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ABSTRACT
There are many types of biologic compartments in the body. Tight junctions (TJs) function to create
a dynamic paracellular barrier to separate these compartments and maintain homeostasis. The TJ
component claudin-1 is the major transmembrane protein responsible for forming the paracellular
barrier in the epidermis; other claudins in the epidermis include claudin-3, -4, -12, -23 and -25.
Accumulating evidence points to a relationship between claudin-1 and skin diseases; for example, a
decrease in claudin-1 is reported in human atopic dermatitis. However, how claudin-1 directly or
indirectly contributes to disease in the context of the paracellular barrier is poorly understood. We
recently established several mouse lines in which the claudin-1 expression was systematically
regulated, and showed that claudin-1 time- and dose-dependently regulates epidermis function
and disease in vivo. In this commentary, we will discuss recent progress on this topic, including our
latest findings, and remaining or newly arisen issues.
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Tight junction and claudins

Multicellular organisms, including their organs and
tissues, are enclosed by an epithelial cell sheet with
distinct inner and outer features. In the cell sheet, tight
junctions (TJs), located at the most apical cell-cell
adhesion site between epithelial cells, are critical for
forming the paracellular barrier that maintains
homeostasis.1 TJs also determine the size and charge
of molecules that can selectively pass through the bar-
rier.2 Within TJs, members of the claudin protein fam-
ily are largely responsible for controlling cell-cell
adhesion and the characteristics of the paracellular
barrier (Fig. 1A, B). The claudins, a multigene family
with at least 27 members in human and mouse, are
polymerized into TJ strands3 (Fig. 1C). Each organ’s
environment is influenced by the TJ characteristics,
which result from each claudin’s spatiotemporal
behavior at the TJ strands. Different expression pat-
terns of claudins in organs, tissues, and epithelial cells,
regulate their variety of functions.

The skin epidermis mainly consists of keratino-
cytes. Keratinocytes undergo various differentiation

steps from the basal cell layers to the stratum corneum
(SC).4 During this differentiation journey, the TJs are
formed in the second stratum granulosum (SG2 layer)
to create the paracellular barrier (Fig. 2A). In the epi-
dermis, claudin-1 and claudin-4 are highly expressed,
while other claudins, such as claudin-3 and claudin-
12, are expressed at low levels (Fig. 2B). Claudin-1-
deficient mice, which had been previously reported,
showed an abnormal skin phenotype and died from
water loss within 1 d of birth.5 In contrast, claudin-4-
deficient mice have no reported skin phenotypes.6 On
the other hand, overexpressing claudin-6 under the
involucrin promoter in the epidermis generates the
same phenotypes as the claudin-1 deficiency.7 Studies
using the other claudin-6 mutated transgenic mouse
also highlighted the importance of specific claudins’
characteristics to in vivo phenotype.8,9 However, even
in the epidermis, how claudin orchestrates its many
effects is poorly understood. Recently, the crystal
structures of claudin-4, -15, and -19 were reported;
these studies suggested the structural basis for the
molecules that create the TJ paracellular barriers and
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channels, and other claudin functions.10-13 Additional
structural studies should clarify how various claudins
elicit their functions.

The altered expression of a gene sometimes dis-
turbs a biologic system and leads to disease. The
in vivo functions of genes have often been uncov-
ered using a gene knockout (KO) strategy, which
compares the “all versus none” situations. However,
variations in gene expression levels can also change
normal gene function, leading to disease in vivo.
For example, claudin-1 is indispensable for the

barrier function of skin, and abnormalities in clau-
din-1 cause human skin diseases14-17; in particular,
a decrease in claudin-1 expression is reported in
human atopic dermatitis (AD).17,18 However, clau-
din-1-deficient mice die within 1 day of birth due
to dehydration and abnormal skin differentiation,5

so these mice cannot be used to examine the role
of claudin-1 in AD. Therefore, to study the connec-
tion between molecular genetics and clinical effects
in skin disorders like AD, we examined a set of
mice that expressed varying levels of claudin-1.19

Figure 1. Tight Junctions (TJs) are composed of claudins. (A) Schematic drawing showing the location of TJs between epithelial cells. (B)
Electron micrograph of intestinal epithelial cells. TJs are located at the uppermost region of the cell-cell adhering junctional complex.
Scale bar, 200 nm. (C) Freeze fracture electron micrograph of TJs. Scale bar, 200 nm. Images of (A) and (B) are modified from Tsukita
et al., 20011. © Nature Reviews Molecular Cell Biology. Reproduced by permission of Nature Publishing Group. Permission to reuse must
be obtained from the rightsholder.

Figure 2. Claudin-1 is the main component of the TJs in skin. (A) Schematic drawing of the epidermis. TJs are formed in the SG2 layer.
SG (Stratum corneum), SG (Stratum granulosum). (B) Real-time RT-PCR analysis of claudins in keratinocytes.

e1336194-2 R. TOKUMASU ET AL.



Atopic dermatitis

AD, a common chronic inflammatory skin disease in
humans, is caused by complex genetic factors, includ-
ing gene-gene and gene-environmental interac-
tions.20,21 AD appears in approximately 20% of
children and 3% of adults, and its symptoms include
itching and eczema, which decrease the patient’s qual-
ity of life.22 Approximately 70% of AD cases start in
children under 5 y of age, and the disease often shows
spontaneous remission with aging.23,24 While some
AD features have been proposed to be due to immu-
nological imbalances, such as increased levels of
immunoglobulin E (IgE) and the acquired immune
response, recent studies showed that epidermal barrier
functions critically influence the pathological features
of AD.25,26 However, the cause and development of
AD with respect to epidermal barrier functions had
not been systematically studied. Therefore, we
addressed this issue using our model mice.

Dose-dependent phenotypes of the claudin-1
expression level

In our study, we established mouse lines in which the
claudin-1 expression was systematically altered. By
generating mice harboring wild-type (WT, C), knock-
down (KD, D), or knockout (KO, -) alleles in various
combinations, we obtained 6 lines of mice with differ-
ent claudin-1 expression levels: Cldn1C/C, Cldn1C/D,
Cldn1C/¡, Cldn1D/D, Cldn1D/¡, and Cldn1¡/¡ mice. To
quantify the expression levels of claudin-1, we pre-
pared primary keratinocyte cultures from newborn
mice of each genotype. Real-time (RT)-PCR confirmed
that the claudin-1 mRNA levels differed according to
genotype. We also confirmed that the mRNA and pro-
tein levels of claudin-1 showed a strong positive corre-
lation. The protein levels were estimated by the ratio
of claudin-1 to b-actin on immunoblots. Next, we
examined the paracellular barrier function by the
transepithelial electrical resistance (TER) and paracel-
lular flux (FLUX) of 4-kd dextran tracers in primary
cultures of keratinocytes, and found that the barrier
function in keratinocytes improved exponentially with
the claudin-1 mRNA expression level. Previous reports
showed that claudin-1 affects the SG, from which the
SC is generated, and that Cldn1¡/¡ newborn mice
have an abnormal SC.5,27 In our experimental model,
H&E staining revealed that, not only Cldn1¡/¡ but
also Cldn1D/D and Cldn1D/¡ newborn mice showed

abnormal differentiation of the SC, the severity of
which was related to the barrier function.

Time-dependent phenotypes of the reduced
claudin-1 expression levels

To understand Claudin-1’s role in AD’s age-related
changes in humans, we examined the phenotypes of
the model mice over time, from birth to adulthood.
Although the Cldn1¡/¡ mice died within 1 day of
birth, the other genotypes survived to adulthood with
varying mortality rates. The survival rate at 8 weeks
was over 80% for Cldn1C/C, Cldn1C/D, Cldn1C/¡, and
Cldn1D/D; 4% for Cldn1D/¡; and 0% for Cldn1¡/¡

mice. These results suggested that the low claudin-1
expression level in Cldn1D/¡ mice was close to the
threshold for lethality. In the various claudin-1 mutant
mice, the reduction in claudin-1 expression levels
altered the epithelial barrier functions and the mor-
phological features of the AD tissue, including hyper-
keratosis and acanthosis with aging. In addition, it
caused the recruitment of neutrophils and macro-
phages in Th1 but not Th2 immune responses. These
symptoms were apparent in the infant stages, and
decreased as the mice became adults, similar to the
age-dependent improvement in human AD patients.23

Moreover, the Cldn1D/D epidermis, which was
improved in the adult stage, still differed from the
Cldn1C/C epidermis in hapten-induced contact hyper-
sensitivity, indicating that the recovery of the skin
condition in claudin-1 KD is insufficient to defend the
skin against percutaneous stimuli.

Considering that claudin-1 reduction affects the
paracellular barrier (as shown in our study) and SC
barrier function,27,28 it is likely that reduced claudin-1
expression severely down-regulates the epidermal bar-
rier in vivo, leading to abnormal differentiation and
inflammation. On the other hand, we found that in
human AD patients, the number of macrophages was
inversely correlated with the claudin-1 level, although
we could not find a correlation between the claudin-1
staining intensity and Th2 markers in AD patients’
sera. To further explore the correlation between clau-
din-1 and AD, experiments performed under a variety
of conditions, at a large scale, and over the long-term
in mice and humans are required. Nevertheless, our
study revealed that claudin-1 plays an important role
in the relationship between barrier function and AD
in vivo.

TISSUE BARRIERS e1336194-3



Open questions and future perspectives

In this study, we showed how claudin-1 time- and
dose-dependently affects a skin phenotype in vivo,
highlighting the importance of claudins and their bar-
rier functions (Fig. 3). Not only claudins, but many
genes have dose-dependent effects. To understand the
time- and dose-dependent effects of genes related to
diseases, development, or any other biologic process,
it is important to find the quantitative threshold of
gene expression that elicits a function. How the roles
of genes will be “re-revealed” using such approaches is
an important topic for future study.

We demonstrated the pattern of effects caused by
different expression levels of claudin-1, using a genetic
method. On the other hand, a decreased barrier func-
tion in an organism could also be induced by environ-
mental factors. Even in our study, which was
performed in a specific-pathogen-free mouse room,
inflammation was induced by environmental causes.
Previous studies reported that the barrier functions of
TJs in the epidermis are particularly affected by exter-
nal stimuli, such as UV radiation and temperature,
which can influence the AD symptoms in humans.29,30

The impact of genetic and environmental influences
on barrier function merits further study.

Questions also remain about how claudin-1’s
molecular function in AD changes with aging.
Although claudin-1 KD mice mimicked the natural
history of human AD cases that improve with age, we
did not discover the mechanism by which AD
improves with age. As different approaches, in future
studies we would like to examine the effect of claudin-
1 on AD in different mouse strains (as genetic factors),
and using different antigen challenges that activate
specific immune responses (as environmental factors).

In our study of TJ function in the skin, we focused
on the time- and dose-dependency of claudin-1 and its
relationship to AD symptoms. To better understand
the TJs’ contribution to maintaining homeostasis, we
also need to learn more about the interaction between
the claudin molecules on adjoining cells, because the
barrier and channel functions of TJs depend on the
types and expression volumes of claudins. In addition
to skin, clinical studies have also shown relationships
between claudin expression and cancer.31 Thus, a better
understanding of the roles of TJs, claudins, and barriers
is important for a broad range of physiologic situations.
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