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1.	 Introduction

Transglutaminases (TG) belong to a family of structurally and 
functionally related enzymes that catalyse Ca2+-dependent post-
translational modifications of proteins by introducing protein–
protein cross-links, amine incorporation, and site-specific deami-
dation [1, 2].  In humans, nine members of the TG family have 
been identified, out of which eight are catalytically active.  TG2 
is the most studied, multi-functional member of the transglutami-
nase family, and is very unique among them, because besides 
being a transglutaminase it also possesses GTPase, protein disul-
phide isomerase and protein kinase enzymatic activities (reviewed 
in ref.3).  TG2 is expressed in almost all cell compartments 
such as the cytoplasm, mitochondria, recycling endosomes, and 
nucleus.  It is also present on the cell surface and gets secreted to 
the extracellular matrix via non-classical mechanisms [4].  The 
structure of TG2 contains four domains: N-terminal β-sandwich 
domain, catalytic core domain, and two C-terminal β-barrel 1 
and β-barrel 2 domains.  The protein can exist both in a closed 
(in the presence of GTP) and in an opened active conformation 
when Ca2+ is bound to the enzyme [5].  TG2 has a conserved 3D 
structure and catalytic triad shared by other family members [6], 
but also other unique protein sequences, very often intrinsically 
disordered regions and short linear motifs that make the protein 
an ideal protein-protein interaction partner.  Thus, TG2 has a fi-
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ABSTRACT

Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca(2+)-dependent 
protein modifications.  In addition to being an enzyme, TG2 also serves as a G protein for several seven 
transmembrane receptors and acts as a co-receptor for integrin β1 and β3 integrins distinguishing it from 
other members of the transglutaminase family.  TG2 is ubiquitously expressed in almost all cell types and 
all cell compartments, and is also present on the cell surface and gets secreted to the extracellular matrix via 
non-classical mechanisms.  TG2 has been associated with various human diseases including inflammation, 
cancer, fibrosis, cardiovascular disease, neurodegenerative diseases, celiac disease in which it plays either a 
protective role, or contributes to the pathogenesis.  Thus modulating the biological activities of TG2 in these 
diseases will have a therapeutic value.

bronectin interaction site, a syndecan-4 site and an MFG-E8 site 
which participate in cell adhesion, migration and phagocytosis, 
α1-adrenoceptor and PLCδ1 sites involved in intracellular sig-
nalling, and a BH3 domain that couples the protein to apoptosis 
regulation [7].  Increasing evidence indicate that these and many 
other non-enzymatic interactions play physiological roles and 
enable diverse TG2 functions in various protein networks in a 
context-specific manner [8, 9] explaining why TG2 appears as 
a mediator in so many human diseases.  Interestingly, published 
exome sequencing data from various populations have not un-
covered individuals with homozygous loss-of-function variants 
for TG2.  Thus it seems that TG2 is under purifying selection not 
allowing generation of even heterozygous common variants [10].  
These genetic data indicate an essential, may be so far uncovered 
novel role for TG2 in the human organism.

2.	 Transglutaminase 2 in fibroproliferative dis-
eases

Fibroproliferative diseases, including progressive kidney disease, 
pulmonary fibroses, systemic sclerosis, liver cirrhosis and cardio-
vascular disease are a leading cause of morbidity and mortality 
and can affect all tissues and organ systems.  Fibrosis is a wound- 
healing response to chronic stimuli that has gone out of control 
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mice are protected from fibrosis in several experimental fibrosis 
models [43, 44].  Based on these observations TG2 activity was 
inhibited both in a pulmonary and in a renal experimental model 
of fibrosis, and inhibition of the enzyme significantly reduced the 
development of fibrosis in both fibrosis models [45, 46].  Thus it 
is concluded that inhibition of extracellular TG2 activity might be 
beneficial in the treatment of fibrotic diseases.

3.	 Transglutaminase 2 and cancer

Another group of diseases, in which inhibition of TG2 might be 
beneficial, is cancerous diseases.  Recent studies indicate that 
cancer cells express elevated levels of TG2, and elevated TG2 
levels are associated with an aggressive cancer phenotype and 
drug resistance in most of these tumors [47].  Moreover, TG2 
levels are especially enhanced in the cancer stem cells, and TG2 
is required for their survival, migration and invasion [48].  Thus 
a correlation between elevated cancer TG2 levels and cancer ag-
gressiveness was reported in the case of colorectal [49], breast 
[50], pancreatic [51], ovarian [52], esophageal squamous cell [53] 
cancer, glioblastomas [54], malignant melanomas [55], renal [56] 
and cervical squamous cell carcinomas [57] and hepatocellular 
carcinomas [58].  In addition, TG2 was found to be a biomarker 
of cervical intraepithelial neoplasia [59].

Though several mechanisms have been reported through 
which TG2 promotes cancer survival, tumor progression and in-
vasion, many of these effects are attributed to the extracellularly 
located TG2.  TG2, acting as a protein crosslinking enzyme, can 
modify the structure and stability of extracellular matrix (ECM) 
in a way that it supports integrin-dependent ECM binding and 
migration of cancer cells [29].  Extracellular TG2 can crosslink 
S100A4 promoting metastasis [60].  TG2 acts also as an integ-
rin co-receptor for the β1,β3 ,β4, and β5 integrins, and facilitates 
integrin-mediated signaling pathways [33], which partly promote 
the growth factor signaling pathway, thus promote cell growth [61, 
62], partly activate the PI3K/AKT mediated-cell survival pathway 
leading to inhibition of both apoptosis [63] and autophagic cell 
death [64].  In addition to promoting the integrin signaling path-
way as a co-receptor, TG2 was also shown to enhance the activity 
of the PI3K signaling pathway by directly forming a complex 
with PI3K and src [65] and by downregulating PTEN [66], a 
negative regulator of the PI3K pathway.  TG2 can inhibit apop-
tosis in cancer cells also by directly inhibiting caspase-3 activity 
via forming a crosslinked multimer, or by upregulating NF-κB 
activity, which transcribes anti-apoptotic proteins [67].  NF-κB 
driven IL-6 production in breast cancer cells was also shown to 
contribute to the aggressiveness of the tumor [68].  Though TG2 
was shown to crosslink IκB [69], in cancer cells either extracel-
lular TG2 induces the noncanonical pathway of NF-κB activation 
by activating IκB kinase [70], or cytoplasmic TG2 directly inter-
acts with IκB [71], which might be affected by a PKA-dependent 
serine-216 phosphorylation of TG2 [67].

In addition to these mechanisms, it was found for renal cell 
carcinoma that TG2 can compete with human doubles minute 2 
homolog (HDM2) for binding p53, and facilitate the degradation 
of p53 via the autophagosomal system [72].

Epithelial-mesenchymal transition (EMT) is a developmen-
tally regulated process in which adherent epithelial cells lose their 
epithelial characteristics and acquire mesenchymal properties, 
including fibroid morphology, characteristic changes in gene ex-
pression and increased invasion and resistance to chemotherapy 

[11].  Under healthy conditions following injury, a regeneration 
program is initiated, which involves activated T lymphocytes 
that produce profibrotic cytokines such as transforming growth 
factor (TGF)-β and interleukin (IL)-13 [12, 13], and activated B 
lymphocytes that produce IL-6 [14].  These cytokines activate 
both macrophages and fibroblasts.  As a result, activated fibro-
blasts transform into α-SMA–expressing collagen producing 
myofibroblasts.  In addition, α-SMA–expressing myofibroblasts 
can derive also from the bone marrow (fibrocytes) [15], as well 
as from epithelial cells which underwent epithelial-mesenchymal 
transition (EMT) [16].  The development of fibrosis is associated 
with aberrant repair, persistence of collagen deposition, and vas-
cular remodeling, and all these events are driven by an enhanced 
uncontrolled myofibroblast activity [17, 18].  TGF-β can not 
only augment EMT and the production of interstitial collagens, 
fibronectin, and proteoglycans by myofibroblasts [19], but it can 
also trigger its own production by myofibroblasts, thereby estab-
lishing an autocrine cycle of myofibroblast differentiation and 
activation that characterizes fibroproliferative diseases.  Enhanced 
TGF-β production was found in patients suffering from idiopathic 
hypertrophic cardiomyopathy [20], renal fibrosis [21] or liver cir-
rhosis [22], while mice overexpressing active TGF-β1 developed 
diseases characterized by fibrosis, such as progressive cardiac 
hypertrophy [23] or hepatic injury [24].  Thus it is generally ac-
cepted that active TGF-β plays a central role in driving fibropro-
liferative diseases.

There are several ways through which TG2 can promote tis-
sue fibrosis.  First of all, TG2 and the production of active TGF-β 
are strongly linked.  TGFβ is secreted in a latent form, non-
covalently bound to its cleaved propeptide which is disulphide 
linked to latent TGF-β binding protein (LTBP) family proteins 
which assist in its folding, secretion and localization, and allow 
mechanical activation of the cytokine [25].  The N-terminus of 
LTBPs has been shown to be a substrate for TG2 which promotes 
their covalent incorporation into the extracellular matrix [26].  In  
addition, TG2 was found to contribute to the activation of mac-
rophage-derived TGF-β [27], and to promote TGF-β1 transcrip-
tion [28].

Besides being linked to active TGF-β formation, TG2 is profi-
brotic also, because it can cross-link several matrix proteins mak-
ing them more resistant to protein breakdown [29].  In fact, TG2, 
and not lysyl oxidase, dominates the early calcium-dependent re-
modeling of fibroblast-populated collagen lattices during wound 
healing [30].  In addition, in the cytosol the G protein function of 
the enzyme has effects on the cell survival [31].  As an integrin 
coreceptor, TG2 enhances cell adhesion and motility [32, 33] ac-
tivates cell survival pathways that can operate in myofibroblasts 
as well [34, 35], and promotes phagocytosis of dead cells by mac-
rophages [36, 37].  Both activated macrophages and fibroblasts 
express elevated levels of TG2 in a metastatic tumor antigen 1 
(MTA1)-dependent manner [38].

Interestingly, not only TG2 is required for proper TGF-β for-
mation, but TGF-β itself promotes the transcription of TG2.  Thus, 
TG2 contains TGF-β response elements both in its promoter [39] 
and in two of its enhancers [40].  As a result, TGF-β drives TG2 
expression, while TG2 contributes to the transcription, secretion 
and activation of TGF-β leading to the formation of an additional 
level of self-amplification loop in the pathogenesis of fibrosis.  
Not surprisingly, fibroproliferative diseases are characterized 
not only by enhanced TGF-β production, but also by enhanced 
TG2 expression [41, 42].  The central role of TG2 in maintaining 
these diseases is proven by the observation that TG2 knock out 
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[73].  Increasing body of evidence indicates that acquisition of 
EMT by cancer cells is an important mechanism in the progres-
sion and pathogenesis of cancer, and TG2 promotes EMT in his 
closed form [74-79].  The mechanism involves activation of the 
PI3K and NF-κB signaling pathways and inhibition of GSK3β 
[78].  The effect of TG2 on cancer cells might be effected also by 
the fact that different splicing variants of TG2 might be expressed 
in healthy and malignant cells [80].

It seems that chronic inflammation that strongly predisposes 
for cancer formation [81], and hypoxia [82] which characterizes 
the fast growing cancer cells are the two main driving forces that 
lead to overexpression of TG2 in cancer cells, since TG2 expres-
sion is directly regulated by those pro-inflammatory cytokines 
that activate NF-kB, by TGF-β, and by the hypoxia activated 
HIFs.  Interestingly, TG2-expressing cells display high basal lev-
els of HIF-1α expression even under normoxic conditions, and 
suppression of either TG2 or NF-κB (p65/RelA) reduces HIF-1α 
level.  Chromatin immunoprecipitation studies revealed that TG2 
forms a complex with p65/RelA and that the complex binds to the 
NF-κB binding site in the HIF-1α promoter [71].  Thus in cancer 
cells an autoregulatory loop exits, in which NF-κB and HIF-1α 
upregulate the expression of TG2, while TG2 further enhances the 
NF-κB and HIF-1α-driven transcription including its own tran-
scription resulting in the  maintenance of high TG2 levels.

4.	 Transglutaminase 2 in cardiovascular diseases

Cardiovascular diseases (CVDs) are among the leading causes of 
death worldwide.  CVDs include several disorders affecting the 
blood vessels –e.g. coronary heart disease, deep vein thrombosis, 
vascular calcification, cerebrovascular and peripheral arterial 
diseases– and the heart, such as rheumatic and congenital heart 
disease.

Atherosclerosis, affecting the blood vessels, contributes sig-
nificantly to the development of myocardial infarction and isch-
emic stroke.  It is characterized by inflammation of endothelial 
cells, proliferation of vascular-smooth-muscle cells, and deposi-
tion of excessive cholesterol, accumulation of apoptotic and ne-
crotic macrophages and appearance of transformed macrophages, 
so called foam cells, in the arterial wall forming the atheroscle-
rotic plaque [83].  Under normal circumstances TG2 is widely 
expressed in macrophages, smooth muscle cells and endothelial 
cells and it was reported to accumulate in plaques [84] and to 
interact with atherosclerotic processes in several ways.  TG2 was 
shown to activate the NFκB pathway and promote inflamma-
tion by crosslinking the NFκB inhibitor IKB-α leading to TNF-α 
and nitric oxide synthase expression [69].  The promoter of TG2 
contains NFκB and cytokine responsive element contributing to 
formation of activation loop in inflammatory macrophages [85].  
In this way TG2 might facilitate initial damage of endothelial 
cells by promoting inflammatory response in macrophages.  On 
the other hand, TG2 recently was described to dampen inflamma-
tion by the histaminylation of fibrinogen leading to sequestration 
of the pro-inflammatory histamine and to inhibition of fibrinogen 
binding to endothelial cells which prevents leukocyte migration 
to inflammatory site [86].  In contrast, using TG2 deficient mac-
rophage murine atherosclerosis model it was shown that lack of 
TG2 results in increased atherosclerotic plaque formation and 
higher number of necrotic cells in plaques [87].  This phenomena 
can be explained by the reduced apoptotic cell engulfment capac-
ity of TG2 null macrophages [36] resulting in accumulation of 

apoptotic cells which undergo subsequent secondary necrosis and 
increase plaque size.

As described above, TG2 facilitates deposition and stabiliza-
tion of ECM by facilitating TGF-β activation and crosslinking 
of ECM, respectively [25-28].  Still, there are controversial data 
available about the role of TG2 in plaque stability.  Using apo-E/
TG2-/- murine model Van Herch and co-workers found that TG2 
deficiency resulted in decreased collagen content and increased 
inflammation of plaques, which are features of a more unstable 
plaque [88].  On the contrary, in a similar model William and his 
co-workers found no alteration in the composition or calcification 
of plaques between wild type and apo-E/TG2-/- mice [89].  Vas-
cular calcification is frequently found in atherosclerotic lesions 
and is general complication of long-term Vitamin K antagonist, 
warfarin administration.  Warfarin was shown to enhance TG2 
expression and activity which in turn enhances the β-catenin 
pathway [90].  β-catenin promotes cardiovascular calcification 
by enhancing differentiation of vascular smooth muscle cells and 
aortic valve interstitial cells into osteoblast-like cells [91].  As a 
result, systemic administration of a TG2 inhibitor attenuated the 
warfarin-induced vascular calcification supporting TG2’s role in 
this phenomenon [90].

TG2 is also present in blood platelets [92].  These cells play a 
central role in hemostasis and in the pathogenesis of thrombosis 
and atherosclerosis.  Platelet adhesion to inflamed blood ves-
sel is the initial trigger for the formation of either an effective 
hemostatic plug or of an intravascular thrombus [93].  During 
activation, platelets release the content of their α-granules and 
dense bodies to promote blood coagulation.  Activated platelets 
bind several α-granule-released proteins including fibrinogen, 
von Willebrand factor, thrombospondin and fibronectin –all of 
them being a substrate for TG2 - and are referred as collagen- and 
thrombin-activated (COAT) platelets [94].  Both the release of 
the content of α-granules and the binding of these procoagulants 
happens through TG2-mediated covalent binding of serotonin 
to proteins called serotonylation [95, 96].  COAT platelet levels 
were shown to increase in patients with non-lacunar ischemic 
stroke and subarachnoid hemorrhage, while patients with sponta-
neous intracerebral hemorrhage had lower COAT platelet count 
compared to controls [97].  As a result, approaches considering 
therapeutic regulation of TG2 activity in circulation will have to 
consider these possible side effects.

Essential or idiopathic hypertension is the most common form 
of hypertension.  Notably, pharmacological inhibition of TG2 by 
cystamine resulted in reduction in blood pressure in spontaneous-
ly hypertensive rats underlining the importance of TG2 in elevat-
ed blood pressure [98].  Recent studies linked the immune system 
to development of essential hypertension [99, 100].  In serum of 
hypertonic patients markedly elevated proinflammatory cytokine 
(C-reactive protein, TNF, IL-1β, IL-6, and IL-17) levels can be 
detected leading to enhanced TG2 expression.  Pro-inflammatory 
IL-6 and hypoxia-inducible factor-1α induced TG2 was found in 
mice to posttranslationally modify angiotensin receptor type 1 
(AT1) resulting in the recognition of the altered receptor by im-
mune system and in production of autoimmune antibodies.  These 
antibodies bind to and activate AT1 inducing vasoconstriction 
and hypertension [101].  In addition, TG2-dependent isopeptide 
modification of AT1 was shown to stabilize the expression of the 
receptors by preventing their ubiquitination-dependent degrada-
tion.  This also led to hypertension in an experimental mouse  
model [102].

TG2, on the other hand plays a protective role in ischemia 
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reperfusion injury of the heart by regulating ATP synthesis [103].  
All these evidences underline the involvement of TG2 in cardio-
vascular diseases and indicate that modulation of TG2 activity 
might provide new therapeutic approaches in the treatment of 
these diseases as well.

5.	 Transglutaminase 2 in celiac disease and other 
gastroenterological diseases

In celiac disease, TG2 is a specific target of a conditional autoim-
mune mechanism driven by exogenous cereal peptides.  In geneti-
cally predisposed individuals, ingestion of wheat, rye and barley 
leads to small intestinal villous atrophy, malabsorption and the 
production of antibodies against TG2.  Gluten peptides derived 
from these cereals are rich in glutamine and proline residues (es-
pecially those from the alcohol-soluble gliadin fraction of gluten) 
and are good substrates for the transamidating enzyme reaction 
catalyzed by TG2 [104].  In addition, deamidation can be a pre-
ferred reaction outcome in the usual conditions of the stomach 
and gastrointestinal tract (acidic pH, relatively low concentrations 
of amine acceptor substrates).  Deamidation in the pattern char-
acteristic for TG2 (Q-X-P motifs) renders gliadin peptides more 
immunogenic, by making them more fitting into the HLA-DQ 
groove of antigen presenting cells [105].  Only HLA-DQ2.5, 2.2 
and DQ8 can present gliadin peptides to T cells and celiac dis-
ease occurs only in persons with these genetic alleles [106].  For 
this reason, celiac disease is common in Caucasian populations, 
in the Arab world and in India, while HLA-DQ2 and DQ8 mol-
ecules are rare in other African and Asian countries where celiac 
disease occurs only exceptionally [107].  HLA-DQ2 and DQ8 
molecules require acidic residues in certain positions for peptide 
docking and the effective binding of gliadin-specific T cells to oc-
cur [108].  Activation of CD4+ T cells leads to inflammation by 
the production of cytokines, mainly interferon-gamma.  Further 
inflammatory signals are derived from the activation of innate 
immune mechanisms, including IL-15 [109-111].  Due to the high 
amount of proline residues, gliadin peptides, especially a 33-mer 
alpha-gliadin peptide containing multiple overlapping deamidated 

sequences, are resistant to human gastric, pancreatic and intesti-
nal brush border proteolytic enzymes [112-113] and thus longer 
peptides can be transported through the absorptive epithelial layer 
and can be encountered by T cells [114].  Gliadin-specific T cells 
as helpers are held responsible for the activation of specific sets 
of B cells producing antibodies against gliadin peptides and also 
against TG2.  Most commonly, production of TG2-specific anti-
bodies is explained by the hapten-carrier hypothesis [115] driven 
by gliadin-specific T cells providing help to TG2-specific B cells, 
but certain molecular mimicry between gliadin peptides and TG2 
can also occur [116, 117].  In any case, the autoimmune reaction 
to TG2 only runs in the presence of gliadin peptides and stops 
when the patient is placed on a gluten-free diet [118].  A gluten-
free diet also leads to the reversion of all disease manifestation 
(provided they are still of reversible nature) and constitutes an ef-
fective treatment for celiac disease.

TG2-specific antibodies are produced in all celiac disease 
patients and they target the same few TG2 epitopes [119, 120], so 
they inherently belong to the disease process.  Although in up to 
10% of patients TG2 antibodies cannot be detected from serum, 
the TG2 autoantibodies are found deposited and bound to tissue 
TG2 also in these subjects [121].  Experimental data and clinical 
observations suggest that these antibodies are biologically ac-
tive and possibly contribute to disease manifestations  [122-125].  
Histological lesions seen by conventional stainings constitute 
of inflammation and non-specific organ changes.  Small bowel 
villous flattening and atrophy with the elongation of crypts is a 
non-specific reaction of the bowel to injury [126] also seen in a 
number of other, non-celiac disease conditions including bacterial 
and viral (Rotavirus, HIV-1) infections, graft-versus host disease, 
irradiation or drug-induced (e.g. olmesartan) enteropathy [127].  
The only celiac-specific component is the production and tissue 
binding to TG2 of autoantibodies along reticulin fibers [128], en-
domysium and vessel structures [129] both in the intestine as well 
as in extraintestinal sites (Fig. 1), where it has great diagnostic 
value, provided a frozen specimen is available for immunofluo-
rescent studies.  Commonly seen extraintestinal manifestations 
of celiac disease involve almost all organs, including liver, heart, 
kidney, pancreas, brain and placenta [130,131].  Celiac disease is 

Fig. 1 - Overview of system manifestations in celiac disease.  The common denominator is the deposition of autoantibodies on the 
surface of extracellular TG2 (or in the skin TG3) shown here by immunofluorescence (green).
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thus regarded today as a systemic autoimmune disorder [129,131], 
and not only a malabsorptive intestinal disease.  Some of the pro-
duced antibodies also may target TG3 (in the skin) or TG6 (in the 
brain), in addition to TG2 [132, 133].

Anti-TG2 antibodies are exceptionally good disease activity 
biomarkers in medicine [134] and by their detection even symp-
tom-free patients can be identified among family members or in 
the general population.  Rapid immuno-chromatographic point-of-
care tests are now widely available for this purpose [135].  Initial-
ly, celiac antibodies were detected by indirect immunofluorescent 
method when incubating patient serum on normal tissue sections.  
The resulting binding patterns (called in the 20th century endomy-
sial [EMA], reticulin [ARA] or anti-jejunal antibodies [JEA]), are 
exclusively TG2-dependent [136] and thus EMA, ARA and JEA 
represent celiac-specific TG2 autoantibodies against extracellular 
TG2 epitopes [137].  High level of circulating anti-TG2 antibod-
ies (above 10× of upper limit in ELISA detection), confirmed 
also by positive serum EMA result in patients with malabsorptive 
symptoms and HLA-DQ2 or DQ8 background reliably predict 
villous atrophy [134, 137] and thus can be used  according to new 
European diagnostic guidelines [131] as substitute for histology 
assessment.  Decline of antibodies on a gluten-free diet occurs 
and whenever they remain positive for more than 1-2 years, it 
indicates dietary transgressions, thus anti-TG2 measurements are 
also used with success as follow-up evaluations in everyday prac-
tice [137].

Although the lifelong gluten-free diet is currently the medi-
cal choice of treatment for celiac disease, therapy adherence may 
be as low as 50% in some countries.  Therefore, future research 
should focus on alternative treatment options [138].  Degradation 
of ingested gluten in the gastrointestinal tract by bacterial en-
zymes, inhibitors of TG’s deamidating activity, tightening of tight 
junctions, cytokine inhibitors, blocking of DQ2-mediated presen-
tation, among others, may provide some therapeutic benefit, but 
clinical utility of these approaches remains to be proven before 
they can be suggested to patients.

TG2-targeted antibodies may be produced also in other au-
toimmune or inflammatory conditions, including inflammatory 
bowel diseases, but epitope and IgG subclass usage differs from 
celiac disease [139] and clinical implication of these antibodies 
is uncertain.  In addition, in a mouse colitis model TG2 was re-
ported to be required for survival [140].  Involvement of TG2 has 
been described in cystic fibrosis as well, where it may contribute 
to TGFβ1 activation and signaling and induction of epithelial-
mesenchymal transition [141].  TG2 inhibitors may thus have a 
role in the stabilization of the epithelium and decrease of inflam-
mation also in this disorder.

6.	 Transglutaminase 2 and other inflammatory 
diseases

Efficient execution of apoptotic cell death followed by efficient 
clearance mediated by professional and by nonprofessional neigh-
boring phagocytes, is a key mechanism in maintaining tissue 
homeostasis.  TG2 is expressed by both apoptotic cells and by 
their engulfing macrophages.  In the context of the apopto-phago-
cytosis program TG2 is anti-inflammatory because in the apop-
totic cells TG2 promotes apoptosis, once the program is initiated 
[142], prevents the release of the pro-inflammatory cell content 
by crosslinking the proteins of apoptotic cells [143], contributes 
to the formation of a „find me” signal which acts as a chemoat-

tractant for macrophages [144], and accelerates the cell surface 
appearance of phosphatidylserine, the main recognition signal for 
the engulfing macrophages [145].  In macrophages acting as an 
integrin β3 coreceptor TG2 is required for proper migration to-
ward the apoptotic cells [32] and for the opening of the engulfing 
portal, thus for proper phagocytosis of apoptotic cells [36, 37].  
TG2 also contributes to the activation of latent TGF-β [146] that 
acts as an anti-inflammatory molecule in this context [147].  Not 
surprisingly, in the absence of TG2 the normally silent clearance 
of apoptotic cells is associated with inflammation and develop-
ment of an SLE-like autoimmune disease in mice [36].

Improper clearance of apoptotic neutrophils explains partly 
also the phenomenon that in TG2 null mice the resolution of 
inflammation in gouty arthritis is delayed [148].  Gouty arthritis 
is a characteristically intense acute inflammatory reaction which 
is initiated by precipitation of monosodium urate crystals that 
are taken up by tissue resident macrophages.  These phagocytes 
activate the NLRP3 inflammasome, resulting in the activation of 
caspase-1 and processing and secretion of interleukin-1β (IL-1β) 
which drive the inflammation.  In addition to contributing to the 
clearance of dying neutrophils, it was also shown that the meta-
static tumor antigen 1- TG2 pathway regulates the production of 
TGF-β1 in macrophages which opposes the MSU crystal-induced 
JAK2-dependent pro-inflammatory cytokine formation of IL-1β 
[149].  In line with these findings TG2 expression was found to be 
up-regulated in the synovium tissue and synovial fluid mononu-
clear cells from patients with gouty arthritis [149].  In addition, it 
was also shown that the ribosomal protein S19 (RP S19) polymer 
cross-linked at Lys122 and Gln137 by transglutaminases released 
from apoptotic neutrophils acts as a C5aR ligand during the reso-
lution phase of acute inflammation.  In the absence of TG2 activ-
ity the resolution was also found to be delayed in the carrageenan-
induced acute pleurisy in C57BL/6J model mice [150].

Interestingly, TG2 does not play an anti-inflammatory role in 
every pathological context.  For example, TG2 null mice are pro-
tected against lipopolysaccharide (LPS)-induced endotoxic shock 
[151].  In BV-2 microglia cells, TG2 promotes the LPS-induced 
pro-inflammatory response by crosslinking IκB, an inhibitor of 
NF-κB transcription factor that drives the transcription of several 
pro-inflammatoy genes [69].  In endothelial cells, TG2 promotes 
phosphorylation of RelA/p65 at Ser536, a crucial event that con-
fers transcriptional competency to the DNA-bound NF-κB.  As a 
result, a marked reduction in ICAM-1 expression and lung neu-
trophil sequestration was observed in TG2 knockout compared to 
wild type mice after intraperitoneal LPS challenge [152].  Accord-
ingly, transglutaminase inhibitors ameliorate endotoxin-induced 
uveitis [153] and trapping TG2 by a fusion protein attenuates 
corneal inflammation and neovascularization [154].

TG2 also drives the all-trans-retinoic acid-induced differen-
tiation syndrome [155] characterized by unexplained fever, acute 
respiratory distress with interstitial pulmonary infiltrates, and/or 
a vascular capillary leak syndrome leading to acute renal failure 
in patients with acute promyelocytic leukemia.  TG2 expression 
was also found to be increased in the skin biopsy of patients with 
psoriasis, a chronic autoimmune skin disorder characterized by 
hyperproliferation of the keratinocytes in the epidermis, though 
no correlation between TG2 expression levels and the disease 
duration, stage of disease and subtype of psoriasis could be found 
[156].  Mast cell derived TG2 was reported to participate in the 
pathogenesis of chronic urticaria [157].  TG2 also contributes to 
experimental multiple sclerosis pathogenesis and clinical outcome 
by promoting macrophage migration [158].  TG2 was also shown 
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to contribute to the development of collagen-induced arthritis, an 
experimental model of rheumatoid arthritis, by posttranslation-
ally modifying the immunodominant T-cell epitope [159] and by 
facilitating invadopodia formation and cartilage breakdown [160].  
In line with these findings TG2 was found to be a biomarker of 
osteoarthritis [161].  In addition, TG2 was suggested to be a bio-
marker for idiopathic inflammatory myopathies as well [162].

7.	 Transglutaminase 2 in neurological disorders

Neurodegenerative diseases, such as Alzheimer's disease, Parkin-
son's disease, supranuclear palsy, Huntington's disease and other 
polyglutamine diseases, are characterized in part by aberrant cere-
bral transglutaminase activity and by accumulation and deposition 
of cross-linked proteins in affected brains [163-168].  Although 
these aggregates are composed of specific proteins characteristic 
of the respective neurodegenerative disease, the tendency of these 
proteins to self-interact and form toxic aggregates seems to be a 
common phenomenon in these diseases.  It has been shown that 
the accumulating proteins, such as amyloid-beta, tau, α-synuclein 
or huntingtin are all substrates of TG2 [169], and proteomic anal-
ysis of the cross-linked proteins in the brain from these diseases 
confirmed that indeed TG2 could be involved in their formation 
[164].  Though, conclusive experimental findings about the role 
of TG2 in the development of these human diseases have not yet 
been obtained, results obtained from animal models of these dis-
eases indicate that inhibition of TG2 activity might have a thera-
peutic value in preventing the formation of cross-linked proteins 
[170].

8.	 Possibilities to modulate transglutaminase 2 
functions with the aim of affecting the pathogen-
esis of transglutaminase-linked diseases

The fact that the involvement of TG2 in various pathological 
conditions was clearly demonstrated makes TG2 a potential 
therapeutic target, raising up the need for TG2 modulators, inhibi-
tors.  There are different strategies to downregulate TG2 activity.  
Inhibitors can switch off transglutaminase activity, while other 
compounds decrease the expression or modulate the trafficking 
of TG2.  This session surveys some of the possibilities to block 
TG2 functions.  These tools have already been applied in research 
to reveal physiological and pathological roles of TG2, and point 
toward potential therapeutic possibilities.

The classical approach is to inhibit the catalytic activity of 
the enzyme.  Based on their mechanism of action, TG2 inhibitors 
form three major groups: competitive amines, reversible and ir-
reversible inhibitors [171-173].  The first applied TG2 inhibitors 
were amines, for instance cadaverine-derivatives, putrescine, 
which compete with biogenic amine or lysine donor protein sub-
strates preventing the formation of naturally occurring isopeptide 
crosslink.  Superficially, this group contains cystamine, a special 
disulphide diamine, with multiple inhibitory mechanism and off-
target effects like inhibition of caspase-3 [171].  Cysteamine, the 
reduced form of cystamine, which is an approved drug to treat 
cystinosis, also inhibits TG2, but probably by the formation of a 
mixed disulphide with the catalytic cysteine residue [171].  In bi-
ological systems amines have no specific TG2 inhibitory potential 
which forced the discovery of more specific reversible inhibitors.

One group of reversible inhibitors are non-hydrolysable GTP 

analogues and mimics that stabilize the inactive, closed conforma-
tion of the enzyme.  Interestingly, Mehta and co-workers patented 
small compounds targeting the GTP binding pocket of TG2 by 
in silico screening based on their docking scores [174].  Another 
source of reversible inhibitors was found by  experimental screen-
ing of small compound libraries [175] and then the design of new 
ones on structural similarity with the hits from the screening [176].  
Recently it was published that acylidene-oxoindoles, one group of 
the reversible inhibitors, target a Ca2+-binding site and at sub-sat-
urating Ca2+ concentration, surprisingly, they can act as an agonist 
of TG2 activity [177].  Due to pharmaceutical safety the applica-
tion of reversible inhibitors would be desirable, however, their 
relatively low solubility and efficiency make difficult to reach the 
effective therapeutic concentration [172].

Development of selective irreversible inhibitors significantly 
increased the specificity and efficiency of inhibition making these 
compounds beneficial for therapy.  Irreversible inhibitors gener-
ally target the active site cysteine residue, where the nucleophile 
thiol group forms stable bond with the electrophilic functional 
group of the inhibitor.  First, iodoacetamide was applied for ir-
reversible alkylation of Cys277 in TG2, because halogens are 
good leaving groups, but instead it reacted with other surface 
localized nucleophile residues.  To get a more specific inhibitor, 
the general 3-halo-4,5-dihydroisoxazol structure of acivicin, a 
glutamine analogue inhibitor of gamma-glutamyl transpeptidase 
and glutamine amidotransferase and transglutaminases [178], was 
combined with an aromatic side chain and N-terminal carbamoyl 
group based on Cbz-PheGln dipeptide substrate.  These changes 
with the replacement of chloride to bromide resulted in KCC009 
[179] that was tested in various disease models in rat and mouse 
in vivo experiments.  KCC009 treatment of glioblastoma and 
meningioma cells resulted in enhanced apoptosis and sensitivity 
to chemotherapy through impairment of TG2-dependent fibronec-
tin organization and cell survival signaling acting as a chemo sen-
sitizing agent [180, 181].  KCC009 treatment also sensitized lung 
and ovarian cancer cells for TRAIL and cisplatin induced apop-
tosis, respectively [182, 183].  KCC009 was efficient to block 
warfarin-induced osteogenic vascular calcification in a rat model 
[184].  It also decreased macrophage immigration in the central 
nervous system in rat chronic-relapsing experimental autoimmune 
encephalomyelitis offering promising approach to treat multiple 
sclerosis [185].  In these animal experiments KCC009 had low 
toxicity, good oral availability but its short serum half-life and 
low solubility, slightly higher than its Ki value, are its disadvan-
tages [171, 177].

ERW1041E was developed by the modification of KCC009 
based on the TG2 preferred gluten derived peptide substrate to 
generate a small compound for celiac disease treatment [186].  
It blocs in vivo the intestinal activation of TG2 in a C57BL/6J 
mouse model after intraperitoneal injection of polyinosinic-poly-
cytidylic acid, providing the first evidence for TG2 inhibition in 
mammalian intestine [187].  However, due to the cross-reactivity 
of ERW1041E and other dihydroisoxazole inhibitors with other 
transglutaminase isoforms, some modifications have been made 
for developing of more efficient compounds with higher potency 
and selectivity [188].  The resulting improved dihydroisoxazoles 
seem to be very promising drugs for celiac disease treatment to 
prevent the TG2-dependent formation of highly immunogenic 
deamidated gliadin peptides.

Michael acceptor inhibitors cover the α, β-unsaturated carbo-
nyl compounds that participate in addition reaction with thiol nu-
cleophiles in many active site cysteine containing enzymes.  One 
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of the widely used members of this group is NC9.  It has acryl-
amide warhead developed with PEG spacer and dansyl group, 
which decreased its affinity and efficiency.  However, applying 
it as a biological probe provided reasonable benefits [173].  NC9 
was applied to study conformational changes of TG2 and recently 
a study claimed that it can reduce cancer stem cell survival [189, 
190].  In this group of molecules several further compounds were 
developed characterised by Keillor’s group, CHDI Foundation 
and Zedira [191-194].  Z-DON is a very selective inhibitor of 
TG2 produced by replacing the Michael acceptor warhead with 
6–diazo-5-oxo-L-norleucine (DON) [195].  In addition, the gluten 
based peptide sequence modified DON warhead made the crystal-
lization of TG2 possible providing hard evidence about its confor-
mational change during activation [196].

Inhibitors with imidazolium-based and sulfonium warhead 
were also designed based on the Cbz-PheGln backbone linked 
them with various length spacer to increase their hydrophilic 
property [197, 198].  These compounds inhibit angiogenesis and 
are patented for the treatment of eye diseases like, age-related 
macular degeneration and diabetic retinopathy [174].

A new direction in the blockage of TG2 functions is the ap-
plication of antibodies or peptides.  On the cell surface TG2 regu-
lates adhesion and migration interacting with fibronectin, integ-
rins, syndecan-4 heparane-sulphates [199].  To prevent metastasis 
formation peptide and antigen binding antibodies were patented, 
which cover the heparan-sulphate binding site negatively influ-
encing the adhesion and migratory potential of the cells [199].  
In 2015 lysine containing cell-permeable peptides were patented 
with picomolar Ki values for the treatment of disorders with high 
transglutaminase activity, while other peptides were patented to 
prevent polymerisation of IκB and the consequent activation of 
NF-κB pathway [174].  Antibodies also can modulate TG2 activi-
ties in a very specific and efficient way.  Recently it was con-
firmed that some coeliac antibodies can stabilise TG2 in an active 
conformation resulting in enhanced TG2 activity [200], while 
other antibodies have inhibitory effect on TG2, and some of these 
are patented for the treatment of liver, kidney fibrosis, and diabet-
ic nephropathy [174, 201].  Interestingly, in an Alzheimer disease 
model [202] and in pancreatic cancer cells [203] downregulation 
of TG2 expresssion by curcumin and rottlerin, respectively, could 
provide therapeutic possibility.

So far, there is only one TG2 inhibitor in clinical trial 
(phase1b).  Zedira (Germany) has developed ZED1227, a small 
pyridinon derivative, for the treatment of coeliac disease for 
blocking the TG2-mediated deamidation of gliadin peptides.  
Interestingly, Zedira has also developed ZED3197, a peptido-
mimetic based drug candidate to target blood coagulation factor 
XIII, another member of the transglutaminase family, as an anti-
coagulant without prolonged bleeding time [174].  Finally, better 
understanding of the transglutaminase related pathomechanisms 
and the increasing structural knowledge about TG2 provide prom-
ising future to discover therapeutically applicable drugs against 
progressive diseases mediated by transglutaminases.
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