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Abstract

Various parametric and nonparametric modeling approaches exist for real-time prediction in time-

to-event clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) 

proposed a prediction method based on parametric cure-mixture modeling, intending to cover 

those situations where it appears that a non-negligible fraction of subjects is cured. In this article 

we apply a Weibull cure-mixture model to create predictions, demonstrating the approach in 

RTOG 0129, a randomized trial in head-and-neck cancer. We compare the ultimate realized data in 

RTOG 0129 to interim predictions from a Weibull cure-mixture model, a standard Weibull model 

without a cure component, and a nonparametric model based on the Bayesian bootstrap. The 

standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture 

model, but the difference was unremarkable until late in the trial when evidence for a cure became 

clear. Nonparametric predictions often gave undefined predictions or infinite prediction intervals, 

particularly at early stages of the trial. Simulations suggest that cure modeling can yield better-

calibrated prediction intervals when there is a cured component, or the appearance of a cured 

component, but at a substantial cost in the average width of the intervals.
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1. Introduction

Many clinical trials with time-to-event outcomes schedule interim and final analyses to take 

place on the occurrence of a pre-specified number of events. For example, a cancer trial 
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could be designed to have 80% statistical power with 300 deaths, with planned interim 

analyses after the 100th and 200th deaths, and a final analysis when the 300th death occurs 

[1]. Because the times of occurrence of these landmark events are random, it is desirable to 

have a tool for predicting them as an aid to logistical planning.

We have developed a range of models for making such predictions [2, 3, 4, 5, 6] and 

demonstrated their utility in a motivating clinical trial [7]. These models assume that every 

participant is susceptible and will eventually experience the event if follow-up time is 

sufficiently long [8, 9]. This assumption may not hold in diseases where there is a possibility 

of cure — for example, in many childhood cancers and some adult cancers such as leukemia 

[10, 11], colon cancer [12], and head-and-neck cancer [13]. Failure to accommodate the 

possibility of cure could in principle lead to bias, because a fraction of surviving patients 

would be predicted to experience events to which they are effectively no longer susceptible.

Recognizing this gap in the literature, Chen [14] recently proposed the use of cure models 

[15] in prediction. His method involves, at each prediction time, selecting the best-fitting 

from among a menu of cure-mixture models (exponential, Weibull, log-logistic and 

lognormal), and using it to create predicted values for all as-yet unenrolled subjects and all 

enrolled but censored subjects. He demonstrated the application of his method in a two-arm 

cancer immunotherapy trial. At every prediction time, goodness-of-fit statistics selected the 

Weibull cure-mixture model. Initial predictions of the time of the planned final analysis (to 

be conducted at the 416th death) were as much as 20 months early, but subsequent 

predictions were closer to the target. Only at the final two (of six) predictions did the 

empirical survival curve reveal the characteristic shape of the cure model.

Chen presented no evaluation of how his method would perform in repeated samples, either 

as an estimation or a prediction procedure. Although parametric cure-mixture models are 

generally identifiable and can be estimated by maximum likelihood with standard 

asymptotics, they are known to be unreliable in the small-to-moderate sample sizes typically 

observed in clinical trials [16]. Moreover estimation is particularly challenging when follow-

up is short and empirical survival curves have not had time to reach a plateau. Because 

predictions are of most value early in the trial, which is precisely when no subjects have 

extended follow-up, there is concern that the mixture-modeling approach may not be helpful 

in typical practice.

Another motivating example is Radiation Therapy Oncology Group trial 0129 (RTOG 0129) 

[1], which compared accelerated-fractionation radiotherapy plus concurrent cisplatin-based 

chemotherapy to standard-fractionation radiotherapy alone among patients with 

oropharyngeal squamous-cell carcinoma. The study found no statistically significant 

treatment effect on survival. An interesting feature of the data is that the Kaplan-Meier (KM) 

curves for both arms level off (Figure 1), suggesting that a large fraction of subjects are 

effectively cured of their cancer.

In this paper we further explore the Weibull cure-mixture prediction model that provided the 

best fit in Chen’s immunotherapy trial example. We apply this model, together with a non-

cure Weibull model and a nonparametric model, to create and empirically evaluate interim 
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predictions in RTOG 0129. We study the relative performance of the methods in a 

simulation experiment.

2. Methods

2.1. General framework for event-time prediction

We briefly review the prediction framework described in detail in [2, 3, 4, 7, 8]. Assume we 

are conducting a two-arm randomized trial that began enrolling patients at calendar time 0. 

Subjects arrive according to a Poisson process with a constant rate of μ per unit of time and 

are randomized 1:1 between study arms. Each participant can either i) develop the event of 

interest, ii) remain in the trial without occurrence of the event, or iii) become lost to follow-

up. At current calendar time t0 > 0 we seek to make predictions about the future course of 

the trial. A typical objective is to predict the calendar time T* at which the D*th event will 

occur; for example, at t0 = 6 months we may predict the time T* at which event D* = 100 

will occur. The essence of the method is to use the accumulating trial data to estimate the 

accrual/survival model, which we then use to create predictions about the future course of 

the trial.

We previously developed a Bayesian prediction method based on a Weibull (non-cure) 

survival model [4], which assumes that survival time T in arm j, j = 0, 1 follows the survival 

function

(1)

and that time to loss to follow-up in arm j independently follows a Weibull with arm-specific 

scale and shape parameters. The first step in the prediction modeling is to specify priors for 

the enrollment rate and the parameters of the Weibull event and loss to follow-up 

distributions in each arm. To create predictions at time t0 we compute the posterior density 

of the parameters using the data accrued up to that time. Then we conduct the following 

steps many times:

1. Sample a set of parameters from the posterior using importance sampling (or 

some other method).

2. Conditional on the sampled parameters, sample a data set from the predictive 

distribution of the enrollment, survival and loss times:

a. Simulate the event and loss to follow-up times for participants who are 

enrolled and on study but have not yet experienced an event.

b. If the total enrollment goal has not yet been reached, simulate the 

enrollment, event and loss times for a hypothetical set of participants 

who have not yet been enrolled.

c. Determine each subject’s date of event or loss (real or simulated), and 

rank the event dates among subjects who either have had an event or are 

predicted to have an event.
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d. Identify the date of the landmark time T*.

Each replication of steps 1 and 2 generates a draw from the predictive distribution of the 

landmark time T*. Repeating them many times, one can predict the landmark time as, for 

example, the median of the simulated distribution of T*, with 95% prediction interval equal 

to the interval between the 2.5th and 97.5th centiles of the simulated distribution.

2.2. Prediction using the Weibull cure-mixture model

Common failure-time models assume that every subject is susceptible to the event of interest 

and will experience it if followed long enough. This assumption fails in studies where there 

is a possibility of cure. The cure-mixture model addresses this deficiency by positing that the 

study sample is a mixture of uncured individuals (who will experience the event of interest if 

not censored) and cured individuals (who will never experience it no longer how long we 

follow them) [15, 16, 17, 18]. Let T denote the time to the event of interest. The Weibull 

cure-mixture model asserts that for a subject in arm j,

(2)

where S(t|αj, βj) is the Weibull survival function from Equation (1), and ρj ∈ [0, 1] is the 

probability of cure in arm j. When t is large, the survival function approaches the cure 

fraction ρj; when ρj = 0, it reduces to the standard Weibull survival model.

Many variations of the cure-mixture model appear in the literature [19]. A common version 

models the cure probability with a logistic regression and the survival with a Weibull 

distribution, the latter being a popular choice thanks to its flexibility and its similarity to Cox 

regression [20]. Our analyses will model both the cure probability and the Weibull survival 

parameters only as functions of the randomization arm (see Equation 2).

Under the Weibull cure-mixture model the overall prediction framework remains the same, 

except that one must also predict cure status for the censored and not-yet-enrolled subjects. 

We generate the cure status of each unenrolled participant in arm j by binomial sampling 

with the sampled cure probability ρ̃j. For a subject in arm j who was enrolled at calendar 

time e, and who did not experience an event by prediction time t0 ≥ e, the conditional cure 

probability for sampling is

(3)

where S(·; α̃j, βj̃) is the Weibull survival function given sampled parameters α̃j and β̃j. The 

cure status for these already enrolled subjects in arm j is then simulated from the binomial 

distribution with this estimated cure probability. For a subject who is simulated to be cured, 

the event time is imputed as infinity. If a subject is simulated as not cured, we impute the 
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event time by drawing from the unconditional Weibull for a new subject, or the Weibull 

conditional on the event time being at least t0 – e for an existing censored subject.

Our prediction approach is Bayesian and therefore requires specification of a prior for the 

model parameters. We describe the selection of priors for RTOG 0129 in §4.3 below.

2.3. The nonparametric prediction model

Ying et al. [3] have described a nonparametric (NP) approach to prediction that proceeds 

according to the following steps:

1. Re-sample the data by the Bayesian bootstrap (BB) [21].

2. Create a draw from the posterior of the survival curve under a nonparametric 

model by computing the KM curve from the resampled data.

3. Conditional on the resampled KM curve, sample a data set from the predictive 

distribution of the data:

a. Simulate the event and loss to follow-up times for participants who are 

enrolled and on study but have not yet experienced an event.

b. If the total enrollment goal has not yet been reached, simulate the 

enrollment, event and loss times for a hypothetical set of participants 

who have not yet been enrolled.

c. Determine each subject’s date of event or loss (real or simulated), and 

rank the event dates among subjects who either have had an event or are 

predicted to have an event.

d. Identify the date of the landmark time T*.

2.4. Infinite event times

In the cure-mixture model, we represent a cured individual mathematically as having an 

infinite event time. When the event is death, of course a cure is impossible — nobody lives 

forever. Rather, we interpret the infinite event time as meaning that the subject dies at a more 

advanced age, potentially from another disease than the one under study. In that sense the 

cure-mixture model is only ever an approximation.

The possibility of infinite event times has important ramifications for prediction algorithms, 

because in a given set of imputed event times it is possible that the predicted time of the 

event landmark T* will itself be infinite. This would occur if we were attempting to predict 

the time of the D*th event, but the set of imputed event times had fewer than D* finite event 

times. Thus in a given simulated predictive distribution it is possible for the upper limit of 

the prediction interval, the median prediction, and even the lower limit of the prediction 

interval to be infinite.

In model-based predictions, one generates an infinite event time by a successful draw with 

probability  in Equation 3. In the NP prediction model, there is no 

assumed cure probability, but the simulation procedure can generate an infinite event time 
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when the largest event time in the BB sample is censored, because in this case the curve 

effectively has a mass at infinity. In the original version of our NP prediction model [3], we 

sought to avoid generating infinite event times, and thus we followed the common practice 

of appending a parametric tail to the KM curve whenever the largest re-sampled event time 

was censored. When, as in RTOG 0129, cure is a possibility, one may wish to preserve the 

possibility of generating infinite event times. We accomplished this easily by simply not 

appending a tail when the BB KM curve does not decline to zero. Thus this simplified 

version of the NP method naturally accounts for cures.

3. Simulations

We conducted a simulation study to evaluate performance of the methods under a range of 

scenarios inspired by the RTOG 0129 experience. Table 1 presents the parameters of the 

survival model used in the simulations, and Figure 2 displays the implied survival curves. 

The first set of parameters, referred to as the “Cure” model, is similar to the estimates from 

RTOG 0129 under the Weibull cure-mixture model. The second set, “Ambiguous Non-

Cure”, roughly equals the estimates from the data assuming a Weibull model with zero cure 

fraction. This distribution has long tails and is indistinguishable from a cure model under the 

RTOG 0129 follow-up regime. The third set, “Unambiguous Non-Cure”, equals estimates 

from the Weibull portion of the cure model, but with cure fraction set to 0. A survival curve 

generated under this scenario declines to near 0 under RTOG 0129 follow-up, and therefore 

will inform us on how the methods perform when a cure model is unnecessary.

Our simulated two-arm trial enrolled an expected 721 patients, arriving over 1,080 days 

according to a Poisson process, assuming a total length of follow-up of 2,512 days. We 

assumed that survival times were the same in both arms, and that times of loss to follow-up 

were Weibull with parameters that would lead to only rare losses in a trial like RTOG 0129.

We created predictions under the three models indicated above. For each of 100 simulated 

data sets, we predicted the dates of the 300th event by each method using data as of the 

occurrence of the 75th, 150th and 225th events (looks 1, 2, and 3, respectively). The 

expected dates for creating these predictions are approximately 740, 1,110 and 1,500 days 

for ambiguously non-cure data; 710, 1,030, and 1,550 days for cure-mixture data; and 550, 

800 and 982 days for unambiguously non-cure data. For each method, we calculated the 

median width of the 95% prediction interval and its coverage probability. We also calculated 

an estimate of the cure probability — its posterior mode — under the Weibull cure-mixture 

method.

Table 2 shows results of the simulation under the true cure model. As expected, the cure-

mixture method performs reasonably well, with coverage rates around 90%. The non-cure 

method gives much shorter but badly calibrated intervals, with coverage ranging from 27% 

to 43%. The NP method produces large numbers of imputed times at infinity; in fact, under 

this scenario none of the simulated intervals was of finite width. Its coverage probabilities 

improve from 25% at the first look to 92% at the third.
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Table 3 shows results under the scenario of ambiguously non-cure data. The cure model 

again performs best, even though the simulated data contain no actual cures. The Weibull 

non-cure model gives shorter intervals that are poorly calibrated initially but improve at later 

looks. Again, the NP method sees the data essentially as cure data and produces infinite 

intervals for all 100 simulations, giving reliable intervals only at the third look.

Table 4 shows results under the unambiguously non-cure scenario. Here the Weibull non-

cure method gives the shortest intervals and is reasonably well calibrated. The cure-mixture 

method works almost as well, giving intervals that are nearly as well calibrated but 

somewhat longer. The NP method is ineffective at the first look but improves thereafter.

The median estimated cure probabilities and their 2.5th and 97.5th centiles appear in Table 

5. Recall that under the cure model for generating the data, the cure fraction was 0.4; under 

the non-cure models it was zero. When the data contain cures, the probabilities are 

underestimated somewhat but not too far off, with median values ranging from 11% at the 

early look to 25% at the last look. With ambiguous non-cure data, the cure model was easily 

fooled, with average estimated cure probabilities of 20% or more. With unambiguously non-

cure data the cure model estimated cure probabilities at on average 10% or less.

4. Prediction in RTOG 0129

4.1. RTOG 0129

RTOG 0129 was a phase III trial to evaluate whether accelerated-fractionation radiotherapy 

with concurrent cisplatin-based chemotherapy (AFX) improves survival compared to 

standard-fractionation radiotherapy alone (SFX) in stage III or IV squamous-cell carcinoma 

of the head and neck [1]. The primary outcome was time to death from any cause. A sample 

size calculation informed by data from prior studies indicated that 309 deaths would give 

80% power (in a one-sided test with type I error rate 5%) to detect a 25% reduction in the 

hazard of death (giving 2-year mortality of 45% on AFX vs. 55% on SFX). Investigators 

planned to conduct interim analyses at deaths 103 and 206, with a final analysis after death 

309. With accrual projected at 13 patients/month, the trial was expected to achieve 309 

deaths by enrolling 456 analyzable patients in three years and following them for an 

additional two years.

Enrollment began on September 18, 2002. By May 2004 the trial had accrued roughly 400 

patients, or nearly double its expected number by that date. Therefore RTOG amended the 

protocol to increase the total sample size to 684 patients, which would give 80% power for a 

reduction of 20% in the death hazard. The revised sample size was projected to be accrued 

within three years of the trial’s opening. The analysis plan was accordingly modified to 

require 584 deaths, with interim analyses after deaths 184 and 369. At the close of 

enrollment on June 23, 2005, the trial had enrolled 721 eligible patients. Enrollment took 

1009 days (2.8 years), at an average rate of 22 subjects/month.

In January 2007 the trial’s Data & Safety Monitoring Board (DSMB) reviewed the first 

interim analysis, derived from a data set containing the initial 192 deaths. The estimated 

overall two-year mortality rate was 28%, far lower than the assumed rates of 55% for SFX 
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and 45% for AFX from the sample size calculation. Assuming exponential survival, RTOG 

statisticians projected that the second interim analysis would not take place until June 2013.

In light of the unexpectedly low death rate, in June 2008 RTOG again re-evaluated the 

analysis plan. With 257 deaths to date, the second interim analysis was projected to take 

place in January 2011 — earlier than had been predicted in January 2007 but far beyond the 

original planned closing date. Because RTOG 0129 was one of the first large trials to test the 

potentially highly toxic AFX regimen, radiation oncologists anxiously awaited its results. In 

order to spare patients unnecessary toxicity during a lengthy follow-up, RTOG reverted to 

the original plan of closing the study after death 309. Because the number of deaths recorded 

at this juncture (257) exceeded the original number designated for the second analysis (206), 

the second interim analysis was omitted.

The trial was closed in May 2009 with the occurrence of the 303rd death. The 103rd death 

took place on April 16, 2005 (day 940), the 206th death on October 22, 2006 (day 1,494), 

and the 303rd death on May 12, 2009 (day 2,427) (Table 6). No participant was lost to 

follow-up.

4.2. Prediction of time to reach landmark events

We applied three models — NP, Weibull, and Weibull cure-mixture — to predict the times to 

reach deaths 103, 206, and 303. We created predictions retrospectively at two-month 

intervals, starting 8 months from the opening of the study, using only data available at the 

time of prediction. (Month 8 was the first point at which each arm had at least one death.) 

We first made predictions for the time of death 103; at time points after its occurrence we 

made predictions for death 206; and after its occurrence we made predictions for death 303. 

In addition to the time to reach the landmark event count, we computed the predicted 

treatment effect and the predictive power, or Bayesian probability that the trial results would 

be statistically significant [7, 23, 24]. To compute the latter, we constructed each simulated 

data set as it would have existed at each future analysis time, and calculated the fraction of 

such simulated data sets for which the trial’s sequential testing procedure would yield 

statistical significance. The critical values for statistical significance from the one-sided 

logrank test using the O’Brien-Fleming α-spending function approach were Z = (3.20, 2.14, 
1.69) at the three looks, respectively, or alternatively one-sided P = (0.00069, 0.01569, 
0.03363).

Rcode is available upon request from the last author.

4.3. Priors for the prediction models

For parameter specification, we measured all times in units of years. For accrual rate, we 

assumed the prior Gamma(13, 30/365.25), which is equivalent to one month of data in which 

13 patients are accrued, as implied by the original study design. For Weibull shape 

parameters for event and loss distributions in both arms, we assumed Gamma(1.5,1) priors 

(i.e., exponential priors with mean 1.5). For the time-to-death distributions, we chose priors 

for the Weibull scale parameters to give mean values that would roughly match values from 

pilot data: Gamma(5.6,1) for the scale in the SFX arm and Gamma(7.3,1) for the scale in the 
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AFX arm. Although there was no loss to follow-up either in pilot data or RTOG 0129, to 

allow for the possibility of losses we assumed priors that gave prior means of 10 years for 

time to loss to follow-up — specifically, Gamma(11.1,1) in both arms. We took the logits of 

the cure probabilities to be Cauchy with median 0 and scale 2.5 in both arms. We assumed 

all parameters to be a priori independent.

4.4. Results

After a brief ramp-up, enrollment settled at around 22 patients per month (Figure 3). 

Monthly mortality was low initially, reached its highest levels around the time of the close of 

accrual, and then gradually declined (Figure 4). KM survival curves (Figure 1) suggest that a 

fraction of subjects are cured, with a tail that flattens out at roughly 50% survival in each 

arm. Analysis using the Weibull cure model estimated the cure rates to be 49% (95% CI: 

40%–58%) on SFX and 46% (95% CI: 31%–61%) on AFX. Goodness-of-fit statistics (Table 

7) and graphs (Figure 5) based on the full data set indicate that the Weibull cure model fit 

marginally better than the standard Weibull.

Predictions of death 103, which occurred on day 940, appear in Figure 6. All three models 

predicted that the event would take place later than it actually did, right up until the time of 

its occurrence. The standard Weibull model did slightly better than the Weibull cure-mixture. 

The NP method predicted infinity for much of the early going; the point prediction (the 

median of the simulated distribution of times to the target event) was infinite until month 20, 

and the upper limit of the interval (the 97.5th centile of the distribution of times to the target 

event) was infinite until month 24. The 95% prediction limits from all three approaches 

cover the actual date; intervals are generally shortest for the Weibull model, somewhat 

longer for the Weibull cure model, and longest (even when finite) for the NP model. The 

erroneous predictions by all three methods presumably reflect the increasing rates of 

monthly mortality observed during the period leading up to event 103; the predictions 

overshoot the target because the methods consistently underestimate mortality.

Death 206 took place on study day 1,494 (Figure 7). Both Weibull models predicted that it 

would occur earlier than it did, presumably reflecting a delayed response to the declining 

study death count after month 32. Of the three methods the NP was generally the most 

accurate, although its prediction intervals were infinite prior to month 44. The two 

parametric methods gave similar predictions, with perhaps a slight advantage for the cure 

model.

Death 303 occurred on study day 2,427 (Figure 8). By the time of the planned second 

interim analysis (which never took place thanks to the shifting study design), presumably 

there was some evidence of a cure fraction. Thus the standard Weibull model, which did not 

account for cure, gave substantially early predictions until just before event 303. The 

Weibull cure model did much better initially, although later predictions overshot the target 

somewhat. NP prediction intervals for this event were again infinite, reflecting the large 

fraction of evidently cured patients. Thus if one were more concerned with predictions six 

months or more prior to the ultimate event, the cure model gave correct but fuzzy 

predictions, whereas within six months of the event the non-cure predictions were correct 
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and had much smaller intervals. NP predictions never dominated either parametric 

alternative.

A plot of predictive treatment effect estimates after month 52 from the three approaches 

appears in Figure 9. All three predictions showed a modest treatment effect. The cure-

mixture model gave the best predictions after about month 60.

Figure 10 displays the evolution of the predictive power. All three models showed similar 

patterns, with occasional spikes (months 30, 47 and 64) representing moments when the 

evidence suggested a possible advantage for AFX. The predictive power declined over time 

until reaching 0 when the final analysis showed no significant difference between arms. The 

NP model was the most sensitive to small clusters or droughts in events.

5. Discussion

In this and previous articles [2, 3, 4, 5, 6, 7, 8, 9], we have demonstrated that real-time 

prediction in event-based trials can ease logistical planning, inform interim design decisions, 

and assist DSMBs in evaluating futility. These elements contribute to the optimal allocation 

of trial resources and efficient trial operation.

We followed Chen [14] in applying a Weibull cure-mixture model to RTOG 0129. Judged 

retrospectively, the cure model yielded moderately better predictions than a non-cure model, 

especially after the data came to suggest a substantial cure fraction. Because the need for 

cure modeling may become apparent only after many subjects have accrued substantial 

follow-up time, in general the relative advantage of cure modeling is unlikely to be realized 

until later in the trial.

Chen did not evaluate the performance of cure-based prediction in repeated samples, a gap 

that we have addressed here through simulation studies. Our results demonstrate that 

incorporating a cure model can substantially improve the correctness of predictions if the 

data suggest that such a model is plausible. Only when the true survival curves decline to 

near zero over the proposed follow-up does a non-cure model give good prediction coverage. 

The cost of the improved coverage is substantial, as intervals under the cure model are on 

average roughly twice as wide in the early going. The NP approach that does not constrain 

survival curves to decline to zero was practically useless in scenarios where the cure fraction 

was substantial. Our simulations of the estimated cure fractions reflect the well-known 

difficulty of estimating such parameters in small-to-moderate samples [16]. Fortunately, it is 

apparently not necessary to estimate the cure fraction accurately to obtain calibrated 

prediction intervals.

In principle, no true cure is possible with time to death as the outcome, because even 

subjects who are cured of the proximal life-threatening disease will eventually die of another 

cause. Thus modeling cures may be most appropriate in trials for potentially fatal diseases of 

children, where subjects whose treatment is successful stand to survive for many decades. 

The good fit of the cure assumption was surprising in RTOG 0129, where the median age at 

enrollment exceeded 50 and the oldest patient was 82 [1]; at the design stage, RTOG did not 

anticipate a substantial cure fraction. Nevertheless, the survival curves in Figure 1 suggest 
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that in both arms roughly half of the subjects were effectively cured of the life-threatening 

effects of their tumors. Allowing the cure fraction to depend on baseline predictors such as 

age, stage, smoking, and HPV status could improve the accuracy of model-based prediction 

methods.

A second observation from RTOG 0129 is that trends in mortality strongly influence 

predictions. When mortality is increasing (decreasing), predictions will overshoot 

(undershoot) the target, as we saw in the predictions of events 103 and 206. This appears to 

hold independently of the model being applied, except that the NP method is the most 

sensitive to small changes in mortality experience. Ying and Heitjan [7] observed a similar 

phenomenon in REMATCH, where death count predictions strongly reflected a decline in 

mortality that took hold between the second and third interim analyses.

In addition to predicted treatment effects and predictive power, a further possible byproduct 

of predictive cure modeling is individual estimated cure probabilities, based on simulation 

replicates of the values in Equation 3. One could sharpen such predictions by including other 

variables besides treatment arm in the model for the cure probability.

We have observed that the predicted event rate can be sensitive to the observed enrollment 

pattern, which suggests that the introduction of flexible models for changing enrollment 

rates could improve predictions. It is difficult to model changes in the enrollment rate, 

however, because such changes occur in real (calendar) time and can be difficult to 

anticipate. Nevertheless, some enrollment trends appear to hold generally, such as a gradual 

increase in the early months, followed by a period of steady accrual, possibly concluding 

with a rapid uptick as the trial enters its “home stretch” [28, 29]. We intend to address these 

issues in future papers.

Model fit is always a concern in parametric survival analysis, and especially so in predictive 

modeling, which requires extrapolation into the future. Monte Carlo results in Ying et al. [4] 

suggest that predictions based on the Weibull offer a reasonable compromise between 

accuracy and efficiency, and therefore we have used them as the basis of our cure-mixture 

approach. Another alternative is the piecewise exponential model, as applied in the 

prediction context by Fang and Su [30]. A further possibility would be to use piecewise-

constant hazard models where change points are situated at the calendar times of significant 

events that occur in the trial. For example, in the device arm of REMATCH, the survival 

experience changed dramatically between the second and third interim analyses, possibly 

reflecting the implementation of an upgraded infection-control protocol [7]. One could also 

model such effects via time-varying predictors in survival models.

In summary, predictive cure modeling is a potentially valuable adjunct to planning and 

decision-making in clinical trials. We anticipate an increased need for such tools as our 

ability to personalize the treatment of chronic diseases, and thereby effect cures, advances.
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Figure 1. 
Kaplan-Meier curves in RTOG 0129: SFX = standard-fractionation radiotherapy alone; AFX 

= accelerated-fractionation radiotherapy plus concurrent cisplatin-based chemotherapy.
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Figure 2. 
Survival curves for generating the simulation data.
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Figure 3. 
Number of subjects enrolled in each month (30-day interval) during the accrual period.
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Figure 4. 
Number of deaths in each month (30-day interval) during the trial.
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Figure 5. 
Log-scale KM and fitted survival curves from the standard and cure-mixture Weibull models 

in the AFX arm. Curves for the SFX arm were similar.
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Figure 6. 
Prediction of the 103rd death using NP, standard Weibull and Weibull cure-mixture models. 

The horizontal dashed line is the date of occurrence of the 103rd death.
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Figure 7. 
Prediction of the 206th death using NP, standard Weibull and Weibull cure-mixture models. 

The horizontal dashed line is the date of occurrence of the 206th death.
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Figure 8. 
Prediction of the 303rd death using NP, standard Weibull and Weibull cure-mixture models. 

The horizontal dashed line is the date of occurrence of the 303rd death.
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Figure 9. 
Predicted treatment effect from NP, standard Weibull and Weibull cure-mixture models after 

the occurrence of the 206th death.
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Figure 10. 
Predictive power from the NP, standard Weibull and Weibull cure-mixture models, by study 

month.
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Table 1

Parameters for generating data in the simulations.

Parameter

Scenario

Cure Ambiguous Non-Cure Unambiguous Non-Cure

ρ 0.4 0 0

α 1.1 0.9 1.1

β 3.0 8.0 3.0
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Table 5

Summary of the distribution of the estimated (posterior mode) cure probability.

Look/Model 2.5th centile Median 97.5th centile

Cure-mixture (ρ = 0.4)

1 0.05 0.11 0.13

2 0.06 0.16 0.18

3 0.06 0.25 0.46

Ambiguous non-cure (ρ = 0)

1 0.08 0.20 0.42

2 0.10 0.26 0.42

3 0.07 0.26 0.42

Unambiguous non-cure (ρ = 0)

1 0.04 0.06 0.11

2 0.03 0.06 0.34

3 0.02 0.05 0.32
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Table 7

Comparison of goodness of fit for the Weibull and Weibull cure-mixture models.

Goodness-of-fit statistics

Survival model AIC AICC BIC

Standard Weibull 1894.4 1894.4 1908.2

Weibull cure-mixture 1884.1 1884.2 1907.0

AIC = Akaike information criterion; AICC = Corrected Akaike information criterion; BIC = Bayesian information criterion; smaller values 
represent better fit.
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