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Abstract

Mitochondrial function is central to many different processes in the cell, from oxidative 

phosphorylation to the synthesis of iron-sulfur clusters. Therefore, mitochondrial dysfunction 

underlies a diverse array of diseases, from neurodegenerative diseases to cancer. Stress can be 

communicated to the cytosol and nucleus from the mitochondria through many different signals, 

and in response the cell can effect everything from transcriptional to post-transcriptional responses 

to protect the mitochondrial network. How these responses are coordinated have only recently 

begun to be understood. In this review we explore how the cell maintains mitochondrial function, 

focusing on the UPRmt, a transcriptional response that can activate a wide array of programs to 

repair and restore mitochondrial function.
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Mitochondria: More than energy production

Mitochondria are organelles descended from an endosymbioitic α-proteobacteria that was 

engulfed by pre-eukaryotic cells over a billion years ago (Allen, 2003, Lane and Martin, 

2010, Gray, 2012). This engulfment event allowed energy production to be specialized to 

one area of the cell and contributed to the explosion of multicellular complexity found in 

metazoans. While mitochondria are associated with energy production, these organelles also 

serve important roles for production of essential metabolites and co-factors such as fatty 

acids (Osman et al., 2011), amino acids (Wellen and Thompson, 2012), and iron-sulfur 

clusters (Lill and Mühlenhoff, 2008). In addition to being a hub for the cell’s anabolic and 

catabolic reactions, mitochondria also serve as a signaling platform central for many 

processes in the cell, for example in the activation of apoptosis (Xiong et al., 2014). Because 

of these diverse functions, the preservation of mitochondrial homeostasis is vital to cellular 

and organismal health. Failure to maintain mitochondrial function results in a diverse array 

of diseases, from Parkinson’s disease (Vafai and Mootha, 2012) to cancer (Nunnari and 

Suomalainen, 2012).

Although the mitochondrial genome (mtDNA) is small in animals, about 16 kilobases in 

mammals, with a small number of genes encoded therein: 13 protein-coding, 22 tRNA, and 

2 rRNA genes (Gray, 1999). In animal mtDNA there is a core of gene products always 

present that encodes components of the oxidative phosphorylation (OXPHOS) machinery 

that produce the majority of energy for the cell (Falkenberg et al., 2007). Transcription is 

polycistronic, producing two transcripts known as the heavy and light strands. While 

mitochondria harbor machinery to produce mtDNA gene products, the proteins encoded by 

mtDNA comprise only about 1% of the mitochondrial proteome. The other 99% of proteins 

located in mitochondria are encoded by the nuclear genome and synthesized in the cytosol. 

Because mitochondria are double-membrane bound organelles, proteins produced in the 

cytosol require a channel to be imported into mitochondria. This channel, a complex of 
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proteins known as the translocase of the outer/inner membrane, transports unfolded proteins 

through the outer and inner membranes. Transport of a protein is dependent on the presence 

of a mitochondrial targeting sequence (MTS), the mitochondrial inner membrane potential 

(ΔΨ), ATP and molecular chaperones located within the mitochondrial matrix (Chacinska et 

al., 2009).

Mitochondrial defects affect a wide range of cellular processes and are associated with 

neurodegenerative disorders, cardiomyopathies, metabolic syndrome, cancer, and obesity. 

Mitochondrial disorders can manifest in any organ, ands at any age, depending on whether 

the mutations are autosomal, inherited from the X chromosome, or from the maternal line 

(Nunnari and Suomalainen, 2012). Furthermore, mtDNA mutations have pleiotropic effects 

due in part to heteroplasmy of mtDNA, the particular mix of wildtype and mutated mtDNA 

in a cell, and the severity of the mtDNA mutation (Wallace and Chalkia, 2013).

Cancer cells and mitochondrial dysfunction have long been linked, first in the description of 

the Warburg effect (Koppenol et al., 2011). The Warburg effect describes a phenomenon 

where glucose is fermented into lactic acid despite the ready availability of oxygen, often in 

cancer cells. While Warburg initially proposed that this phenomenon was due to 

mitochondrial dysfunction, the reality of how mitochondrial dysfunction interacts with 

cancer biology is now known to be much more complicated than previously hypothesized. 

Mitochondrial function is required for cancer cell viability, and depletion of functional 

mitochondria impairs tumor cell growth (Weinberg et al., 2010). MtDNA mutations are also 

associated with tumor growth, as many different types of cancers accumulate mtDNA 

mutations as they grow and some tumors contain homoplasmic mtDNA mutations (Polyak et 

al., 1998, Petros et al., 2005). These mutations can affect OXPHOS efficiency, and increase 

the production of reactive oxygen species (ROS) by mitochondria (Ralph et al., 2010, 

Ishikawa et al., 2008). Further evidence that mtDNA mutations drive cancer formation 

suggests that efficient mitochondrial function is tumor suppressive in some cases (Santidrian 

et al., 2013). While intriguing, it should be noted that the role of mtDNA mutations in cancer 

remains controversial as considerable data indicates that the mutations have little impact on 

cancer growth or survival (Ju et al., 2014).

Transcriptional Responses To Mitochondrial Dysfunction

As mitochondria are responsible for many essential cellular functions, maintenance of these 

organelles is critical. Mitochondrial activity is monitored by multiple mechanisms including 

mitochondria to nuclear communication, which occurs through several known pathways. 

Signals that convey mitochondrial status to the nucleus include calcium fluctuations (Biswas 

et al., 1999, Amuthan et al., 2001), ROS (Johnson et al., 2008), mitochondrial protein import 

efficiency (Nargund et al., 2012), metabolites (Mouchiroud et al., 2013), and energy 

production (Martinez-Reyes et al., 2012).

In yeast, mitochondrial dysfunction is signaled to the nucleus via the retrograde response 

(RTG). Mitochondrial stress caused by mtDNA depletion activates the transcription factors 

Rtg1 and Rtg3 (Liao and Butow, 1993, Jia et al., 1997). In the absence of mitochondrial 

stress, the Rtg1-Rtg3 complex is phosphorylated and sequestered in the cytosol. During 
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stress, the phosphatase Rtg2 is activated resulting in dephosphorylation of Rtg1-Rtg3 and the 

transcription factors translocate to the nucleus and activate the RTG response. RTG 

activation causes induction of a number of metabolic genes including CIT2, a key enzyme in 

the glyoxylate cycle, which allows the cell to use alternate carbon sources for energy that 

can be processed independent of mitochondrial function (Butow and Avadhani, 2004, Liu 

and Butow, 1999). However, a pathway orthologous to the RTG pathway has not been found 

in metazoans. Rather, the RTG response seems to be fulfilled by multiple pathways. The 

transcription factors NRF1 and NRF2 control expression of OXPHOS genes, the voltage-

dependent anion channel (VDAC), and mitochondrial transcription factors A and B (mtTFA 

and mtTFB) in mammals (Scarpulla, 2002). Peroxisome proliferator activated receptor 

(PPAR) α and γ control expression of genes involved in fatty acid metabolism and β-

oxidation (Puigserver and Spiegelman, 2003) and PPARγ coactivator-1 (PGC-1) regulates 

mitochondrial biogenesis in tissues such as brown fat and skeletal muscle cells (Wu et al., 

1999).

The UPRmt in Worms, Mice, and Humans

The mitochondrial unfolded protein response (UPRmt) is an adaptive transcriptional 

response that was initially described as a mechanism for cells to maintain mitochondrial 

protein homeostasis during mitochondrial dysfunction, as these organelles are constantly 

importing and processing proteins in an unfolded state. Hoogenraad and colleagues first 

described the pathway in rat hepatoma cells in which mtDNA had been depleted through 

ethidium bromide (EtBr) treatment (Martinus et al., 1996) and later found similar results 

when mitochondrial stress was caused by overexpression of a terminally misfolded 

mitochondrial protein (Zhao et al., 2002). However, many of the studies to determine how 

the UPRmt is regulated have been carried out in Caenorhabditis elegans (Figure 1). The 

UPRmt in C. elegans can be activated by conditions similar to those in mammalian cells that 

cause mitochondrial stress, such as depletion of mtDNA (Yoneda et al., 2004), OXPHOS 

components (Durieux et al., 2011), mitochondrial proteases (Nargund et al., 2012), 

perturbation of mitochondrial ribosomes (Moullan et al., 2015), or exposure to reagents that 

generate ROS (Yoneda et al., 2004). Genetic screens have identified multiple components 

required for UPRmt activation including the mitochondrial protease ClpP, the homeobox 

transcription factor DVE-1 (Haynes et al., 2007), the ubiquitin like protein UBL-5 

(Benedetti et al., 2006), the mitochondrial peptide transporter HAF-1 (Haynes et al., 2010), 

multiple chromatin regulatory factors, (Merkwirth et al., 2016, Tian et al., 2016) and the 

transcription factor ATFS-1 (Nargund et al., 2015). Consistent with the UPRmt preserving 

mitochondrial function, worms lacking UPRmt components have impaired growth and 

survival during mitochondrial stress (Gatsi et al., 2014, Liu et al., 2014, Nargund et al., 

2012).

Mitochondrial protein import efficiency, which is reliant on mitochondrial protein 

homeostasis and OXPHOS, of the bZip transcription factor ATFS-1 regulates the UPRmt. 

ATFS-1 is imported into the mitochondrial matrix via an N-terminal MTS where it is 

degraded by the Lon protease under normal conditions (Nargund et al., 2012). However 

during stress, import efficiency is reduced and a percentage of ATFS-1 accumulates in the 

cytosol. It then translocates to the nucleus via its nuclear localization sequence (NLS). This 
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arrangement of two compartmental localization sequences within a single transcription 

factor couples activation of the UPRmt to mitochondrial import efficiency. Thus, 

mitochondrial import efficiency of ATFS-1 acts as a surrogate for the functional status of the 

entire mitochondrial network. Once activated, ATFS-1 upregulates over 400 genes involved 

in processes such as mitochondrial protein homeostasis, ROS detoxification, glycolysis, and 

interestingly, xenobiotic detoxification and innate immunity (Nargund et al., 2012). 

Perturbation of vital cellular functions activates an immune response, as multiple pathogens 

interfere with these vital functions (Melo and Ruvkun, 2012, Liu et al., 2014). Among those 

bacteria that activate the UPRmt are several that impair mitochondrial function. For example, 

exposure to the pathogen Pseudomonas aeruginosa activates the UPRmt as P. aeruginosa 
produces the OXPHOS inhibitor cyanide as a virulence factor resulting in activation of an 

innate immune response (Pellegrino et al., 2014, Liu et al., 2014).

Many of the genes upregulated by ATFS-1 contain a 14 base-pair sequence in the promoter 

region, termed the UPRmt element (UPRmtE), to which ATFS-1 directly binds. In addition to 

the genes that ATFS-1 upregulates, ATFS-1 limits transcription of genes encoding 

tricarboxylic acid (TCA) cycle enzymes, and OXPHOS components encoded by both the 

mitochondrial and nuclear genomes (Nargund et al., 2015). This potentially allows time for 

the recovery of mitochondrial protein homeostasis and regulates expression and efficient 

assembly of the highly expressed TCA cycle and OXPHOS complexes. In addition to these 

findings, during mitochondrial stress in mammals synthesis of mtDNA-encoded proteins is 

reduced (Munch and Harper, 2016).

In addition to transcriptional adaptions, mitochondrial stress during development affects 

long-term chromatin changes, and these epigenetic marks contribute to activation of the 

UPRmt in worms and mammals that maintains a “youthful” state (Tian et al., 2016, 

Merkwirth et al., 2016). Specifically, mitochondrial stress results in di-methylation of the 

histone H3K9, mediated by the methyltransferase met-2 and the nuclear factor lin-65. This 

change causes global silencing of chromatin, but opens up chromatin in regions associated 

with UPRmt activation and is required for DVE-1 and ATFS-1 to bind the appropriate 

promoters (Tian et al., 2016). Furthermore, two histone lysine demethylases, the Jumonji 

family proteins jmjd-1.2 and jmjd-3.1 are required for UPRmt activation and mitochondrial 

stress mediated longevity in worms (Merkwirth et al., 2016). The homologs of these proteins 

in mammals, PHF8 and JMJD3 respectively, positively correlate with methylation status, 

mRNA, and protein expression of UPRmt associated genes.

Interestingly, UPRmt activation can be communicated in a cell non-autonomous manner 

(Durieux et al., 2011, Berendzen et al., 2016). For example, mitochondrial dysfunction in 

neuronal cells activates a neuronal UPRmt, which in turn leads to activation of the UPRmt in 

intestinal cells. While the cell-to-cell communication is not completely understood, 

considerable data indicates a requirement for serotonin (Berendzen et al., 2016) and the 

secreted neuropeptide FLP-2. Furthermore, FLP-2 signaling involves a neural sub-circuit 

that includes two sensory neurons with environmental exposure and an interneuron. The 

sensory neurons communicate mitochondrial stress to the interneuron, which releases FLP-2 

to signal to downstream neurons to activate the UPRmt in distal tissues (Shao et al., 2016), 

although how the intestinal cells receive the signal remains to be determined. Cell non-
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autonomous signaling potentially allows for metabolic coordination between cells 

(Berendzen et al., 2016) or pre-emptive UPRmt activation in distal cells in response to 

systemic mitochondrial stress, such as during bacterial infection.

ATF5 regulates a Mammalian Mitochondrial UPR

While C. elegans has proven useful to identify UPRmt signaling components, the initial 

observations were made in mammalian cells. Those studies used a mutated form of ornithine 

transcarbamylase (∆OTC), a protein that is terminally misfolded following import into 

mitochondria (Zhao et al., 2002) resulting in mitochondrial stress. ΔOTC expression results 

in upregulation of mitochondrial chaperones and proteases such as Cpn60 (HSP60) and 

ClpP. The transcription factor CHOP, which is also induced by ∆OTC expression, has been 

proposed to regulate the UPRmt but the mechanism by which CHOP is stimulated by 

mitochondrial stress and regulates UPRmt genes is unclear (Aldridge et al., 2007).

Using a combination of C. elegans and mammalian genetics, we found the mammalian bZIP 

transcription factor ATF5 to be required for UPRmt activation during a variety of 

mitochondrial stresses (Figure 2). ATF5, in addition to sharing homology with ATFS-1 and 

containing a putative MTS, is transcriptionally upregulated in several mitochondrial diseases 

such as the neurological disease spinocerebullar ataxia 28 (SCA28), which is caused by a 

mutation in the mitochondrial m-AAA protease AFG3L2 (Mancini et al., 2013). In addition, 

ATF5 is induced in a mouse model of mitochondrial myopathy caused by a dysfunctional 

mitochondrial helicase, Twinkle, which causes accumulation of mtDNA deletions 

(Tyynismaa et al., 2004, Tyynismaa et al., 2010). Similarly, ATF5 is induced in mice 

harboring a deletion in the mitochondrial aspartyl-tRNA synthetase DARS2, which results in 

mitochondrial stress (Tyynismaa et al., 2004, Dogan et al., 2014).

Consistent with conservation of the UPRmt between worms and mammals, expression of 

ATF5 rescues UPRmt signaling in worms lacking atfs-1 (Fiorese et al., 2016). ATF5 is 

required for the increase of mitochondrial-protective transcripts in response to mitochondrial 

stress, such as the ROS-generating molecule paraquat, OXPHOS inhibition and transgenic 

expression of ΔOTC. And, transcriptional activation by ATF5 requires the same UPRmtE 

promoter element to which ATFS-1 binds in worms during mitochondrial stress (Nargund et 

al., 2015). And intriguingly, the promoters of those genes induced in the Twinkle mouse 

model of mitochondrial myopathy were enriched for the same UPRmtE (Tyynismaa et al., 

2010).

In C. elegans, ATFS-1 responds to mitochondrial stress when mitochondrial protein import 

becomes impaired. It is well documented that ATF5 accumulates in the nucleus when 

activated (Monaco et al., 2007, Dalton et al., 2013), but in the absence of stress ATF5 

accumulates in mitochondria in worm, mice, and human cells suggesting ATF5 is also 

regulated by mitochondrial import efficiency. Lastly, ATF5 is required for mitochondrial 

function and cellular recovery from a variety of mitochondrial perturbations including 

∆OTC expression, mtDNA depletion and exposure to the ATP synthase inhibitor oligomycin 

(Fiorese et al., 2016). Thus, ATF5 is conceptually and experimentally similar to C. elegans 
ATFS-1.
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It is important to note however, that differences between UPRmt signaling in worms and 

mammals are emerging. For example ClpP, a component required for UPRmt signaling in 

worms is likely dispensable for UPRmt signaling in mice and humans (Seiferling et al., 2016, 

Gispert et al., 2013). ClpP knockout in a DARS2 knockout model of cardiomyopathy has no 

effect on the induction of UPRmt genes. In fact, ClpP deletion seems to improve OXPHOS 

function and even extended the lifespan of DARS2 knockout mice, through a mechanism 

that results in decreased protein synthesis within mitochondria and increased protein 

turnover rates.

Additionally, there is the question of how ATF5 interacts with other proposed regulators of 

the UPRmt. For example ATF5 and CHOP have been show to regulate each other (Watatani 

et al., 2007, Teske et al., 2013), but how these two components interact during mitochondrial 

stress remains to be investigated. Additional transcription factors affected by mitochondrial 

stress include the estrogen receptor and FOXOA3, which upregulate expression of the 

mitochondrial protease Omi (Papa and Germain, 2011) and induce antioxidant genes (Papa 

and Germain, 2014) respectively. It will be interesting to determine how these pathways 

integrate with ATF5 and the UPRmt.

A Role for the Integrated Stress Response During Mitochondrial Stress

The integrated stress response (ISR) is characterized by the phosphorylation of eIF2α by 

one of four eIF2α kinases that are activated by different forms of stress. Endoplasmic 

reticulum stress activates the kinase PERK (Shi et al., 1998, Harding et al., 1999), PKR is 

activated by the accumulation of double stranded RNA in the cytosol (Meurs et al., 1990), 

general control nonderepressible 2 (GCN2) is activated by amino acid depletion and ROS 

(Harding et al., 2003, Shenton et al., 2006), and the heme regulated inhibitor kinase (HRI) is 

activated during heme depletion (Lu et al., 2001). Regardless of the upstream stressor, all 

four kinases phosphorylate eIF2α which represses global protein synthesis, but promotes 

translation of mRNAs harboring upstream open reading frames (uORFs) in the 5′ 
untranslated region (UTR) such as ATF4 and ATF5 (Lu et al., 2004, Zhou et al., 2008).

Interestingly, PKR (Rath et al., 2012), PERK (Hori et al., 2002) and GCN2 (Martinez-Reyes 

et al., 2012, Baker et al., 2012) can be activated during mitochondrial dysfunction although 

the respective modes of activation are unclear. Consistent with both mRNAs containing 

uORFs ATF4 and ATF5 are preferentially synthesized when eIF2α is phosphorylated 

(Harding et al., 2000, Zhou et al., 2008). As described above, ATF5 regulates expression of 

mitochondrial protective transcripts, as does ATF4. For example, ATF4 induces expression 

of LONP1, components of one carbon metabolism (Harding et al., 2003, Bao et al., 2016) as 

well as the endocrine hormone fibroblast growth factor 21 (FGF21) in the serum, which 

promotes metabolic coordination between tissues (Kim et al., 2013a, Kim et al., 2013b, 

Dogan et al., 2014).

Thus, considerable evidence in mammals supports a role for the ISR in the response to 

mitochondrial dysfunction, potentially through the UPRmt. In C. elegans, the ISR is not 

required for UPRmt activation as worms lacking all homologous eIF2α kinases are still able 

to activate the UPRmt. In fact, GCN2 promotes mitochondrial function during mitochondrial 
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stress independent of ATFS-1, most likely by reducing protein synthesis and reducing the 

protein folding load on dysfunctional mitochondria (Baker et al., 2012). However, it should 

be noted that like ATF5, some atfs-1 mRNAs contain uORFs and some do not, suggesting 

ATFS-1 may be regulated by the ISR under specific stress conditions. Furthermore, most 

cultured mammalian cells only express the ATF5 splice variant harboring the uORF, thus 

requiring eIF2α phosphorylation to be translated. However, in mouse tissues such as liver, 

ATF5 mRNA and protein are expressed at relatively high levels likely due to relatively high 

steady state levels of eIF2α phosphorylation dependent of Gcn2 (Zhang et al., 2002, Fiorese 

et al., 2016, Pascual et al., 2008). Going forward, it will important to understand the 

contribution of the individual eIF2a kinases during mitochondrial stress, but also the role of 

each splice isoform of ATF5 and ATFS-1 both in tissue culture models, but more 

importantly in vivo.

Mitochondrial Quality Control

In addition to transcriptional adaptations to mitochondrial stress, cells also employ a number 

of quality control pathways that can degrade damaged mitochondrial proteins or whole 

organelles (Figure 3). The ubiquitin-proteasome system degrades outer membrane 

mitochondrial proteins as well as mitochondrial-targeted proteins that fail to be imported 

into mitochondria (Neutzner et al., 2008) while mitophagy sequesters mitochondria for 

degradation (Narendra et al., 2010).

During mitochondrial dysfunction, a reduction in protein import efficiency results in an 

accumulation of mislocalized mitochondria-targeted proteins in the cytosol. In response to 

this accumulation of precursor proteins, processes known as the unfolded protein response 

activated by mistargeted proteins (UPRam) (Wrobel et al., 2015), and mitochondrial 

precursor over-accumulation stress (mPOS) (Wang and Chen, 2015) are activated. 

Impressively, these programs increase cytosolic proteasome activity and reduce protein 

synthesis to rescue otherwise lethal mitochondrial dysfunction that impairs of mitochondrial 

protein import.

Mitophagy is a process to recognize and degrade mitochondria when the organelles have 

become severely damaged. The protein kinase PINK1 is a mitochondrial-localized protein 

that in the absence of stress is imported and degraded (Narendra et al., 2010). During stress, 

mitochondrial import is impaired causing PINK1 to accumulate on the outer membrane 

where it phosphorylates ubiquitin (Kane et al., 2014, Koyano et al., 2014, Ordureau et al., 

2015). Decoration of mitochondrial proteins with ubiquitin serves to recruit the ubiquitin 

ligase Parkin, which in turn is phosphorylated and activated by PINK1 (Kazlauskaite et al., 

2014). Parkin further ubiquitinates mitochondrial outer membrane proteins (Tanaka et al., 

2010, Sarraf et al., 2013) leading to the recruitment of the autophagy receptors Optineurin 

(OPTN) and NDP52, which serves as a bridge between the cargo and the autophagosome. 

OPTN binds to polyubiquitin chains and recruits the kinase TBK1 to phosphorylate the 

autophagy receptors, which increases the affinity of the autophagy receptor for the 

autophagosome component LC3 and increases autophagic clearance (Lazarou et al., 2015, 

Richter et al., 2016, Heo et al., 2015, Ordureau et al., 2015). Thus, PINK1 initiates an 
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amplification loop to increase mitophagy signaling ensuring the specific recognition and 

degradation of the least fit organelles.

Conclusion and Perspectives

Several strategies by which cells respond to mitochondrial stress have emerged in recent 

years including the UPRmt, mitophagy and pathways that protect the cytosol from mis-

localized mitochondrial proteins. While the individual quality control pathways are still 

being elucidated, it will be interesting to understand how each pathway (Figure 3) integrates 

or interacts with one another to coordinate a successful defense against mitochondrial stress 

and maintenance of the mitochondrial network. The UPRmt, UPRam/mPOS, and mitophagy 

are all regulated by mitochondrial import efficiency. Do these pathways directly or indirectly 

antagonize each other, and what is the tipping point from recovery of mitochondrial function 

through the UPRmt and UPRam/mPOS to turnover of mitochondria via mitophagy?

The mammalian UPRmt appears to be regulated similarly to the C. elegans UPRmt, with 

ATF5 fulfilling many of the same roles as ATFS-1 in the worm. ATF5 localizes to 

mitochondria, and during mitochondrial stress translocates to the nucleus and upregulates 

mito-protective genes. However, much remains unknown about the UPRmt. For example, 

how does the UPRmt interact with the ISR? Perhaps it is through eIF2α kinases, many of 

which are activated by mitochondrial stress. Of particular interest are those known to signal 

downstream to ATF5 and ATF4, such as GCN2 (Zhou et al., 2008), PERK (Dalton et al., 

2013), and PKR (Rath et al., 2012). Furthermore, additional mitochondrial stress activated 

transcriptional responses involving the estrogen receptor alpha and FOXOA3 have been 

identified (Papa and Germain, 2011), (Papa and Germain, 2014). It will be interesting to 

understand how these responses coordinate to promote cellular and organismal health.

The physiologic roles for the described pathways are expanding rapidly. Considerable data 

supports roles for the UPRmt during mitochondrial dysfunction associated with aging 

(Houtkooper et al., 2013), toxin exposure (Gatsi et al., 2014) and infection by pathogenic 

bacteria that perturb mitochondrial function (Pellegrino et al., 2014). However, recent work 

has demonstrated that prolonged UPRmt activation has potential negative consequences. In 

C. elegans, the UPRmt promotes the maintenance and propagation of deleterious mtDNAs in 

both aging somatic cells as well as between generations (Lin et al., 2016, Gitschlag et al., 

2016). The UPRmt appears to both counter the mitophagy pathway in this respect, which 

serves to clear deleterious mtDNA, as well as promote deleterious mtDNA propagation 

directly. Furthermore, overexpression of Parkin eliminates mutant mtDNA in mammalian 

cells (Suen et al., 2010). It remains to be seen if the mammalian UPRmt fufills a similar role 

to the worm UPRmt in the maintenance of deleterious mtDNA.

ATF5 expression is required for survival of many transformed cells such as glioblastomas 

(Arias et al., 2012, Monaco et al., 2007), which are also affected by mitochondrial 

dysfunction (Deighton et al., 2014). How does ATF5, and by extension the UPRmt allow 

transformed cells to survive and grow in environments they normally would not? Cancer 

cells can gain advantage by aberrant activation of stress response pathways in other contexts 
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(Paolicchi et al., 2016), and the UPRmt is an attractive candidate to target with inhibitors to 

prevent cancer cells from benefitting from this stress response pathway.
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Figure 1. Regulation of the UPRmt in C. elegans
(A) The mitochondrial unfolded protein response (UPRmt) is regulated by the mitochondrial 

import efficiency of the transcription factor ATFS-1, which contains a mitochondrial 

targeting sequence (MTS) and a nuclear localization sequence (NLS). In the absence of 

stress, ATFS-1 is imported into mitochondria and subsequently degraded by the Lon 

protease. During stress import efficiency is reduced, and a percentage of ATFS-1 

accumulates in the cytosol. ATFS-1 then translocates to the nucleus and activates a broad 

range of genes encoding mitochondrial chaperones and proteases as well as glycolysis and 

innate immune components, while limiting transcription of tricarboxylic acid (TCA) cycle 

genes, as well as oxidative phosphorylation (OXPHOS) genes encoded by both the nucleus 

and mitochondria. In addition to ATFS-1 signaling, the nuclear factor LIN-65 translocates to 

the nucleus during stress as well to modify chromatin, specifically the methylation of lysine 

9 of histone H3 (H3K9me1/2) to allow the transcription factors DVE-1 and ATFS-1 to bind 

the promoters of UPRmt associated genes for transcription.

(B) In parallel, the eIF2α kinase GCN2 is activated during mitochondrial dysfunction and 

phosphorylates eIF2α reducing protein synthesis and the load of unfolded proteins in the 

stressed organelles. NB: Color version of this figure is available online.
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Figure 2. Regulation of a mammalian UPRmt

The bZIP transcription factor ATF5 has homology to ATFS-1 and localizes to mitochondria 

in the absence of stress. During mitochondrial stress, ATF5 translocates to the nucleus and 

upregulates chaperones (HSP60) and proteases (LONP1) associated with the UPRmt as well 

as anti-apoptotic genes like MCL1 and BCL2. ATF5 is also regulated by eIF2α–

phosphorylation due to the presence of upstream open reading frames (uORFs) in one of the 

ATF5 mRNA splice variants, The eIF2α kinases GCN2, PERK, and PKR all phosphorylate 

eIF2α during mitochondrial stress but how they are activated is unclear. Thus, ATF5 

activation is regulated by import efficiency and the Integrated Stress Response (ISR) to 

promote the recovery of dysfunctional mitochondria. The transcription factor ATF4 is also 
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activated during mitochondrial stress via the ISR, which upregulates expression of the 

endocrine FGF21, which regulates metabolic changes in the organism. Like ATF5, the ATF4 

transcript contains uORFs in the 5′ UTR of the transcript. Furthermore, mitochondrial stress 

results in chromatin reorganization by the histone demethylases PHF8 and JMJD3, which 

modify the methylation status of lysine 27 on histone H3 (H3K27me3/1) and mediate 

UPRmt gene expression. NB: Color version of this figure is available online.
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Figure 3. Responses to mitochondrial dysfunction
Mitochondrial stress activates quality control pathways such as the UPRmt, the UPRam/

mPOS, and mitophagy. Once mitochondria are damaged, the UPRmt activates a 

transcriptional response to recover mitochondrial function, while the unfolded protein 

response activated by mistargeted proteins (UPRam) and mitochondrial precursor over-

accumulation stress (mPOS) serve to reduce cytosolic protein synthesis and degrade 

mislocalized mitochondrial proteins that fail to be imported. The kinase PINK1 accumulates 

on the mitochondria outer membrane where it phosphorylates ubiquitin which recruits 

Parkin, leading to the clearance of severely damaged mitochondria via lysosome-dependent 

degradation. Coordination of these three pathways promotes the recovery of the 

mitochondrial network and cellular health. NB: Color version of this figure is available 

online.
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