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Abstract

C/EBP-homologous protein (CHOP) is an important component of the endoplasmic reticu-

lum (ER) stress response. We demonstrated the induction of ER stress in response to tuni-

camycin stimulation, as evidenced by increased expression of chaperone proteins Grp78,

Grp94, and enhanced eukaryotic initiation factor 2 subunit 1 (eIF2α) phosphorylation in

hepatocellular carcinoma cells. Tunicamycin-induced ER stress resulted in apoptosis and

autophagy simultaneously. While inhibition of autophagy mediated by 3-methyladenine pre-

treatment or direct knockdown of LC3B promoted cell apoptosis, activation of autophagy

with rapamycin decreased tunicamycin- induced apoptosis in HCC cells. Furthermore,

CHOP was shown to be significantly upregulated upon treatment with tunicamycin in HCC

cells. Specific knockdown of CHOP not only enhanced tunicamycin-induced autophagy, but

also significantly attenuated ER stress-induced apoptosis in HCC cells. Accordingly, simul-

taneous inhibition of autophagy in HCC cells with CHOP-knockdown could partially resensi-

tize ER stress-induced apoptosis. Taken together, our data indicate that CHOP may favor

ER stress-induced apoptosis in HCC cells via inhibition of autophagy in vitro.

Introduction

Tumor hypoxia inhibits the formation of protein glycosylation and disulfide bonds, resulting

in the accumulation of unfolded or misfolded proteins in endoplasmic reticulum (ER). This

condition is defined as ER stress, which reflects an imbalance between the cellular demand for

ER function and ER protein folding ability [1,2]. Prolonged or severe ER stress eventually

results in cell apoptosis. Cellular adaptation to ER stress is achieved by the activation of a

highly conserved signal transduction pathway known as the unfolded protein response (UPR)

[3,4]. In tumors, the sensors of ER stress are PERK (PKR-like ER kinase; also known as eukary-

otic translation initiation factor 2 alpha kinase 3 or EIF2AK3), ATF6 (activating transcription

factor 6), and IRE1 (inositol-requiring enzyme 1). These 3 proteins activate the unfolded pro-

tein response. During ER stress, PERK dissociates from Grp78/BiP and activates itself by
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oligomerization and phosphorylation, which directly phosphorylates translation initiation fac-

tor eIF2α to attenuate general protein synthesis [5,6]. However, the activation of PERK also

leads to increased translation of transcription factors such as ATF4, which promote transcrip-

tion of genes related to cell survival, as well as pro-apoptotic factors such as CHOP (C/EBP

homologous protein) [7–9]. CHOP can further downregulate the anti-apoptotic protein Bcl-2

and alter the redox state of the cell [10,11], thus sensitizing cells to apoptosis. Moreover,

CHOP also promotes the expression of GADD45 (growth arrest and DNA-damage-inducible

protein), triggering cell apoptosis by completely blocking protein synthesis [12].

Autophagy is a highly conserved system for the degradation of misfolded proteins and dam-

aged organelles, and the recycling of amino acids for the synthesis of essential proteins [13,14].

Autophagy is controlled by a set of evolutionarily conserved autophagy-related proteins; its

regulation involves more than 30 autophagy-related genes (ATG) in yeast, or 15 homologues

in mammals [15]. It has been demonstrated by serial studies that autophagy has an important

role in promoting cell survival under severe stress conditions [16–19]. Several lines of evidence

also show that the eIF2α-ATF4 pathway contributes to the activation of autophagy that was

induced by ER stress [20–23].

In cancer biology, autophagy is generally believed to act as a tumor suppressor in the early

stages of cancer by protecting cells from oxidative stress and genomic instability [24,25]. How-

ever, during tumor progression, many cancers come to depend on autophagy as a source of

nutrients[26].A study by B’chir et al[27]showed that CHOP both induces apoptosis and limits

autophagy when amino acid starvation is prolonged.

In our current study, we investigated whether there is interplay between CHOP and autop-

hagy in regulating ER stress-induced apoptosis in hepatocellular carcinoma (HCC) cells. We

found that while tunicamycin (TM)-induced ER stress resulted in autophagy and apoptosis

simultaneously, CHOP was evidenced to favor ER stress-induced apoptosis in HCC cells by

inhibiting autophagy in vitro.

Materials and methods

Antibodies and reagents

Rapamycin (37094), 3-methyladenine (3-MA, M9281), and antibody against actin (a5441)

were purchased from Sigma (Louis, MO, USA).Tunicamycin (11089-65-9) was purchased

from Enzo Life Sciences (Madison Avenue, NY, USA). Antibodies against CHOP(L63f7),

P-eIF2α (Ser51), BiP (C50B12), Bax (D3R2M), Caspase3 (8G10), Cleaved Caspase9

(Asp353), Cleaved PARP (Asp214), P-ULK1 (Ser737), LC3B (D11), Beclin-1 (D40C5), Atg5

(D5F5U), p62 (D5E2), eIF2α or Grp94 used in the western blot analysis were obtained from

Cell Signaling Technology (Danvers, MA, USA). The Annexin-V-FLUOS Staining kit (Cat.

No.11858777001) and cell proliferation reagent water-soluble terazoliumsalt (WST)-1 were

purchased from Roche (Mannheim, Germany).

Cell culture

Mouse HCC cells Hepa 1–6 were obtained from the cell bank of the Chinese Academy of Sci-

ences (Shanghai, China) and maintained in high glucose Dulbecco’s Modified Eagle’s medium

media (Hyclone, Logan, UT, USA) containing 100 U/mL penicillin/streptomycin and 10%

fetal bovine serum (FBS) (Gibco, Gran Island, NY, USA). Human embryonic kidney cells

HEK293T were maintained in DMEM/F12 medium supplemented with 10% FBS. All cell lines

were cultured in a 37˚C humidified atmosphere containing 95% air and 5% CO2 and were

split twice per week.
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Construction of pLKO.1-CHOPshRNA-1, pLKO.1-CHOPshRNA-2 and

pLKO.1-LC3B-shRNA

We employed the replication-incompetent lentiviral vector pLKO.1 (Sigma, Louis, MO,

USA) chosen by the RNAi Consortium (TRC) for cloning and expressing short hairpin

RNA (shRNA) sequences. A 1.9-kb stuffer in pLKO.1-TRC was released by digestion with

restriction enzymes Age I and EcoR I. The synthesized DNA templates of shRNAs targeting

CHOP or LC3B (Table 1) were annealed and then subcloned into the space between the Age

I and EcoR I sites to construct pLKO.1-CHOPshRNA-1, pLKO.1-CHOPshRNA-2, and

pLKO.1-LC3BshRNA, respectively. All 3 vectors were verified by direct DNA sequencing.

Production of lentivirus

To produce lentivirus, the lentiviral expression vector pLKO.1-ConshRNA, pLKO.1-

CHOPshRNA-1, pLKO.1-CHOPshRNA-2, or pLKO.1-LC3BshRNA and lentivirus packag-

ing plasmids psPAX2 and pMD2.G were co-transfected into the virus packaging cell line

HEK293T using PEIin accordance with the standard procedure. After 24 h, the culture

media were changed for fresh DMEM/F12 media (10% FBS). The virus-containing media

were collected, aliquoted, and stored at –80˚C.

Specific knockdown of CHOP or LC3B in Hepa 1–6 cells

To achieve specific knockdown of CHOP or LC3B in HCC cells, the lentivirus-containing

media (800μL) were thawed completely at room temperature. Another 9.2 mLof fresh

medium and hexadimethrine bromide (Polybrene; 8 μg/mL) was added into the virus-con-

taining media. Then the culture media of the Hepa 1–6 cells was replaced with the lentivirus-

containing media. After 24 h, the virus-infected cells were selected with puromycin (1 μg/mL)

for an additional 10days to establish sublines of Hepa 1–6 cells with stable knockdown of

CHOP or LC3B. Those cells were then collected and subjected to the required experiments.

Cell survival assay

Hepa 1–6 cells were seeded in 96-well plates and cultured in medium (10%FBS) with or with-

out rapamycin, 3-MA, TM for 24h. The viability of the cells was measured using a WST-1 cell

viability kit in accordance with the manufacturer’s instructions. Briefly, WST-1 was added to

each well, and the cells were incubated for 2h. The plates were shaken thoroughly for 1 min,

and the absorbance of the samples measured at 450nm. The experiment was repeated 3 times.

Real-time quantitative reverse transcription-PCR (qRT-PCR)

Total RNA was extracted from cells using the total RNA kit (Omega Bio-Tek, Norcross, GA,

USA), and cDNAs was synthesized using a Revert Aid First Strand cDNA Synthesis Kit (Fer-

mentas, Waltham, MA, USA) in accordance with the manufacturer’s instructions. The primer

sequences used for qRT-PCR analysis are listed in the Table 2. Real-time quantitative RT-PCR

was performed with a ABI PRISM 7900 sequence detection system (Los Altos, CA, USA) using

SYBR Green PCR Master Mix (Roche, Mannheim, Germany).Thermal cycling conditions

were:95˚C for 10 min; 95˚C for 15 s and then 58˚C for 30 s for 40 cycles. The relative amount

of mRNA of each gene in each sample was calculated using the 2−ΔΔCT method. The expression

of β-actin was used as an internal control for all qRT-PCR.

CHOP favors ER-induced apoptosis in HCC cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0183680 August 25, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0183680


T
a
b

le
1
.

T
a
rg

e
t
s
e
q

u
e
n

c
e
s

o
f
s
h

R
N

A
s

u
s
e
d

in
th

is
s
tu

d
y
.

S
e
n

s
e

A
n

ti
-s

e
n

s
e

C
H

O
P

s
h
R

N
A

1
5
'
-
C
C
G
G
G
A
A
A
C
G
A
AG
A
G
G
A
A
G
A
A
T
C
A
A
C
T
CG
A
G
T
T
G
A
T
T
C
T
T
C
C
T
CT
T
C
G
T
T
T
C
T
T
T
T
T
G
-
3'

5
'
-
A
A
T
T
C
A
A
A
AA
G
A
A
A
C
G
A
A
G
A
G
G
A
A
GA
A
T
C
A
A
C
T
C
G
A
G
T
T
G
AT
T
C
T
T
C
C
T
C
T
T
C
G
T
T
TC
-
3
'

C
H

O
P

s
h
R

N
A

2
5
'
-
C
C
G
G
T
G
A
A
G
A
G
AA
C
G
A
G
C
G
G
C
T
C
A
A
C
T
CG
A
G
T
T
G
A
G
C
C
G
C
T
C
G
TT
C
T
C
T
T
C
A
T
T
T
T
T
G
-
3'

5
'
-
A
A
T
T
C
A
A
A
AA
T
G
A
A
G
A
G
A
A
C
G
A
G
C
GG
C
T
C
A
A
C
T
C
G
A
G
T
T
G
AG
C
C
G
C
T
C
G
T
T
C
T
C
T
T
CA
-
3
'

M
A

P
1
L
C

3
B

s
h
R

N
A

5
'
-
C
C
G
G
G
C
T
C
A
A
T
GC
T
A
A
C
C
A
A
G
C
C
T
T
C
T
CG
A
G
A
A
G
G
C
T
T
G
G
T
T
A
GC
A
T
T
G
A
G
C
T
T
T
T
T
G
-
3'

5
'
-
A
A
T
T
C
A
A
A
AA
G
C
T
C
A
A
T
G
C
T
A
A
C
C
AA
G
C
C
T
T
C
T
C
G
A
G
A
A
G
GC
T
T
G
G
T
T
A
G
C
A
T
T
G
A
GC
-
3
'

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
8
3
6
8
0
.t
0
0
1

CHOP favors ER-induced apoptosis in HCC cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0183680 August 25, 2017 4 / 17

https://doi.org/10.1371/journal.pone.0183680.t001
https://doi.org/10.1371/journal.pone.0183680


Immunofluorescence assay

Hepa 1–6 cells were seeded in a 24-well plate with 3×103 cells per well for overnight and then

incubated with 0.8 μg/mL tunicamycin for additional 12 or 24 h. Cells were fixed with 4%

paraformaldehyde for 30 min after washing with PBS for 3 times. After that, fixed cells were

then incubated with 0.4% Triton-X 100 and 4% BSA in PBS for 2 h at room temperature fol-

lowing by incubation with specific primary antibodies against LC3B (1:200, D11, Cell Signal-

ing Technology) at 4˚C for overnight. After washing with PBS, cells were incubated with anti-

Rabbit IgG (H+L) secondary antibody for 1 h and then incubated with DAPI (1 mg/mL) for 5

minutes at room temperature. Images were obtained using fluorescence microscope (Olym-

pus, Japan).

Flow cytometry assays

Hepa 1–6 cells were incubated in the absence or presence of 1μg/mLTM for 24 h. The cells

were harvested by 0.25% trypsin, washed twice with cold phosphate buffered saline (PBS), and

then resuspended in 500μL of buffer containing 50 μg/mLpropidiumiodide (PI), followed by

incubation for 5 min at room temperature. The cells were finally analyzed with a FACSort flow

cytometer (Becton-Dickinson, Franklin, NJ, USA).

Western blot analysis

Hepa 1–6 cells were washed in ice-cold PBS twice, and lysed in buffer with protease inhibitor

and phosphatase inhibitor, and then centrifuged at 13000×g for 25 min at 4˚C. The superna-

tant was collected and total proteins were quantified usingbicinchoninic acid (Pierce, Rock-

ford, AL, USA,) method. The protein samples were loaded onto polyacrylamide gel and

subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins

were then transferred onto a polyvinylidenedifluoride (PVDF) membrane. The membrane

was blocked with Tris-buffered saline and Tween 20 (TBST) containing 4% BSA for 1 h at

room temperature. The membranes were incubated serially with primary antibodies at 4˚C

overnight. After washing with TBST 3 times for 8 min each, the membranes were incubated

with secondary antibodies for 1–2 h at room temperature. The density of the corresponding

bands was measured quantitatively using image analysis software (Bio-Red, Hercules, CA,

USA) and corrected by reference to the value of β-actin.

Acridine orange staining

Hepa 1–6 cells were stained with acridine orange solution (100μg/mL) for 10 min at 37˚C, and

washed with PBS twice. The cells were finally analyzed with a FACSort flow cytometer (Bec-

ton-Dickinson, Franklin, NJ, USA).

Table 2. List of primers used for quantitative RT-PCR analysis.

Gene Forward sequence(5’!3’) Reverse sequence(5’!3’)

Grp94 TTGTGGCCAGTCAGTATGGA TGAGGCGAAGCATTCTTTCT

Grp78 GTTCCGCTCTACCATGAAGC GGGGACAAACATCAAGCAGT

CHOP TATCTCATCCCCAGGAAACG CTGCTCCTTCTCCTTCATGC

β-actin GGGAATGGGTCAGAAGGACT GGGGTGTTGAAGGTCTCAAA

https://doi.org/10.1371/journal.pone.0183680.t002
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Statistical analysis

Statistical analyses were performed using the SPSS software package (version 16.0; SPSS, Chi-

cago, IL, USA). Quantitative data are presented as the mean ± standard deviation (SD). Data

were analyzed using Student’s t-test or ANOVA with dunnett’s t-test to evaluate inter-group

differences. P<0.05 was considered as statistically significant.

Results

TM-induced ER stress results in apoptosis in HCC cells

As a well-known ER stressor, TM was firstly applied to treat HCC Hepa 1–6 cells. The expres-

sion of ER stress-related proteins Grp94 andGrp78 at mRNA levels were significantly

increased in Hepa 1–6 cells upon treatment with TM (0.8μg/mL) (Fig 1A). In parallel with the

changes in mRNAs, our western blot analysis showed that the expression of Grp94, Grp78,

and p-eIF2α also markedly increased in those cells subjected to TM for 24 h (Fig 1B). Mean-

while, TM induced significant apoptosis in Hepa 1–6 cells as well as evidenced by increased

Fig 1. Tunicamycin(TM) induces ER stress, which in turn results in apoptosis of HCC cells. (A) Hepa 1–6 cells were treated with

0.8 μg/mL of TM for 0, 8, 12, or 24 h. Cells were collected and subjected to total RNA extraction. The mRNA levels of ER stressrelated genes

Grp94 and Grp78 were measured by quantitative RT-PCR. All results were normalized with the internal control β-actin. Bars, SD. Data

represent3 independent experiments.(B) Hepa 1–6 cells underwent aforementioned treatment were collected and subjected to western blot

analyses with specific antibodies directed against Grp78, Grp94, p-eIF2α, eIF2α, c-PARP, or β-actin. The density of the corresponding

bands was measured quantitatively using image analysis software and corrected by reference to the value of β-actin. Each data point is the

mean ± SD of 3 independent experiments, *P<0.05 or **P<0.01 denotes significant difference from normal control Hepa1-6 cells.

https://doi.org/10.1371/journal.pone.0183680.g001
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cleaved PARP (c-PARP) (Fig 1B). Thus, our data here indicated that ER stress induced by TM

could result in apoptosis in HCC cells.

TM-induced ER stress induces autophagy in HCC cells in a time-

dependent manner

Being a highly evolutionary conserved process, autophagy acts as a survival mechanism in cells

exposed to stress. To investigate whether ER stress could also induce autophagy in HCC cells,

Hepa 1–6 cells were treated with 0.8 μg/mL of TM for 0, 8, 12, or 24 h. LC3 II is considered an

accurate marker of autophagy. Conversion of the cytosolic form LC3 I to its lipidated mem-

brane-bound form LC3 II increased upon treatment with TM in a time-dependent manner

(Fig 2A). Similar results were observed through acridine orange staining or immunofluors-

cence assay, which further demonstrated that autophagy was induced in HCC cells that are

under ER stress (Fig 2B and 2C).

Alteration of ER stress-induced autophagy regulates apoptosis in HCC

cells

Having found that TM-induced ER stress results in significant apoptosis and autophagy in

HCC cells, we then explored whether alteration of ER stress-induced autophagy influences

apoptosis in HCC cells. The Hepa 1–6 cells were pretreated with autophagy activator rapamy-

cin or autophagy inhibitor 3-MA for 2 h, followed by treatment with TM (0.8 μg/mL) for an

additional 24 h. In the cell proliferation WST-1 assay, although pretreatment with 3-MA

didn’t show any effect on TM-mediated growth inhibition of Hepa 1–6 cells, the inhibitory

effect of TM on cell growth was significantly decreased upon pretreatment with rapamycin

(Fig 3A). Both the flow cytometry assay and western blot analysis also revealed that pretreat-

ment with 3-MA or rapamycin could simultaneously aggravate or decrease TM-induced apo-

ptosis in Hepa 1–6 cells, respectively (Fig 3B and 3C). In addition, the inhibitor or activator

effect of 3-MA or rapamycin on autophagy was verified by western blot analysis, as evidenced

by decreased or increased expression of LC3 II, respectively (Fig 3C).Furthermore, direct

knockdown of LC3B in Hepa 1–6 cells significantly potentiated TM-induced apoptosis (Fig

3D). Altogether, these results suggested that specific alteration of ER stress-induced autophagy

could regulate apoptosis in HCC cells.

Specific knockdown of CHOP attenuates ER stress-induced apoptosis in

HCC cells

CHOP has been reported to have an important role in regulating cell death after ER stress.

Since treatment with TM significantly induced both mRNA and protein expression of CHOP

in Heap 1–6 cells (Fig 4A), to figure out whether CHOP also influences ER stress-induced

apoptosis in HCC cells, a self-prepared lentiviral system was used to achieve a specific knock-

down of CHOP in Hepa 1–6 cells. Compared with the control (shCtrl), both shCHOP-1 and

shCHOP-2 exhibited specific knockdown effect of CHOP both in mRNA (Fig 4B) and protein

levels (Fig 4C) in TM-treated Hepa 1–6 cells. Interestingly, while CHOP knockdown had no

significant influence on the expression of ER stress-related proteins, including Grp94, Grp78,

p-eIF2α, the expression of TM-induced cleaved-PARP, cleaved-caspase9, or cleaved-caspase3

was significantly reduced (Fig 4C and 4D). The flow cytometry assay further revealed that TM-

induced apoptosis was significantly attenuated in Hepa 1–6 cells with downregulation of

CHOP (Fig 4E). Taken together, our current data suggested that CHOP may have an impor-

tant role in the regulation of ER stress-induced apoptosis.
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Role of CHOP in regulating apoptosis of HCC cells underwent prolonged

ER stress

Previously we found that activation of autophagy decreases TM-induced apoptosis in Hepa

1–6 cells, while specific knockdown of CHOP also shows similar effect in regulating ER stress-

induced apoptosis. We then hypothesized that CHOP may regulate apoptosis of HCC cells

underwent prolonged ER stress through modulation of ER stress-induced autophagy.

Fig 2. Autophagy is induced in response to ER stress in HCC cells. (A) Heap 1–6 cells were treated with TM (0.8 μg/mL) for 0, 8, 12, or

24 h. Cells were collected and subjected to western blot analyses with specific antibodies directed against p-ULK1, LC3B, Beclin1, Atg5, or

β-actin. The density of the corresponding bands was measured quantitatively with an aforementioned method. Each data point is the

mean ± SD of 3 independent experiments, *P<0.05 or **P<0.01 denotes a significant difference compared with normal control Hepa 1–6

cells. (B) Hepa1-6 cells were treated with TM (0.8 μg/mL) for 24 h and stained with acridine orange (1 mg/mL) for 15 min, followed

immediately by detection using flow cytometry. The values were expressed as mean ± SD of 3 independent experiments, *P<0.05 denotes

significant difference from normal control Hepa 1–6 cells. (C) Hepa 1–6 cells were treated with TM (0.8 μg/mL) for 12 h or 24 h and

harvested for immunofluorescence assay and representative results are shown. Hepa 1–6 cells without or with strvation for 24 h were

served as control or positive control, respectively.

https://doi.org/10.1371/journal.pone.0183680.g002
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Fig 3. Inhibition of ER stress-induced autophagy aggravates, while activation of ER stress-induced autophagy decreases

apoptosis in HCC cells. (A) The Hepa 1–6 cells were incubated with rapamycin (100 nM) or 3-MA (5 mM) for 2 h, followed by treatment

with TM (0.8 μg/mL) for an additional 24 h. Cells were then subjected to WST-1 assay. Data represent the mean ± SD of 3 separate

experiments. *P<0.05 or **P<0.01 denotes a significant difference from the indicated control. (B) Hepa 1–6 cells that underwent the same

treatment as in Figure 3A were subjected to flow cytometry assay and representative results are shown. The rate of apoptosis in each group

was calculated based on PI staining assays. (C) Hepa 1–6 cells that underwent the same treatment as in Figure 3A were collected and

subjected to western blot analyses with specific antibodies directed against c-PARP, LC3B, or β-actin. The density of the corresponding

bands was measured quantitatively with an aforementioned method. Each data point is the mean ± SD of 3 independent experiments,

*P<0.05 or **P<0.01 denotes a significant difference from the indicated control. (D) Hepa 1–6 cells with or without specific knockdown of

LC3B were treated with TM (0.8 μg/mL) for 24 h and then harvested for western blot analyses with specific antibodies directed against c-

PARP, LC3B II, or β-actin.The density of the corresponding bands was measured quantitatively with an aforementioned method. *P<0.05 or

**P<0.01 denotes a significant difference from the indicated control.

https://doi.org/10.1371/journal.pone.0183680.g003
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Interestingly, specific knockdown of CHOP did significantly enhance TM-induced autophagy,

as evidenced by both western blot analysis and flow cytometry assay (Fig 5A and 5B). To fur-

ther confirm our hypothesis here, autophagy was specificly inhibited via direct knockdown of

LC3B or treatment with 3-MA in HCC cells with downregulation of CHOP. While specific

Fig 4. Knockdown of CHOP reduces TM-induced apoptosis in HCC cells. (A) Hepa 1–6 cells were treated with 0.8 μg/mL of TM for 0, 8,

12, or 24 h. Cells were collected and subjected to total RNA extraction. The mRNA levels of CHOP were measured by quantitative RT-PCR.

All results were normalized with the internal control β-actin. Bars, SD. Data show the representative of 3 independent experiments.

Meanwhile Hepa 1–6 cells given the aforementioned treatment were also collected and subjected to western blot analyses with specific

antibodies directed against CHOP or β-actin. (B) Hepa 1–6 cells with or without knockdown of CHOP were treated with different doses of TM

as indicated for 24 h. Cells were collected and subjected to total RNA extraction. The mRNA expression levels of CHOP were measured by

RT-qPCR assays. All results were normalized with the internal control, β-actin. Bars, SD. The data are representative of 3 independent

experiments. (C) Hepa 1–6 cells with or without knockdown of CHOP were treated with TM (0.8 μg/mL) for 24 h. Cells were collected and

subjected to western blot analyses with specific antibodies directed against Grp94, Grp78, p-eIF2α, c-PARP, Bax, CHOP, or β-actin. The

density of the corresponding bands was measured quantitatively with an aforementioned method. Each data point is the mean ± SD of 3

independent experiments, *P<0.05 or **P<0.01 denotes significant difference from TM-treated Hepa 1–6 cells with normal level of CHOP.

(D) Hepa 1–6 cells underwent the same treatment as in Figure 4C were subjected to western blot analysis with specific antibodies directed

against c-Caspase9, Caspase3, or β-actin. (E) Hepa 1–6 cells underwent the same treatment as in Figure 4C were subjected to flow

cytometry assay and representative results are shown. The rate of apoptosis in each group was calculated based on Annexin V and PI

staining assays. Representative experiments were carried out at least three times, **P<0.01 denotes significant difference from shCtrl

group.

https://doi.org/10.1371/journal.pone.0183680.g004
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Fig 5. Downregulation of CHOP decreases apoptosis by activation of ER stress-induced autophagy. (A) Hepa 1–6 cells with or

without knockdown of CHOP were treated with TM (0.8 μg/mL) for 24 h. Cells were collected and subjected to western blot analyses with

specific antibodies directed against LC3B, Atg5, Beclin1, or β-actin. The density of the corresponding bands was measured quantitatively

with an aforementioned method. Each datapoint is the mean ± SD of 3 independent experiments, *P<0.05 denotes significant difference

from TM-treated Hepa 1–6 cells with normal levels of CHOP. (B) Hepa 1–6 cells underwent the same treatment as in Figure 5A were

subjected to flow cytometry assay to detect the expression of LC3B and representative results are shown. Representative experiments were

carried out at least three times, **P<0.01 denotes significant difference from shCtrl group. (C) Hepa 1–6 cells without or with knockdown of

CHOP alone, or combined knockdown of CHOP and LC3B, were treated with TM (0.8 μg/mL) for 24 h. Cells were collected and subjected to

western blot analyses with specific antibodies directed against c-PARP or β-actin. The density of the corresponding bands was measured

quantitatively with an aforementioned method. Each data point is the mean ± SD of 3 independent experiments, *P<0.05 denotes significant

difference from normal control Hepa 1–6 cells. (D) Hepa 1–6 cells with or without knockdown of CHOP were treatedt with TM (0.8 μg/mL) for

24 h, or 3-MA for 2 h, and then with TM (0.8 μg/mL) for an additional 24 h and then harvested for western blot analyses with specific

antibodies directed against c-PARP or β-actin. *P<0.05 or **P<0.01 denotes significant difference compared to the TM-treated cells.

https://doi.org/10.1371/journal.pone.0183680.g005
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knockdown of CHOP alone decreased ER stress-induced apoptosis in HCC cells, simultaneous

inhibition of autophagy could partially resensitize ER stress-induced apoptosis. This suggested

that downregulation of CHOP may attenuate ER stress-induced apoptosis via activation of

autophagy in HCC cells (Fig 5C and 5D).

Discussion

Accumulation of unfolded or misfolded proteins in the ER induces ER stress. In response to

ER stress, chaperone molecules dissociate from the ER membrane to reduce protein synthesis,

facilitate protein folding, and increase degradation of unfolded proteins [1,5,6].We demon-

strate here the induction of ER stress in response to TM stimulation, as evidenced by increased

expression of chaperone proteins Grp78 andGrp94 and enhanced eIF2α phosphorylation.

Autophagy functions to maintain energy homeostasis by degradation and recycling of dam-

aged or harmful intracellular components [13,28].Overload of misfolded or unfolded proteins

Fig 6. Model for CHOP regulation of autophagy and ER stress-induced apoptosis in HCC cells. TM-

induced ER stress resulted in apoptosis as well as autophagy simultaneously in HCC cells (black line).CHOP

may promote ER stress-induced apoptosis in HCC cells via inhibition of autophagy (red line).

https://doi.org/10.1371/journal.pone.0183680.g006
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in the ER leads to a failure of protein degradation by proteasome, causing the upregulation

of autophagy[29].In our current study, we further showed that autophagy was activated

under TM-induced ER stress. More interestingly, while inhibition of autophagy mediated by

3-methyladenine pretreatment or direct knockdown of LC3B promoted cell apoptosis, activa-

tion of autophagy with rapamycin decreased TM-induced apoptosis in HCC cells. These data

indicate that activation of autophagy may protect HCC cells from ER stress-induced damage

to a certain extent.

CHOP is ubiquitously expressed at very low levels, but is strongly expressed in most cells

when subjected to severe stress[30].Our present study also showed that upon treatment with

TM, the expression of CHOP in HCC cells was significantly elevated at both mRNA and pro-

tein levels. Since TM induced-ER stress resulted in significant apoptosis simultaneously, to

unravel further the possible influence of CHOP on ER stress-induced apoptosis in HCC cells,

in the present study a self-prepared lentiviral system was used to achieve a specific knockdown

of CHOP. While undergoing ER stress, specific knockdown of CHOP not only enhanced TM-

induced autophagy, but also significantly attenuated ER stress-induced apoptosis in HCC cells.

Most importantly, simultaneous inhibition of autophagy in HCC cells with downregulation of

CHOP could partially resensitize ER stress-induced apoptosis. Thus, our data support the

notion that CHOP may favor ER stress-induced apoptosis in HCC cells through not only its

direct action in regulating pro-apoptotic proteins such as Bcl-2[10,11], but also inhibition of

autophagy (summarized in Fig 6).

In conclusion, in the present study we present evidence that CHOP may favor ER stress-

induced apoptosis in HCC cells by inhibiting autophagy in vitro. Our data suggest that there

exists a complex interplay between CHOP and autophagy in HCC cells undergoing ER

stress, although the underlying mechanism of how CHOP interacts with LC3B awaits further

investigation.
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S8 Fig. The cell cycle analysis by flow cytometry assay. Heap 1–6 cells incubated either in

control or TM (0.8 μg/mL) for 8, 12, or 24 h were stained with PI and detected by flow cytome-

try assay, and then analysis with Modifit.
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