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With the increased interest in the application of quantitative systems pharmacology (QSP) models within medicine research
and development, there is an increasing need to formalize model development and verification aspects. In February 2016, a
workshop was held at Roche Pharma Research and Early Development to focus discussions on two critical methodological
aspects of QSP model development: optimal structural granularity and parameter estimation. We here report in a perspective
article a summary of presentations and discussions.
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OPTIMAL GRANULARITY AND DESIGN OF

QUANTITATIVE SYSTEMS PHARMACOLOGY (QSP)

MODELS

In the design of QSP models, finding the right granularity is

notoriously difficult. Granularity is the level of detail in which

biological and pharmacological processes are represented

and is associated with higher expected predictive power.

But granularity comes with a cost, which is the difficulty of

building, running, communicating, and maintaining a model

with a vast number of components and parameters which—

for the purpose of this discussion—will be summarized as

complexity. One particular aspect of this complexity is the

difficulty in parameter estimation, potentially resulting in

large uncertainty in parameter estimates.
In translational and clinical pharmacokinetic–

pharmacodynamics (PKPD) modeling, the main aim is to

predict response of a selected biomarker at different dosing

regimens or in different patient populations with well-

defined input (dose)-output (exposure/biomarker) relation-

ships at tested dosing regimens. In the context of PKPD

modeling, parsimony is one of the most powerful guiding

principles in restricting model complexity. While controlling

complexity is also important for QSP models, the principle

of parsimony is not easily applicable for QSP models, since

they are often developed to provide biological insights into

unmeasured/unmeasurable biomarkers of interest.
Ultimately, the question of granularity can only be answered

when comparing competing models with respect to their set

objectives. As in every comparison, the rules for the evalua-

tion need to be fixed in advance and be tailored to the

research question, e.g., what metric to be applied; what data

input to be used; and what pharmacological interventions to

be compared?

Along with some examples of success (see, for instance,

Refs. 1, 2), in our experience some early QSP initiatives

were overambitious and lacked predefined specification of

question(s) to be answered by the model, which would

have determined the required model complexity and

whether that was achievable. As a result, these modeling

efforts, while scientifically sound, did not turn out to provide

valuable return on investment (unfortunately, such “failures”

do not tend to get published; see Ref. 3). In order to get

the granularity-complexity balance of a QSP project right,

the following five criteria were highlighted as being

important:
Need: The need, in many cases, arises from a question

that cannot be solved by other standard methods such as

PKPD modeling. As an example, in Ref. 4 the question

whether mechanistic understanding of changes in blood

eosinophils (EOS) could provide insights into the pharma-

cology of anti-interleukin therapy could only have been

addressed through a systems approach encompassing

EOS and cytokine dynamics and regulations. In another

case,5 a QSP approach was also required to identify knowl-

edge gaps on a pharmacological target for treating pain

and generate hypotheses that would explain observed lack

of efficacy of a tested target. A careful analysis of the need

for QSP approach compared to a “simpler” approach can

also serve to highlight the complementary value this

approach brings to the table.
Prior knowledge: Biological, physiological, and patho-

physiological knowledge is the sine qua non for QSP

modeling. This should include quantitative data at each of

the scales of interest, e.g., molecular, cellular, and/or organ

levels, to calibrate the models. In many cases, useful QSP

models can be developed with less complete data, provided

that within a physiologically plausible range, the parameter
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uncertainties associated with these data gaps are shown to
be insensitive to the question being asked of the model or
when the purpose of the model is to generate hypotheses
regarding missing data.

In addition to known data gaps, the data that are avail-
able may be prone to bias: e.g., the newer a drug target is,
potentially the less is known about it. This implies also the
necessity of a sound collaboration with experimental labs to
fill the knowledge gaps in an iterative manner. In our experi-
ence, lack of such experimental support has been one of
the main reasons for attrition of QSP projects.

Pharmacology: Pharmacological interventions “probe”
the system in multiple ways; responses to these interven-
tions offer some of the best ways to discriminate models
and their granularity. To achieve this aim, interventions
must target complementary parts of the system, similar to
illuminating an object from various angles in order to get
an understanding of its shape. Or in other words, com-
pounds are needed that are as distinct as possible in their
properties and their effects, while at the same time span-
ning a common pharmacological space, e.g., probing
through both agonism and antagonism to a given system’s
target. Integrating and testing a series of compounds not
only makes models more robust, but also builds credibility
and quite often gives insights into mechanisms that were
previously missing. Some authors and consortia have
defined standardized “validation sets,” i.e., sets of com-
pounds that are available to anyone in order to gauge
models against each other (see, for instance, Ref. 6). The
number of compounds needed for validation is a matter of
debate and typically constrained by availability of resour-
ces and time. Alternate methods used to provide pharma-
cological understanding are information on genetic
mutations in animals and humans, and pathophysiological
conditions leading to overexpression or suppression of
some pathways.

Understanding the translation: While most drug develop-
ment is focused on human application, a wealth of data is
available in animals at early stages of discovery, and hence
understanding how a given intervention manifests in differ-
ent organisms is precious. As far as possible, the under-
standing of biological, physiological, and metabolic
differences between model organisms (e.g., cell cultures,
organs on a chip, or animal models) should be used to
characterize the multifaceted effects of pharmacological
interventions. Adequate representation of human patho-
physiology and pharmacology in a single model organism is
notoriously difficult and often impossible, especially with
highly specific treatment modalities and with targets that
have a low degree of evolutionary conservation. Most often,
several model organisms are used in parallel, each repre-
senting specific aspects of the pharmacology such as bio-
distribution, target engagement, and cell-level effects. A
synthesis of this knowledge should be aspired by building
QSP models around the relevant model organisms and to
finally assemble these pieces in a QSP model embodying
the physiology of the patient.

Collaboration: The cost and time of QSP models is most
easily justified if they can serve various projects, and can
build on strong collaboration across various groups and

institutions. Only long-term integration with wet-labs and
drug development project teams can ensure that the circle
is closed between model predictions, new experiments, and
model refinement. Complex models need a scientific net-
work across groups and companies to survive and to
evolve. This implies minimal standards on modeling lan-
guage, validation sets and metrics for model comparison.

In summary, the granularity of a QSP model can be
gauged based on the need, the amount of biological and
pharmacological knowledge on the system, the understand-
ing of the translational aspects, and the strength of the col-
laborative network.

MODEL IDENTIFIABILITY AND PARAMETER
ESTIMATION OF QSP MODELS

An obvious consequence of granularity is parameter uncer-
tainty. In PKPD modeling, parameter estimation techniques
have been well documented and packaged in softwares such
as NONMEM (ICON Development Solutions, Ellicott City,
MD) or Monolix (Lixoft, Antony, France) that incorporate
state-of-the-art techniques. For highly granular structural mod-
els and heterogeneous data sources, methodology around
parameter identification is an open field of research and new
approaches to apply these techniques will need to be devel-
oped in the future.

Several authors have successfully used model reduction
techniques through variable lumping to reduce large net-
work models to more manageable PKPD models (see
Refs. 7,8, as examples). Development of robust techniques
for addressing parameter identifiability is critical for QSP
model development, in particular to prevent modelers to
conclude on some results that data cannot support. In this
respect, these methods can be viewed as powerful allies
for communication of modeling results because they help to
clarify uncertainties associated with a modeling or simula-
tion outcome and help to fix boundaries of what can be or
should not be communicated given a tolerable degree of
uncertainty. Herein, our aim is not to provide an in-depth
overview but mainly to encourage more work in this area.

Among the different methodological topics related to
parameter estimation or uncertainty, the topic of structural
(a priori) and practical (a posteriori) identifiability is certainly
a fundamental one. Structural identifiability (SI) is about
which variables need to be observed in order to identify a
unique set of parameters and practical identifiability (PI) is
about how frequently observations of a given set of varia-
bles needs to be to constrain parameter estimates within
reasonable and finite bounds.

SI is often addressed with the use of algebraic methods
(the reader can refer to Ref. 9 as an example). To evaluate
PI, several approaches can be used such as data bootstrap-
ping followed by reestimation of parameters to find different
sets of parameter values, thus designing an estimation inter-
val. The covariance matrix is the most straightforward way to
assess identifiability. Lower and upper bounds of prediction
interval can be obtained with this matrix as well as the corre-
lation coefficient between parameters. If this correlation coef-
ficient is high, then the model is not identifiable. Exploring
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the a posteriori distribution of parameters can be also
approached by Markov Chain Monte Carlo approaches to
explore the distribution of individual parameters following a
Bayesian formulation of the optimization problem. A wide
distribution will indicate identifiability issues.

Recently, it has been suggested to address PI through
the concept of likelihood profiling.10 Raue et al. defined
practical nonidentifiability of the likelihood-based confidence
region is infinitely extended in increasing and/or decreasing
the direction of a given parameter, although the likelihood
has a unique minimum for this parameter value. Profile like-
lihood (PL) approaches rely on minimizing each likelihood
function for each parameter, but not the parameter in ques-
tion. The PL of a practically nonidentifiable parameter has a
minimum, but does not exceed a threshold for increasing
and/or decreasing the values of the given parameter. In
contrast, for an identifiable parameter, the likelihood will go
over a threshold when increasing/decreasing the parameter
value.

In conclusion, selection of the right level of granularity is
challenging because, as discussed, several factors must be
considered. Guided by examples, more work should be per-
formed to better define these factors and to propose meth-
ods to help modelers understand when and how to apply
available tools to rationally guide the design and the granu-
larity of a model.

The more granular and complex a model is, the less
defined and validated are the methods to handle parameter
estimation and uncertainty. In consequence, the model’s
granularity and the parameter’s uncertainty are two themes
closely interlinked and deserve dedicated research to
enhance the value of QSP models in medicine research
and development.
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