namic instability and require the prolonged use of multiple invasive devices (e.g., an
ECMO cannula, endotracheal tube, and central venous catheter), which render them at
high risk of infection (2-4). Therefore, antibiotics are frequently used for both prophy-
laxis and treatment of infections during ECMO (5). Among them, teicoplanin is a
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glycopeptide antibiotic effective against Gram-positive bacteria, including methicillin-
resistant Staphylococcus aureus (6). In the summary of product characteristics (SPC) (7),
achievement of a trough concentration (Cyo,gn) Of >10 ug/ml, when measured by
high-performance liquid chromatography (HPLC), or >15 ug/ml, when measured by
fluorescence polarization immunoassay (FPIA) on day 3 of therapy, is recommended for
most Gram-positive bacterial infections. In the case of more severe infections, such as
endocarditis, a higher C,,,,4n (>15 pg/ml by HPLC or >30 wg/ml by FPIA) is required.

Significant alterations in the pharmacokinetic (PK) characteristics of drugs are
anticipated during ECMO as the circulating volume increases and the drugs, depending
on their physiochemical properties (e.g., molecular size, degree of ionization, and
lipophilicity), may be inactivated, adsorbed, and sequestered to various degrees by the
various ECMO circuit components (8-11). In addition, critical illness itself is often
accompanied by marked physiological changes, such as systemic inflammatory re-
sponses, multiple organ dysfunction, and drug interactions, which further complicate
the prediction of drug disposition (12, 13). At present, limited clinical PK studies have
been conducted in ECMO patients, and no clear guidelines regarding selection of the
proper dose in the setting of ECMO exist. This prospective population PK study was
carried out to characterize the PK of teicoplanin in critically ill patients with cardiogenic
shock undergoing VA ECMO, to identify and quantify the sources of PK variability, and
to suggest optimal dosing regimens in order to achieve prompt and adequate exposure
to teicoplanin.

RESULTS

Patient characteristics. Ten patients were enrolled in the present study from
December 2014 to February 2016. The demographic information and baseline charac-
teristics of the patients are shown in Table 1. The patients’ median age was 62.5 years
(range, 19 to 77 years), and the median body weight was 67.5 kg (range, 41 to 87 kg).
Seven patients were male. The reasons for undergoing ECMO included acute myocar-
dial infarction (n = 7), myocarditis (n = 2), and valvular heart disease (n = 1). The mean
duration of ECMO was 6.82 days (range, 1.88 to 12.1 days), and the mean ECMO blood
flow rate was 2,256 ml/min (range, 1,650 to 2,520 ml/min). Five patients received
concomitant continuous renal replacement therapy (CRRT). All 10 patients provided
samples for PK analysis while they were on ECMO. Among them, four patients who
survived after they were weaned from ECMO were able to provide samples for PK
analysis while they were off of ECMO to serve as controls. Overall, a total of 99 samples
were collected and used in the analysis.

Population pharmacokinetic analysis. The PK profile of teicoplanin was well
described by a two-compartment model with first-order elimination and with com-
bined (additive and proportional) residual variability and interindividual variability in
clearance from the central compartment (CL), the central volume of distribution (V,),
and intercompartmental (central-peripheral) clearance (Q). Among the covariates
tested, the inclusion of ECMO in V, and Q using a proportional model (change in
objective function value [AOFV] = —8.94 and —7.64, respectively) and the inclusion
of CRRT in the peripheral volume of distribution (V,) using a power model (AOFV =
—5.44) significantly improved the model fit. No significant covariate influenced the
CL of teicoplanin. The final model was as follows: CL (in liters per hour) = 0.95, V,
(in liters) = 15.7 X (1 — 0.34 X ECMO), Q (in liters per hour) = 557 X (1 — 0.5 X
ECMO), and V, (in liters) = 71.7 X (1.5)CRRT,

The typical population values for CL, V;, Q, and V, derived from the final model were
0.95 liters/h, 15.7 liters, 5.57 liters/h, and 71.7 liters, respectively. These values generally
agreed with the median estimates obtained by the bootstrap method (CL, 1.02 liters/h;
V,, 16.2 liters; Q, 6.22 liters/h; V,, 74.9 liters) and were contained within the 95%
confidence interval (Cl) of the bootstrap results (Table 2), corroborating the stability of
the model. The presence of ECMO significantly influenced the V; and Q of teicoplanin,
such that V, was 34% lower in the presence of ECMO (10.4 liters) than in the absence
of ECMO (15.7 liters) and Q was 50% lower in the presence of ECMO (2.79 liters/h) than
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TABLE 1 Demographic information and baseline characteristics of all enrolled patients?

Patient Body Indication for VA Duration of VA VA ECMO blood SCr level Use of
no. Age (yr) Sex wt (kg) ECMO ECMO (days) flow rate (ml/min) (mg/dl) CRRT
1 68 Male 70 Myocardial infarction 104 2,060 1.5 Yes
2 71 Male 61 Valvular heart disease 1.88 1,650 1.7 Yes
3 62 Male 65 Myocardial infarction 5.21 2,420 0.9 No

4 55 Male 81 Myocardial infarction 10.3 2,520 2.3 Yes
5 23 Female 56 Myocarditis 121 2,520 0.6 Yes
6 60 Male 83 Myocardial infarction 6.38 2,520 2.1 No

7 76 Female 41 Myocardial infarction 2.38 2,350 1.2 Yes
8 63 Male 70 Myocardial infarction 5.79 2,290 1.7 No

9 19 Male 87 Myocarditis 3.79 1,950 3.5 No
10 77 Female 59 Myocardial infarction 9.92 2,280 1.1 No

aData are for 10 patients. VA ECMO, venoarterial extracorporeal membrane oxygenation; SCr, serum creatinine; CRRT, continuous renal replacement therapy.

in the absence of ECMO (5.57 liters/h). CRRT was associated with a 50% higher V, (107.6
liters with CRRT versus 71.7 liters without CRRT).

The basic goodness-of-fit plots (Fig. 1) showed that the final model was acceptable,
as the predicted population and predicted individual concentrations were generally in
agreement with the observed concentrations. Additionally, most conditional weighted
residual values were evenly distributed in a random manner around the line of unity
(=2 standard deviations of the mean), which indicated the suitability of the error
model. The results of the visual predictive check (VPC) showed that the 5th to 95th
percentiles of the simulated data overlaid most of the observed data, supporting the
predictive performance of the model (Fig. 2).

Monte Carlo simulations. Table 3 shows the probability of target attainment (PTA;
in percent) at 72 h after ECMO initiation and at 72 h after ECMO discontinuation using
the eight different dosing regimens, stratified by the use of CRRT. The C,,,4» target was
set at >10 pg/ml for mild to moderate infections and >15 ug/ml for severe infections.
Overall, a trend toward an increase in the PTA with increasing teicoplanin doses was
noted. Also, the PTA was higher in the absence of CRRT than in the presence of CRRT.
For mild to moderate infections, the standard dosing regimen (regimen A) resulted in
a PTA of 22.8% during ECMO, which increased to 63.1% after ECMO cessation in
patients without CRRT. However, in patients receiving CRRT, the same dosing regimen
resulted in a lower PTA of 5.62% during ECMO and 58.6% after ECMO. For mild to

TABLE 2 Final population PK model parameter estimates for teicoplanin and bootstrap

results?
Population estimate Bootstrap median (2.5th,
Parameter (% RSE) 97.5th percentile)
Fixed effects
CL (liters/h) 0.95 (29.6) 1.02 (0.58, 1.57)
V; (liters) 15.7(17.3) 16.2 (12.2, 21.0)
Q (liters/h) 5.57 (43.1) 6.22 (3.06, 10.2)
V, (liters) 71.7 (28.1) 74.9 (65.8, 93.5)
Becmo ON V, —0.34 (16.3) —0.35 (—0.41, —0.26)
Oecmo ON Q —0.50 (74.6) —0.53 (—0.72, —0.15)
Ocpar ON V, 1.50 (25.3) 1.39 (0.87, 2.24)
Random effects
Interindividual variability
CcL 0.34 (463) 0.31 (0.04, 0.64)
v, 0.13(54.7) 0.10 (0.02, 0.19)
Q 0.15(52.3) 0.13 (0.02, 0.28)
Residual variability
Additive (ug/ml) 3.32(84.3) 491 (0.87, 8.32)
Proportional (%) 243 (4.12) 19.9 (10.3, 26.4)

aCL, clearance from the central compartment; V;, central volume of distribution; Q, intercompartmental
(central-peripheral) clearance; V,, peripheral volume of distribution; 6y, effect of extracorporeal
membrane oxygenation; Ocggr, effect of continuous renal replacement therapy; RSE, relative standard error.
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FIG 1 Goodness-of-fit plots of the final population pharmacokinetic model for teicoplanin in 10 patients who received
venoarterial extracorporeal membrane oxygenation. Observed teicoplanin concentrations versus population predicted
concentrations (A) and individual predicted concentrations (B) and conditional weighted residuals versus population
predicted concentrations (C) and time (D) are shown.

moderate infections, the optimal dosing regimen was regimen B for patients without
CRRT (PTA, 50.1% during ECMO and 65.4% after ECMO) and regimen D for patients with
concomitant CRRT (PTA, 56.1% during ECMO and 83.2% after ECMO).

For severe infections, the standard dosing regimen (regimen A) resulted in a PTA of
3.16% during ECMO, which increased to 36.0% after ECMO cessation in patients without
CRRT. Using the same dosing regimen, almost none of the patients (0.30%) would reach
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FIG 2 Visual predictive check of the final population pharmacokinetic model for teicoplanin in 10 patients during
venoarterial extracorporeal membrane oxygenation (A) and after discontinuation of venoarterial extracorporeal membrane
oxygenation (B). Open circles, observed teicoplanin concentrations; solid line, the median; lower and upper dashed lines,
5th and 95th percentiles of the simulated data, respectively.
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TABLE 3 PTA at 72 h after VA ECMO initiation and at 72 h after VA ECMO discontinuation, using eight different dosing regimens,
stratified by use of CRRT@

PTA (%) at 72 h after ECMO

PTA (%) at 72 h after ECMO initiation discontinuation

Use of Mild to moderate Severe Mild to moderate Severe

Dosing regimen® CRRT infections infections infections infections

A (LD, 400; MD, 400) Yes 5.62 0.30 58.6 26.8
No 22.8 3.16 63.1 36.0

B (LD, 600; MD, 400) Yes 24.6 3.14 62.9 329
No 50.1 15.2 65.4 39.7

C (LD, 600; MD, 600) Yes 348 574 82.0 58.5
No 59.5 229 82.6 63.0

D (LD, 800; MD, 600) Yes 56.1 17.6 83.2 61.7
No 75.5 41.6 83.2 64.6

E (LD, 800; MD, 800) Yes 64.3 233 91.6 76.3
No 81.0 49.1 91.2 77.5

F (LD, 1,000; MD, 800) Yes 78.2 39.9 92.0 77.3
No 87.7 62.7 91.3 78.1

G (LD, 1,000; MD, 1,000) Yes 82.5 45.8 95.7 86.2
No 90.3 68.3 95.0 86.3

H (LD, 1,200; MD, 1,000) Yes 88.6 58.9 95.8 86.9
No 934 774 95.1 86.5

aThe Cyougn target was set at >10 ug/ml for mild to moderate infections and >15 ug/ml for severe infections. PTA, probability of target attainment; ECMO,
extracorporeal membrane oxygenation; LD, loading dose; MD, maintenance dose; CRRT, continuous renal replacement therapy.
tThe loading doses (in milligrams) were administered q12h, and the maintenance doses (in milligrams) were administered q24h.

the target during ECMO with concomitant CRRT. The optimal teicoplanin dosing
regimen for severe infections both during and after ECMO was regimen F for patients
without CRRT (PTA, 62.7% during ECMO and 78.1% after ECMO) and regimen H for
patients with concomitant CRRT (PTA, 58.9% during ECMO and 86.9% after ECMO).

DISCUSSION

To our knowledge, this is the first prospective population PK study of teicoplanin in
patients receiving VA ECMO. In our study, the patients were used as their own controls
to compare the PK parameters during and after ECMO to potentially minimize the
interindividual variability. A two-compartment model with first-order elimination rea-
sonably fitted the concentration-time data for teicoplanin. The typical population
values for the PK parameters of teicoplanin derived from the final model are similar to
those that reported previously in 26 critically ill patients (CL, 0.69 liters/h; V;, 25.3 liters;
Q, 3.93 liters/h; V,, 86.5 liters) (14).

In our study, ECMO was associated with a 34% lower V, and a 50% lower Q of
teicoplanin and CRRT was associated with a 50% higher V, of teicoplanin. Our results
are different from those of other studies, in which the volume of distribution was
generally increased and the clearance was decreased for drugs administered during
ECMO (8, 15-17). Several explanations for our findings are possible. First, teicoplanin is
a hydrophilic drug, which makes the sequestration of teicoplanin in the ECMO circuit
less likely than that of lipophilic drugs, which show an increased volume of distribution
during ECMO due to the substantial sequestration in the circuit (10, 18). For teicoplanin,
factors such as hemodilution, altered protein binding, and other pathophysiologic
changes that occur during ECMO may influence the PK more significantly (19). More-
over, since the previous studies were mostly conducted in neonates or an ex vivo
system, the same findings may not be applicable to adult patients in our study. In fact,
studies involving adult ECMO patients demonstrated no significant alterations in the PK
of oseltamivir, piperacillin-tazobactam, and tigecycline (20-22). For vancomycin, an-

September 2017 Volume 61 Issue 9 €01015-17 aacasm.org 5


http://aac.asm.org

Wi et al.

other glycopeptide antibiotic frequently used during ECMO (5), no differences in the
volume of distribution or clearance were seen between adult patients with ECMO and
their matched controls (23). Even a trend for a slightly lower volume of distribution has
been reported for meropenem and azithromycin (22, 24). In addition, no significant
impact of the patients’ creatinine clearance (CL.g) on the teicoplanin CL was found in
our study. The reasons may be multifactorial, including the small sample size, the large
interindividual variability of CL, and the undetected amount of teicoplanin excreted
nonrenally (through CRRT).

In our study, despite the lower V; and no apparent changes in the CL of teicoplanin
during ECMO, PTA was lower during ECMO than after ECMO for all eight levels of
simulated dosing. This indicates large PK fluctuations and variability among patients,
which is also reflected in the high relative standard error (RSE) of the interindividual
variability of CL. When the final population PK model and its variability are taken
together, the dosing simulations resulted in a gradual increase in PTA over time from
72 h after ECMO initiation to 72 h after ECMO cessation. Based on the results of our
study, we propose the following dosing regimens for mild to moderate infections: for
ECMO patients not on CRRT, an LD of 600 mg every 12 h (q12h) for the first three doses
followed by an MD of 400 mg every 24 h (q24h), and for ECMO patients on CRRT, we
propose an LD of 800 mg q12h for the first three doses followed by an MD of 600 mg
g24h. For severe infections, for ECMO patients not on CRRT, we propose an LD of 1,000
mg q12h for the first three doses followed by an MD of 800 mg g24h, and for ECMO
patients on CRRT, we propose an LD of 1,200 mg q12h for the first three doses followed
by an MD of 1,000 mg g24h. Our recommendation is in line with a growing body of
evidence in the literature that advocates the use of higher teicoplanin doses in critically
ill patients (25-27). Close monitoring of the teicoplanin plasma concentrations and
clinical status of the patients is crucial to provide effective protection against infection
and reduce the risk of microbiological resistance.

Our study has some limitations. First, the number of patients was relatively small,
and therefore, the data might not have been sufficient to provide robust PK parameter
estimates for the overall ECMO patient population. Also, the use of concomitant
medications, such as inotropes, vasopressors, and diuretics, which could impact the PK
of teicoplanin, was not evaluated. Nevertheless, our study may serve as the first step
toward understanding the PK characteristics of teicoplanin in adult patients receiving
VA ECMO and toward further improving patient outcomes through the use of an
optimal dosing strategy. Future studies are needed to validate the current findings and
to evaluate the clinical efficacy and safety of the recommended dosing regimen.

MATERIALS AND METHODS

Study patients and ECMO system. This study was conducted at the cardiac intensive care unit in
Severance Hospital, a university-affiliated tertiary care hospital in Seoul, Republic of Korea. The study
protocol was approved by the institutional review board (IRB) of Yonsei University (IRB no. 4-2014-0919)
and was registered at ClinicalTrials.gov (NCT02581280). Patients were eligible for inclusion in the study
if they were aged 19 years or older, undergoing VA ECMO secondary to severe cardiogenic shock, and
concomitantly receiving teicoplanin. Written informed consent to participate in the study was obtained
from the patients’ legal representatives. The VA ECMO system used comprised a centrifugation pump
with a pump controller (Capiox SP-101; Terumo Inc., Tokyo, Japan) and an ECMO circuit (Capiox EBS
Circuit with X coating; Terumo Inc., Tokyo, Japan). It was percutaneously installed via femoral vein-
femoral artery peripheral cannulation, with a drainage cannula being positioned in the femoral vein to
remove the deoxygenated blood and an infusion cannula being positioned in the femoral artery to
supply the oxygenated blood to the patient (retrograde blood flow to the heart).

Study procedures. According to the Severance Hospital protocol, teicoplanin (Targocid; Sanofi-
Aventis Co., Ltd.) was initiated on day 1 of VA ECMO in all study patients for infection prophylaxis.
Teicoplanin was administered by intravenous bolus injection at the standard loading dose (LD) of 400 mg
q12h for the first three doses followed by the maintenance dose (MD) of 400 mg q24h. If needed,
venovenous hemodiafiltration (Prismaflex; Gambro Inc., Meyzieu, France) was applied as continuous
renal replacement therapy (CRRT). On day 2 of VA ECMO, samples (2 ml) for PK analysis were collected
via an existing arterial line at 0 min (predosing), 5 min, and 1, 2, 3, 6, 12, and 24 h of teicoplanin
administration. If the patient survived and was able to be weaned off ECMO, the collection of samples
for PK analysis was repeated on day 2 of ECMO discontinuation at 0 min (predose), 5 min, and 1, 2, 3,
6, 12, and 24 h of teicoplanin administration. Variations in the sampling time were allowed to minimize
interruptions in patient care. All samples were collected in tubes containing EDTA and were immediately
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centrifuged at 1,500 X g for 10 min (4°C) to separate the plasma, which was stored at —80°C until the
drug assay. All routine clinical management was carried out at the discretion of the treating physician
and was not influenced by the study procedures.

Teicoplanin assay. Teicoplanin concentrations were measured following protein precipitation using
a validated HPLC system coupled with a Shimadzu LCMS-8050 triple quadrupole liquid chromatograph-
mass spectrometer (Shimadzu Inc., Kyoto, Japan). HPLC was performed on a Phenomenex Luna C,q
analytical column (100 by 2 mm; particle size, 3 um; Phenomenex, Torrance, CA, USA) with a mobile
phase consisting of 0.1% formic acid in acetonitrile and water (20:80, vol/vol) at a flow rate of 0.3 ml/min.
All analytical procedures were conducted in accordance with the guidance for industry on bioanalytical
method validation issued by the U.S. Food and Drug Administration (28). The lower limit of quantification
for teicoplanin was 2.0 ug/ml. The calibration curve was linear from 2 to 150 ng/ml, and the regression
coefficient was >0.988. The coefficients of variation at the concentration used to produce the calibration
curve and the four quality control samples (2, 6, 12, and 120 mg/liter) were <15%.

Population pharmacokinetic analysis. A population PK analysis was performed using the nonlinear
mixed-effect modeling software NONMEM (version 7.3; Icon Development Solutions, Elliot City, MD, USA)
with the aid of the Perl-speaks-NONMEM toolkit (29), Pirana (version 2.9.2) software (30), and Xpose
(version 4.0) software (31) contained in the programming language R (version 3.2.1; http://www.r-project
.org/). First-order conditional estimation with the interaction approach was used throughout the model-
building process. Teicoplanin concentration data were log transformed for analysis and were assumed to
follow a two-compartment model with first-order elimination on the basis of the findings of previous
studies (14, 25, 32-34). The PK parameters estimated included clearance from the central compartment
(CL), the central volume of distribution (V;), the peripheral volume of distribution (V,), and intercom-
partmental (central-peripheral) clearance (Q). The interindividual variability of the PK parameters was
evaluated using an exponential model. Covariance between interindividual variability was estimated
using a variance-covariance matrix. Residual variability was described using the following combined
additive and proportional model:

In (Cobs,ij) =In (Cpredﬂ’j) tWXe

and

W= {0 + [In (Cpreay) X 0]}
where C,.,.; and C, .4, represent the jth observed and predicted concentrations for the ith subject,
respectively, € is the residual variability with a mean of zero and a variance of ¢2 and 6 is the
additive/proportional component of the residual variability.

The following clinically plausible patient covariates were tested for their influence on the PK
parameters of teicoplanin: age; sex; body weight; serum albumin concentration; serum creatinine (SCr)
concentration; blood urea nitrogen (BUN) concentration; creatinine clearance (CLg), estimated using the
Cockcroft-Gault method (35); the ECMO blood flow rate; and presence of CRRT (1 for patients on CRRT
and 0 for patients not on CRRT). The presence of ECMO was also evaluated as a potential covariate, with
patients serving as their own controls (1 for records during ECMO and 0 for records after ECMO
discontinuation). Among the covariates, continuous covariates were centered at their median values and
were tested using a power, exponential, and linear model; categorical covariates were tested using a
power, exponential, and proportional model. The covariates that, upon addition, resulted in a statistically
significant improvement (P < 0.05) in the log likelihood of the model (expressed as an objective function
value [OFV]), reduced the residual variability, and/or improved the goodness-of-fit plots were incorpo-
rated to build the final model.

The validity of the final model was assessed by visual inspection of goodness-of-fit plots, including
observed concentrations versus individual predictions (IPRED), observed concentrations versus popula-
tion predictions (PRED), and conditional weighted residuals (CWRES) versus population predictions and
time. Next, the accuracy and stability of the final model were evaluated using a nonparametric bootstrap
method. The medians and 95% confidence intervals of the PK parameter estimates were obtained from
the 1,000 bootstrap runs. The model was considered stable if the typical population values for the PK
parameters of the final model were within the 95% confidence interval (Cl) of the bootstrap results.
Furthermore, a visual predictive check (VPC) was performed with 1,000 data set simulations, after which
the 5th to 95th percentiles of the simulated teicoplanin concentrations were overlaid with the observed
data to assess the predictive performance of the final model.

Monte Carlo simulations. Monte Carlo simulations using the parameter estimates from the final
population PK model were performed to assess the probability of target attainment (PTA) of C,q at 72
h after the initiation of ECMO as well as at 72 h after the discontinuation of ECMO. We chose the C,

trough
at 72 h since it is considered useful in the clinical monitoring of teicoplanin therapy (26, 36). The Ct,ouzh
target was set at >10 pg/ml for mild to moderate infections and >15 ug/ml for severe infections, as
recommended by the SPC (7). Five thousand patient simulations were performed for each of the
following dosing regimens: regimen A, consisting of an LD of 400 mg q12h for 3 doses and an MD of 400 mg
q24h thereafter; regimen B, consisting of an LD of 600 mg q12h and an MD of 400 mg g24h; regimen C,
consisting of an LD of 600 mg q12h and an MD of 600 mg q24h; regimen D, consisting of an LD of 800 mg
q12h and an MD of 600 mg g24h; regimen E, consisting of an LD of 800 mg q12h and an MD of 800 mg q24h;
regimen F, consisting of an LD of 1,000 mg g12h and an MD of 800 mg q24h; regimen G, consisting of an LD
of 1,000 mg q12h and an MD of 1,000 mg g24h; and regimen H, consisting of an LD of 1,200 mg q12h and
an MD of 1,000 mg g24h. In order to provide the patients with adequate antibiotic coverage throughout the
course of teicoplanin therapy, that is, during ECMO as well as after ECMO, an optimal dosing regimen was
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chosen to be the lowest dose required to maintain a PTA of >50% at 72 h after the start of ECMO and
continuously at 72 h after weaning off of ECMO (34). An ECMO duration of 7 days was assumed for simulation

purposes, since the mean duration of ECMO in our study patients was 6.82 days.
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