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Abstract

High-angular-resolution diffusion-weighted imaging (HARDI) MRI acquisitions have become 

common for use with higher order models of diffusion. Despite successes in resolving complex 

fiber configurations and probing microstructural properties of brain tissue, there is no common 

consensus on the optimal b-value and number of diffusion directions to use for these HARDI 

methods. While this question has been addressed by analysis of the diffusion-weighted signal 

directly, it is unclear how this translates to the information and metrics derived from the HARDI 

models themselves. Using a high angular resolution data set acquired at a range of b-values, and 

repeated 11 times on a single subject, we study how the b-value and number of diffusion directions 

impacts the reproducibility and precision of metrics derived from Q-ball imaging, a popular 

HARDI technique. We find that Q-ball metrics associated with tissue microstructure and white 

matter fiber orientation are sensitive to both the number of diffusion directions and the spherical 

harmonic representation of the Q-ball, and often are biased when under sampled. These results can 

advise researchers on appropriate acquisition and processing schemes, particularly when it comes 

to optimizing the number of diffusion directions needed for metrics derived from Q-ball imaging.
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1. INTRODUCTION

Diffusion tensor imaging (DTI) is arguably the most commonly used diffusion-weighted 

magnetic resonance imaging (dMRI) technique due to its simplicity and its ability to provide 

unique insights into tissue microstructure {Basser, 1994 #2}. These insights include metrics 

that have been associated with white matter integrity as well as estimates of dominant white 

matter directions, which enable fiber tractography {Mori, 2002 #9}. However, DTI only 

models a single diffusion direction per voxel, and is inadequate in areas that contain multiple 

fiber populations, often resulting in incorrect estimates of fiber orientation or misleading 
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microstructural indices. The “crossing fiber” problem has been shown to be prevalent in 

dMRI datasets, affecting as much as 90% of all voxels in the brain {Jeurissen, 2013 #330}. 

To address this issue, a variety of higher order diffusion models have been introduced. These 

methods are generally referred to as high-angular-resolution diffusion-weighted imaging 

(HARDI), a term which encompasses nearly all acquisition and analysis pipelines that 

provide more information than the diffusion tensor – but most commonly indicating the 

acquisition of a large number of diffusion weighted images (DWIs) sensitized to diffusion 

along varying directions all acquired at the same b-value, or diffusion weighting (DW).

Despite the rapidly growing popularity of HARDI techniques, there is currently no fixed 

consensus on the optimal b-value for these methods, or on the appropriate number of 

diffusion directions for these methods. Early DTI studies addressed the optimal b-value and 

diffusion direction schemes by acquiring multiple repeats of unique acquisition schemes, 

and assessed the impact on the precision and accuracy of orientation estimates and 

microstructural indices {Landman, 2007 #75}. However, similar studies have not been 

performed on HARDI models, in part due to the tremendous acquisition requirements 

needed for this type of analysis. Thus, most knowledge of appropriate acquisition 

requirements comes from simulations and phantom data {Jansons, 2003 #3}.

Rather than analyze a specific HARDI model, Tournier et al. have addressed this question of 

sampling directions by analyzing the frequency content of the DW signal itself, fit to 

spherical harmonics (SH) {Tournier, 2013 #1}. They concluded that the angular profile of 

the DW signal at a b-value of 1000 s/mm2 could be captured with order 4 SH, requiring only 

15 unique sampling directions. Similarly, b-values up to 3000 s/mm2 require only 28 unique 

directions (6 SH) to capture the necessary information. However, these numbers represent 

lower bounds, much like the diffusion tensor only requires 6 measurements, but in practice 

up to 30 are typically acquired. Thus, it remains to be seen how many sampling directions, 

and what b-value, are needed for HARDI models in practice.

In this study, we focus on one common HARDI model called Q-Ball imaging, or just Q-ball 

{Tuch, 2004 #4}. By acquiring 11 repeats of a high-angular-resolution dataset, we probe the 

precision and accuracy of estimating various Q-ball metrics as a function the number of 

sampling directions. Specifically, we use Q-ball to derive the diffusion orientation 

distribution function (dODF), from which we derived reproducibility measures of fractional 

anisotropy (FA), generalized fractional anisotropy (GFA). We then extract peaks of the 

dODF in order to assess the reproducibility of the orientations and strengths of the peaks, the 

Hessian of each peak (which describes its curvature), as well as the number of detected fiber 

populations (or peaks) in each voxel. Finally, we assess the angular correlation coefficient 

(ACC) of the dODFs between each individual dataset and the dataset acquired with the full 

complement of diffusion directions.

2. METHODS

2.1 MRI acquisition

All imaging was performed on the same healthy volunteer scanned on a 3T Phillips Achieva 

Scanner (Philips Medical Systems, Best, The Netherlands), in three different two-hour long 
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sessions, on three consecutive days. The scanning protocol consisted of five diffusion shells 

(b-values of 1000, 1500, 2000, 2500, and 3000 s/mm2) with 96 diffusion-weighted 

directions each, plus five repeats of the non-DW (b0) volume, which were formed by 10 

scanner averages. The data was acquired at 2.5mm isotropic resolution, with a matrix of 96 

× 96 × 38 slices, using a DW PGSE-EPI sequence. Briefly, scan parameters were: Multi-

Band=2; SENSE=2.2; TR= 2650 ms; TE=94 ms; Partial Fourier=0.7. Fold over direction 

was A-P with a P fat shift. For each set of 5 shells, an additional “b0” was acquired with 

reverse phase encoded volumes (i.e., fold over direction A-P with A fat shift). This protocol 

was repeated four times on days 1 and 2, and three times on day 3, resulting in a total of 11 

repeats of each diffusion shell.

2.2 Q-ball processing

All volumes were corrected for movement, susceptibility induced distortions, and eddy 

currents using FSL’s topup and eddy {Andersson, 2003 #13;Andersson, 2016 #14}. All data 

was registered to a common space using a 6 degrees-of-freedom rigid registration to 

facilitate a voxel-wise comparison, followed by appropriate re-orientation of diffusion 

gradient vectors. The full 96 gradient directions were re-ordered to minimize the 

electrostatic potential of any partial set of the first “N” directions, ensuring that the first “N” 

directions are as maximally uniformly distributed. From this, for each diffusion shell, 

subsets of DWIs from 20 to 96 directions (in increments of 4) were created and analyzed 

with the Q-ball model using UCL’s Camino Diffusion MRI Toolkit {Cook, 2006 #6}. This 

results in an approximation of the dODF (represented using SH coefficients), from which 

various microstructural and fiber orientation metrics are derived. It is important to note that 

the Q-ball is derived using the highest order SH coefficients possible (up to order 8) given 

the number of sampling points (i.e. < 28 directions = SH order 4; 28–44 directions = SH 

order 6; > 44 directions = SH order 8).

2.3 Metrics and analysis

For every diffusion shell (11 repeats of each of 5 b-values), and all subsets of directions 

within each shell, various metrics were derived, and compared directly to the corresponding 

full 96-direction dataset as a gold standard. First, FA was calculated using the DTI model, 

while GFA was calculated directly from the Q-ball SH coefficients. Next, local maxima, or 

peaks, in the dODF were detected following Jansons and Alexander {Jansons, 2003 #3}. 

From each peak, one can first determine its curvature (or sharpness) using the trace of the 

hessian. Because each peak is traditionally assumed to represent a distinct population of 

fiber bundles, the fiber fraction of each peak can be calculated (in this study DFF represents 

the dominant fiber fraction) and the number of fiber bundles (peaks) per voxel. The ability of 

each subset to detect crossing fiber voxels can be described by the consistency fraction (CF). 

A voxel is consistent with the gold standard if it has the same number of peaks and each 

peak is within a small angular tolerance of those in the gold standard. The CF is then the 

fraction of voxels that are consistent with the 96-direction dataset. For voxels that contain 

multiple fiber populations, the crossing angle is defined as the angle between the two peaks. 

Finally, the ACC, a measure that describes agreement between spherical functions, is 

calculated for all voxels in each subsampled dataset.
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3. RESULTS

Figure 1 shows Q-ball glyphs in an area containing both single and crossing fiber voxels. 

Qualitatively, the glyphs seem to share the same basic shape and orientations across all b-

values and for all diffusion-weighting schemes. Many glyphs appear more sharp or “spiky” 

at higher b-values, while very little change is noticeable with changing number of gradient 

directions.

The average percent deviation from the gold-standard datasets for FA and GFA are shown in 

Figure 2 (A, B). The percent deviation of FA (Fig 2. A) is monotonically decreasing, and is 

less than 10% for all b-values after 30 directions. The higher b-values show a consistently 

higher positive bias than low b-value acquisitions. Unlike FA, the GFA (Fig 2. B) shows 

very high positive biases at transitions zones that occur when the data first allows the next 

higher order SH coefficients to be estimated. However, bias decreases as the number of 

DWIs increases.

Next, the effect of gradient directions on the bias and accuracy of DFF and TH were 

assessed (Fig 2. C, D). At low DW directions, the DFF is overestimated at all b-values. This 

is likely due to the inability to resolve multiple fibers, resulting in a DFF of 1 for most 

voxels. However, at SH of order 6 and 8, the DFF is consistently underestimated, and shows 

high deviations at the transition zones. Similarly, the deviation of the TH peaks is high at the 

28 and 48 direction sets. As the number of DWI’s increases, the peaks sharpness gradually 

decreases towards the gold-standard TH.

Figure 3 summarizes the reproducibility and accuracy of Q-ball for detecting the presence of 

multiple fiber populations. The 96-direction data sets suggest that between 60–80% of white 

matter voxels contain multiple fibers (Fig. 2, A). However, with the exception of 20 and 24 

DW-directions, a lower number of directions results in a higher estimate of the prevalence of 

crossing fibers, with peaks of this measure at SH transition zones. In all cases, a higher b-

value results in a larger crossing fiber fraction. The consistency fraction (Fig 2. B) shows 

that the accuracy of detecting crossing fibers increases with increasing data. However, the 

consistency is surprisingly low for most datasets, and only reaches 50% at 68 DW-

directions. The reason for the low consistency is shown in Figure 2, C. For this figure, we 

tracked single-fiber, 2-fiber, and 3-fiber datasets (from the gold standard) and calculated the 

average number of fibers in these voxels in the lower diffusion-direction datasets. It is clear 

that single fiber voxels consistently (and likely erroneously) resulted in multiple fibers with 

less DWIs. Similarly, many 2-fiber voxels were estimated to contain 3 fiber populations. 

Spikes in both functions are seen at SH transition zones. Finally, subtracting the expected 

crossing angle (from the 96 direction datasets) from the observed crossing angle (from the 

lower-sampled datasets) for all voxels, we find that there is significant bias when estimating 

the crossing angle (Fig 2. D). Fibers crossing at angles less than 70° are consistently 

estimated to be crossing at more orthogonal angles (positive bias), while those with angles 

between 80° and 90° result in more acute angles when decreasing the number of diffusion 

weighted directions.
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An analysis of the ACC shows that nearly all directions (besides N=28 and N=48) have 

similar Q-ball SH representations as that of the N=96 dataset, with the average ACC 

typically 0.8 or higher across the entire brain (Fig 4, A). Qualitatively, the WM dODF 

profiles agree very well with the gold standard, even at very low gradient directions (Fig 4. 

B). Low ACC’s first become aparrent in gray matter regions, followed by WM in datasets 

with as many as 56 sampling directions.

4. DISCUSSION

In this study, the aim was to determine the appropriate number of DW-directions for robust 

estimates of measures derived from Q-ball imaging. What is clear from the data is that the 

variance and precision of many parameters is dependent on not only the number of 

directions sampled, but also on the reconstruction scheme, specifically the SH order that the 

data was fit to. Tournier et al. determine that 8th order SH are high enough to capture the 

angular profile of the DW signal, which implies that as low as 45 sampling directions is 

sufficient for all HARDI analysis, although the authors recommend acquisition of more to 

increase the effective SNR {Tournier, 2013 #1}. Here, we find that fitting 8th order spherical 

harmonics to just 45 coefficients (or to 28 for SH order 6) leads to noisy and inaccurate 

estimates of a variety of measures.

Due to fitting the data exactly, the dODFs are noisy at these measurements, overestimate the 

number of fiber populations in each voxel (Fig. 3, A), and have erroneous peaks (Fig. 3, B 

and C). This results in temporary increases in GFA (Fig. 2, B), decreases in the DFF (Fig. 2, 

C), and increase in peak sharpness (Fig. 2, D). Based on these results, we suggest collecting 

significantly more than the minimum 45 measurements to fit to 8th order SH. It remains to 

be seen how a 6th order fit to the larger datasets (N>45) compares to the 8th order, and if the 

accuracy is of a comparable scale. In addition, it is of interest to determine how many 

directions need to be sampled for the 8th order fit to become more accurate than the same 

data fit to 6th order. This would answer the question: “given a certain number of sampling 

directions, and with the aim to estimate parameter X, what order SH is most appropriate to 

fit my data to?”. From our data, for estimates of GFA, DFF, and TH, one must sample 

approximately 64, 80, and 84 directions for the 8th order fit to be more accurate (lower 

percent variation) than just 44 directions with 6th order fit. For the ACC, a measure of 

overall agreement of the dODF, one must sample at least 60 directions to make the jump 

from 6th to 8th order SH fitting.

Similar recommendations are given when it comes to resolving complex fibers and detecting 

the number of fiber populations in a voxel. As expected, a higher b-value results in the 

detection of more crossing fibers in the brain (Fig. 3, A). However, it is interesting that the 

fraction of fibers containing crossing fibers did not plateau. Thus it is possible that 96 

directions are not enough to correctly identify all fiber crossings. It is typically assumed that 

a higher sampling resolution (more gradient directions) will increase the ability to detect 

crossing fibers, however, in our data this results in a decreased crossing fiber fraction. The 

results from our gold-standard data suggest that between 60 and 80% of all white matter 

voxels contain crossing fibers, a fraction lower than that estimated using alternative HARDI 

modeling techniques {Jeurissen, 2013 #330}.
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The low consistency fraction for all datasets is alarming, particularly with respect to the 

implications for down-stream fiber tractography. The number of peaks and peak orientations 

were only consistent with the gold-standard datasets in approximately 80% of white matter 

voxels using the 92-direction datasets, and only consistent with 50% of these voxels with as 

many as 68 DW directions (Fig. 3, B). Using capillary phantoms, Cho et al. {Cho, 2008 

#820} found that q-ball at a b-value of 3,000 s/mm2 is able to successfully resolve fibers 

crossing at 45° in 27% of all voxels, but the success rate increases to 100% at b-values of 

4,000 s/mm2 and above, so it is possible that increasing the diffusion weighting may be able 

to overcome the low consistency fraction seen in our results. Similarly, simulations 

{Alexander, 2005 #197} using mixtures of Gaussian test functions suggest that q-ball 

imaging at clinically relevant SNR resolves two-fiber crossings consistently only if the 

separate angle is above 85°. While our study did not address the consistency fraction as a 

function of crossing angle, we did find a bias in the observed crossing angle as the number 

of diffusion-encoding directions decreased. Literature suggests that Q-ball imaging will 

under-estimate the true crossing angle at low diffusion-weightings {Cho, 2008 #820;Tuch, 

2004 #146}. When two fiber populations exist within the same imaging voxel, the dODF can 

be thought of as having contributions from the dODF from each fiber population separately. 

However, because a single fiber population has dODF amplitude not only parallel to the 

fiber directions, but also perpendicular, the addition of these two bundles will create a 

blurring of the overall dODF, and the two peaks will be shifted towards one another 

{Anderson, 2009 #821}. However, in our data, we find both over and underestimation of the 

crossing angle, a bias that depends on the true crossing angle as identified in the 96-direciton 

datasets. Inter-fiber angles above 80° are consistently underestimated by 5–10°, an effect 

likely due to the asymmetric distribution of crossing angles (i.e. crossings above 90° are 

evaluated as 180° minus the crossing angle, due to pi-periodicity). In contrast to literature, 

inter-fiber angles below 70° are consistently overestimated by 5–10° in our data.

This data set provides the ability to answer several unique questions. First, given a certain 

amount of time for a HARDI study, which diffusion gradient scheme should be used for 

optimally accurate HARDI contrasts? This represents a choice between sampling 

independent directions versus repeated directions: for a fixed number of measurements, is it 

better to acquire data with the highest angular resolution possible (all gradient directions 

different), or to acquire less gradient directions, but more averages? Second, this dataset 

allows us to determine both intra-session and inter-session reproducibility. This would 

address whether intra-session (physiological noise, distortion artifacts) and inter-session 

(registration errors) factors dominate the accuracy of HARDI experiments, making the 

choice of gradient-direction non-significant. Similar analysis has been performed in DTI 

{Landman, 2007 #75}, but remains largely unanswered for HARDI models.

5. CONCLUSION

In this study, we analyzed the effect of b-value and number of diffusion gradient directions 

on the accuracy and reproducibility of metrics derived from Q-ball imaging. Our focus was 

on the ability of Q-ball to extract a discrete number of fiber orientation estimates, as well as 

information regarding the features of the dODF that can reveal tissue architecture 

information. We find that measures are highly dependent on the number of directions and the 
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SH order the data is fit to. Future studies will determine the appropriate SH fit given a 

specific number of acquired diffusion directions at a given signal-to-noise-ratio. In addition, 

this unique dataset can be used to determine the optimal acquisition scheme as it related to 

these metrics. Finally, similar analysis should be performed on a range of HARDI models, to 

not only optimize acquisitions based on clinical or research needs, but also to determine the 

limitations of varying HARDI models and suggest future refinements.

Acknowledgments

This work was supported by the National Institutes of Health under award numbers R01EB017230 (Landman) and 
R01NS058639 (Anderson). This work was conducted in part using the resources of the Advanced Computing 
Center for Research and Education at Vanderbilt University, Nashville, TN. This project was supported in part by 
the National Center for Research Resources, Grant UL1 RR024975-01, and is now at the National Center for 
Advancing Translational Sciences, Grant 2 UL1 TR000445-06. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the NIH.

REFERENCES

1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR 
spin echo. Journal of Magnetic Resonance, Series B. 1994; 103(3):247–254. [PubMed: 8019776] 

2. Mori S, van Zijl P. Fiber tracking: principles and strategies–a technical review. NMR in 
Biomedicine. 2002; 15(7–8):468–480. [PubMed: 12489096] 

3. Jeurissen B, Leemans A, Tournier JD, et al. Investigating the prevalence of complex fiber 
configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 
2013; 34(11):2747–2766. [PubMed: 22611035] 

4. Landman BA, Farrell JA, Jones CK, et al. Effects of diffusion weighting schemes on the 
reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector 
measurements at 1.5T. Neuroimage. 2007; 36(4):1123–1138. [PubMed: 17532649] 

5. Jansons KM, Alexander DC. Persistent angular structure: new insights from diffusion magnetic 
resonance imaging data. Inverse problems. 2003; 19(5):1031.

6. Tournier J, Calamante F, Connelly A. Determination of the appropriate b value and number of 
gradient directions for high-angular-resolution diffusion-weighted imaging. NMR in Biomedicine. 
2013; 26(12):1775–1786. [PubMed: 24038308] 

7. Tuch DS. Q-ball imaging. Magnetic resonance in medicine. 2004; 52(6):1358–1372. [PubMed: 
15562495] 

8. Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-
planar images: application to diffusion tensor imaging. Neuroimage. 2003; 20(2):870–888. 
[PubMed: 14568458] 

9. Andersson JL, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and 
subject movement in diffusion MR imaging. Neuroimage. 2016; 125:1063–1078. [PubMed: 
26481672] 

10. Cook P, Bai Y, Nedjati-Gilani S, et al. Camino: open-source diffusion-MRI reconstruction and 
processing. :2759.

11. Cho KH, Yeh CH, Tournier JD, et al. Evaluation of the accuracy and angular resolution of q-ball 
imaging. Neuroimage. 2008; 42(1):262–271. [PubMed: 18502152] 

12. Alexander DC. Multiple-Fiber Reconstruction Algorithms for Diffusion MRI. Annals of the New 
York Academy of Sciences. 2005; 1064(1):113–133. [PubMed: 16394152] 

13. Tuch DS. Q-ball imaging. Magn Reson Med. 2004; 52(6):1358–1372. [PubMed: 15562495] 

14. Anderson AW. How to Do It In Practice - Optimal Approaches to Resolving Fiber Crossings. 

Schilling et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Qball dODF glyphs for selected datasets, across a range of diffusion-weighted directions and 

all acquired b-values.
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Figure 2. 
Percent variation of FA (A), GFA (B), DFF(C), and TH (D) are shown with respect to gold 

standard dataset, as a function of number of DW directions. Mean and standard deviation 

across all sessions are displayed for each b-value. Plot backgrounds are colored according to 

the SH order data was fit to.
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Figure 3. 
Crossing fiber analysis. Crossing fiber fraction (A) and Consistency Fraction (B) are shown 

as a function of number of DW-directions. Mean and standard deviation across all sessions 

are shown for each b-value. The average number of peaks identified in individual datasets 

are shown for voxels identified in the gold standard data as having single, 2-fiber, and 3-fiber 

populations (C) is plotted as a function of number of DW-directions. Angular correlation 

coefficient between subsampled scan and the gold-standard datasets displayed as images in 

(H). Finally, the angular bias (observed crossing angle – expected crossing angle) is shown 

for expected crossing angles of <60, 60–70, 70–80, and 80–90 degrees.
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Figure 4. 
Angular correlation coefficient between subsampled scan and the gold-standard datasets are 

plotted for each b-value as a function of number of diffusion weighted directions (A). ACC 

results are shown for a single subject for selected sets of gradient directions and displayed as 

images in (B).
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